ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (20)
  • AGU (American Geophysical Union)  (17)
  • American Association for the Advancement of Science (AAAS)
  • American Institute of Physics (AIP)
  • American Physical Society (APS)
  • 1975-1979  (20)
Collection
Source
Years
Year
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research - Solid Earth, 84 (B5). pp. 2303-2314.
    Publication Date: 2017-10-10
    Description: A tsunami earthquake is defined as a shock which generates extensive tsunamis but relatively weak seismic waves. A comparative study is made for the two recent tsunami earthquakes, and a subduction mechanism near a deep-sea trench is discussed. These two earthquakes occurred at extremely shallow depths far off the coasts of the Kurile Islands and of eastern Hokkaido on October 20, 1963, and on June 10, 1975, respectively. Both can be regarded as an aftershock of the preceding larger events. Their tsunami heights and seismic wave amplitudes are compared with those of the preceding events. The results show that the time constants involved in the tsunami earthquakes are relatively long but not long enough to explain the observed disproportionality between the tsunamis and the seismic waves. The process times are estimated to be less than 100 s. The spatio-temporal characteristics of the two events suggest that they represent a seaward and upward extension of the rupture associated with a great earthquake which did not break the free surface at the coseismic stage. The amplitude and phase spectra of long-period surface waves and the long-period P waveforms indicate that this extension of the rupture did not take place entirely along the lithospheric interface emerging as a trench axis. It rather branched upward from the interface in a complex way through the wedge portion at the leading edge of the continental lithosphere. This wedge portion consists in large part of thick deformable sediments. A large vertical deformation and hence extensive tsunamis result from such a branching process. A shallowest source depth, steepening of rupture surfaces, and a deformable nature of the source region all enhance generation of tsunamis. The wedge portion ruptured by a tsunami earthquake is usually characterized by a very low seismic activity which is presumably due to ductility of the sediments. We suggest that this portion fractures in a brittle way to generate a tsunami earthquake when it is loaded suddenly by the occurrence of a great earthquake and that otherwise it yields slowly. Upward branching of the rupture from the lithospheric interface produces permanent deformation of the free surface which is relative uplift landward and relative subsidence trenchward of the zone of surface break. This surface break zone geomorphologically corresponds to the lower continental slope between the deep-sea terrace and the trench. Such a mode of permanent deformation seems to be consistent with a rising feature of the outer ridge of the deep-sea terrace and a depressional feature of the trench. This consistency implies a causal relationship between great earthquake activities and geomorphological features near the trench.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research - Solid Earth, 84 (B5). pp. 2303-2314.
    Publication Date: 2017-11-24
    Description: A tsunami earthquake is defined as a shock which generates extensive tsunamis but relatively weak seismic waves. A comparative study is made for the two recent tsunami earthquakes, and a subduction mechanism near a deep-sea trench is discussed. These two earthquakes occurred at extremely shallow depths far off the coasts of the Kurile Islands and of eastern Hokkaido on October 20, 1963, and on June 10, 1975, respectively. Both can be regarded as an aftershock of the preceding larger events. Their tsunami heights and seismic wave amplitudes are compared with those of the preceding events. The results show that the time constants involved in the tsunami earthquakes are relatively long but not long enough to explain the observed disproportionality between the tsunamis and the seismic waves. The process times are estimated to be less than 100 s. The spatio-temporal characteristics of the two events suggest that they represent a seaward and upward extension of the rupture associated with a great earthquake which did not break the free surface at the coseismic stage. The amplitude and phase spectra of long-period surface waves and the long-period P waveforms indicate that this extension of the rupture did not take place entirely along the lithospheric interface emerging as a trench axis. It rather branched upward from the interface in a complex way through the wedge portion at the leading edge of the continental lithosphere. This wedge portion consists in large part of thick deformable sediments. A large vertical deformation and hence extensive tsunamis result from such a branching process. A shallowest source depth, steepening of rupture surfaces, and a deformable nature of the source region all enhance generation of tsunamis. The wedge portion ruptured by a tsunami earthquake is usually characterized by a very low seismic activity which is presumably due to ductility of the sediments. We suggest that this portion fractures in a brittle way to generate a tsunami earthquake when it is loaded suddenly by the occurrence of a great earthquake and that otherwise it yields slowly. Upward branching of the rupture from the lithospheric interface produces permanent deformation of the free surface which is relative uplift landward and relative subsidence trenchward of the zone of surface break. This surface break zone geomorphologically corresponds to the lower continental slope between the deep-sea terrace and the trench. Such a mode of permanent deformation seems to be consistent with a rising feature of the outer ridge of the deep-sea terrace and a depressional feature of the trench. This consistency implies a causal relationship between great earthquake activities and geomorphological features near the trench.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research - Solid Earth, 84 (B7). p. 3465.
    Publication Date: 2015-09-16
    Description: One hundred and five new heat flow measurements in the Gulf of California support the premise that conductive heat loss is not the only mode by which heat is lost from a sea floor spreading center, even in an area with thick sediment cover. Theoretical estimates suggest that the average heat flow in the Guaymas and Farallon basins should be at least 11 μcal/cm2 s (HFU) (325 mW/m2). Outside a 30-km-wide zone centered on the central troughs, the heat flow values measured are reasonably uniform but average only 4.3±0.2 HFU (180±10 mW/m2). Although the high sedimentation rate may depress the measured heat flow, the effect probably does not exceed 15%. Some heat, particularly in the smaller basins, may be lost to the adjacent cooler continental blocks. The discrepancy between the measured and predicted heat losses, which is at least 30%, may be due to the discharge of thermal waters, through the thinner sediment cover in the central troughs or along active faults.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  In: Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment. , ed. by Talwani, M. AGU (American Geophysical Union), Washington, DC, pp. 138-153.
    Publication Date: 2016-07-28
    Description: The structural evolution of the northwestern Iberian margin has been reconstructed from the results of IPOD drill site 398, as well as from numerous dredgings and a dense network of seismic profiles. During the Mesozoíc the margin first underwent two consecutive extensional phases interpreted as the result of two episodes of rifting in the Atlantic. Then during Eocene, subsidence was interrupted by compression and related deformation caused by subduction of oceanic sea floor of the Bay of Biscay beneath the Iberian Peninsula. Present day marginal banks are interpreted as blocks of the older passive margin uplifted during early Tertiary as a result of that subduction. Fault escarpments provide opportunities to sample older sediments and basement by dredging.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In:  Science, 204 (4391). pp. 404-407.
    Publication Date: 2019-05-24
    Description: The strontium to calcium ratio of skeletal aragonite in three genera of reef-building corals varies as a simple function of temperature and the strontium to calcium ratio of the incubation water. The strontiumlcalcium distribution coefficients of coral aragonite apparently differ from the corresponding coefficient of inorganically precipitated aragonite. With some care, coral skeletons can be used as recording thermometers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  In: Kimberlites, diatremes, and diamonds: their geology, petrology, and geochemistry. , ed. by Meyer , H. O. A. and Boyd, F. R. AGU (American Geophysical Union), Washington, D. C., pp. 354-363, 10 pp. ISBN 9780875902128
    Publication Date: 2020-05-08
    Description: The olivine melilitite diatemes of the Swabian Alb, frequently compared with kimberlite diatremes, are discussed in terms of hydrogeological setting, internal structure and juvenile fraction. The hydrogeological conditions of the Swabian Alb at the time of diatreme emplacement were characterized by copious amounts of groundwater within the sedimentary cover of the basement. Subsequently to the eruptions groundwater accumulated within the maars of the larger diatremes forming fresh‐water lakes as also happened nearby in the Steinheim and Ries impact craters. The diatremes reveal subsidence structures composed of large wall‐rock blocks, subaerially deposited pyroclastic beds, and well‐bedded reworked pyroclastic debris which accumulated on the floor of the fresh‐water crater lakes. The latter fact implies availability of groundwater at the time the diatremes formed. The juvenile fraction is developed in the shape of spherical to ovoid nucleated autoliths of ash to lapilli size that are macroscopically nearly devoid of vesicles. The autoliths are interpreted as the product of water vapor explosions which took place when rising olivine melilitite magma contacted groundwater and was fragmented into magma droplets. The droplets were rapidly chilled and thus preserved their shape. Because of the hydrogeological data, the diatreme structure, and the chilled nature of the autoliths a phreatomagmatic origin of the Swabian diatremes is suggested.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  In: Kimberlites, Diatremes, and Diamonds: Their Geology, Petrology, and Geochemistry. , ed. by Meyer, H. O. A. and Boyd, F. R. AGU (American Geophysical Union), Washington, D. C., pp. 354-363, 10 pp. ISBN 0-87590-212-X
    Publication Date: 2020-06-24
    Description: The olivine melilitite diatemes of the Swabian Alb, frequently compared with kimberlite diatremes, are discussed in terms of hydrogeological setting, internal structure and juvenile fraction. The hydrogeological conditions of the Swabian Alb at the time of diatreme emplacement were characterized by copious amounts of groundwater within the sedimentary cover of the basement. Subsequently to the eruptions groundwater accumulated within the maars of the larger diatremes forming fresh‐water lakes as also happened nearby in the Steinheim and Ries impact craters. The diatremes reveal subsidence structures composed of large wall‐rock blocks, subaerially deposited pyroclastic beds, and well‐bedded reworked pyroclastic debris which accumulated on the floor of the fresh‐water crater lakes. The latter fact implies availability of groundwater at the time the diatremes formed. The juvenile fraction is developed in the shape of spherical to ovoid nucleated autoliths of ash to lapilli size that are macroscopically nearly devoid of vesicles. The autoliths are interpreted as the product of water vapor explosions which took place when rising olivine melilitite magma contacted groundwater and was fragmented into magma droplets. The droplets were rapidly chilled and thus preserved their shape. Because of the hydrogeological data, the diatreme structure, and the chilled nature of the autoliths a phreatomagmatic origin of the Swabian diatremes is suggested.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research - Solid Earth, 83 (B7). pp. 3401-3421.
    Publication Date: 2017-07-03
    Description: We present a plate kinematic evolution of the South Atlantic which is based largely on the determination of the equatorial fracture zone trends between the African and South American continental margins. Four main opening phases are dated by oceanic magnetic anomalies, notably MO, A34, and A13, and are correlated with volcanism and tectonic events on land around the South Atlantic Ocean. The Ceara and Sierra Leone rises are probably of oceanic origin and were created 80 m.y. ago or later in their present-day positions with respect to South America and Africa.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Reviews of Geophysics, 16 (1). pp. 15-46.
    Publication Date: 2019-08-05
    Description: This paper concerns the linear response of the ocean to forcing at a specified frequency and wave number in the absence of mean currents. It discusses the details of the forcing function, the general properties of the equations of motion, and possible simplifications of these equations. Two representations for the oceanic response to forcing are described in detail. One solution is in terms of the normal modes of the ocean. The vertical structure of these modes corresponds to that of the barotropic and baroclinic modes; their latitudinal structure corresponds to that of inertia‐gravity and Rossby waves. These waves are eigenfunctions of Laplace's tidal equations (LTE) with the frequency as eigenvalue. The description in terms of vertically standing modes is particularly useful if the forcing is nonlocal, because only these modes can propagate into undisturbed regions. The principal result is that it is extremely difficult for baroclinic (but not barotropic) disturbances to propagate horizontally away from a forced region. Instabilities of the Gulf Stream excite disturbances that are confined to the immediate neighborhood of the current; disturbances due to instabilities of equatorial currents do not propagate far latitudinally. A second representation of the oceanic response to forcing is in terms of vertically propagating, or vertically trapped, latitudinal modes. These modes are eigenfunctions of LTE with the equivalent depth h (not the frequency) as eigenvalue. Both positive and negative eigenvalues h are necessary for completeness. The modes with h 〉 0 consist of an infinite set of inertia‐gravity waves and a finite set of Rossby waves which either propagate vertically or form vertically standing modes. The latitudinally gravest modes are equatorially trapped and have been observed in the Atlantic and Pacific oceans. The modes with h 〈 0 are necessary to describe the oceanic response to nonresonant forcing. In the vertical this response attenuates with increasing distance from the forcing region. Because of the shallowness of the ocean the large eastward traveling atmospheric cyclones in mid‐latitudes and high latitudes force a response down to the ocean floor. Interaction with the bottom topography will result in smaller‐scale disturbances and will affect the frequency spectrum of the response when bottom‐trapped waves are excited.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 83 (C12). pp. 6093-6113.
    Publication Date: 2018-03-02
    Description: An intensive three-dimensional survey of the Antarctic Polar Front was made in the Drake Passage in March 1976. The front, which was imbedded within one of the high-velocity cores of the circumpolar current, is viewed as a water mass boundary demarking the northern extent of near-surface antarctic waters. Within the front, water masses are observed to intrude, one above the other, with characteristic vertical scales of 50–100 m. The intrusions are horizontally anisotropic, being elongated in the alongstream direction and constrained primarily to the upper 800 m of the front. The spatial and temporal persistence of the variability is examined through the analysis of continuous vertical profiles of horizontal velocity, temperature, salinity, and oxygen with discrete sampling of nutrients. Analysis of the velocity data showed the mean current flowing to the NNE with speeds of the order of 30–40 cm s−1 in the upper 600 m, with temporal variability over a 28-hour ‘yo-yo’ due primarily to internal gravity waves. The thermohaline variability was not internal wave induced but rather was associated with nearly isentropic advection of different water masses across the front. Cold fresh and warm salty intrusions did not conserve potential density, however, and double-diffusive transfers are strongly suggested as being crucial to an understanding of the dynamics of the intrusions. Applying a model (Joyce, 1977) for lateral mixing we estimate poleward temperature and salinity fluxes due to interleaving of 0.086°C cm s−1 and 0.069‰ cm s−1, respectively. If these values are typical, interleaving could play a significant role in large-scale balance of salt and, to a lesser extent, heat for the Southern Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  In: Biology of the Antarctic Seas. Antarctic research series, 27 . AGU (American Geophysical Union), Virgina, pp. 1-39. ISBN 0-87590-134-4
    Publication Date: 2020-02-17
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In:  Science, 197 (4298). pp. 53-55.
    Publication Date: 2018-02-07
    Description: Estimation of average Cenozoic sedimentation rates for the Atlantic, Indian, and Pacific oceans indicates global synchronous fluctuations. Paleocene-early Eocene and late Eocene-early Miocene rates are only a fraction of middle Eocene and middle Miocene-Recent rates. These changes must reflect significantly different modes of continental weathering, which may be due to alternate states of atmospheric circulation marked by reduction of global precipitation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  In: Indian Ocean Geology and Biostratigraphy: Studies Following Deep‐Sea Drilling Legs. , ed. by Heirtzler, J. R., Bolli, H. M., Davies, T. A., Sunders, J. B. and Sclater, J. G. AGU Special Publications . AGU (American Geophysical Union), Washington D.C., pp. 599-616. ISBN 9780875902081
    Publication Date: 2016-10-31
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 82 (27). pp. 3843-3860.
    Publication Date: 2020-03-06
    Description: Deep‐sea drilling in the Antarctic region (Deep‐Sea Drilling Project legs 28, 29, 35, and 36) has provided many new data about the development of circum‐Antarctic circulation and the closely related glacial evolution of Antarctica. The Antarctic continent has been in a high‐latitude position since the middle to late Mesozoic. Glaciation commenced much later, in the middle Tertiary, demonstrating that near‐polar position is not sufficient for glacial development. Instead, continental glaciation developed as the present‐day Southern Ocean circulation system became established when obstructing land masses moved aside. During the Paleocene (t = ∼65 to 55 m.y. ago), Australia and Antarctica were joined. In the early Eocene (t = ∼55 m.y. ago), Australia began to drift northward from Antarctica, forming an ocean, although circum‐Antarctic flow was blocked by the continental South Tasman Rise and Tasmania. During the Eocene (t = 55 to 38 m.y. ago) the Southern Ocean was relatively warm and the continent largely nonglaciated. Cool temperate vegetation existed in some regions. By the late Eocene (t = ∼39 m.y. ago) a shallow water connection had developed between the southern Indian and Pacific oceans over the South Tasman Rise. The first major climatic‐glacial threshold was crossed 38 m.y. ago near the Eocene‐Oligocene boundary, when substantial Antarctic sea ice began to form. This resulted in a rapid temperature drop in bottom waters of about 5°C and a major crisis in deep‐sea faunas. Thermohaline oceanic circulation was initiated at this time much like that of the present day. The resulting change in climatic regime increased bottom water activity over wide areas of the deep ocean basins, creating much sediment erosion, especially in western parts of oceans. A major (∼2000 m) and apparently rapid deepening also occurred in the calcium carbonate compensation depth (CCD). This climatic threshold was crossed as a result of the gradual isolation of Antarctica from Australia and perhaps the opening of the Drake Passage. During the Oligocene (t = 38 to 22 m.y. ago), widespread glaciation probably occurred throughout Antarctica, although no ice cap existed. By the middle to late Oligocene (t = ∼30 to 25 m.y. ago), deep‐seated circum‐Antarctic flow had developed south of the South Tasman Rise, as this had separated sufficiently from Victoria Land, Antarctica. Major reorganization resulted in southern hemisphere deep‐sea sediment distribution patterns. The next principal climatic threshold was crossed during the middle Miocene (t = 14 to 11 m.y. ago) when the Antarctic ice cap formed. This occurred at about the time of closure of the Australian‐Indonesian deep‐sea passage. During the early Miocene, calcareous biogenic sediments began to be displaced northward by siliceous biogenic sediments with higher rates of sedimentation reflecting the beginning of circulation related to the development of the Antarctic Convergence. Since the middle Miocene the East Antarctic ice cap has remained a semipermanent feature exhibiting some changes in volume. The most important of these occurred during the latest Miocene (t = ∼5 m.y. ago) when ice volumes increased beyond those of the present day. This event was related to global climatic cooling, a rapid northward movement of about 300 km of the Antarctic Convergence, and a eustatic sea level drop that may have been partly responsible for the isolation of the Mediterranean basin. Northern hemisphere ice sheet development began about 2.5–3 m.y. ago, representing the next major global climatic threshold, and was followed by the well‐known major oscillations in northern ice sheets. In the Southern Ocean the Quaternary marks a peak in activity of oceanic circulation as reflected by widespread deep‐sea erosion, very high biogenic productivity at the Antarctic Convergence and resulting high rates of biogenic sedimentation, and maximum northward distribution of ice‐rafted debris.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  In: Geodynamics: Progress and Prospects. , ed. by Drake, C. L. AGU (American Geophysical Union), Washington, DC, pp. 160-176.
    Publication Date: 2016-04-08
    Description: Published geological and geophysical data are reviewed. The Walvis Ridge is a complex linear feature made up of three parts of unequal lengths and differing basement morphologies: an eastern sector composed of rugged, subparallel basement ridges; a low-lying central sector with subdued basement morphology; and a western sector consisting of seamounts and guyots (including Tristan da Cunha and Gough islands). Rock samples and geophysical data suggest that the Ridge is composed of alkali basalt which becomes progressively older eastwards. Gravity data indicate that at least parts of the ridge are in local isostatic equilibrium. A mantle plume mechanism of formation is rejected in favour of a centre of abnormally high volcanic activity on the spreading ridge axis. The location of this centre, whose relative movement has been southwards, is determined by fracture zones crossing the spreading ridge axis.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Reviews of Geophysics and Space Physics, 14 (2). pp. 143-150.
    Publication Date: 2015-07-17
    Description: Observations of the temporal and spatial distribution of N2O in solution are not yet sufficient to permit quantitative assessment of the role of the ocean in the budget of atmospheric N2O. Consideration of the global nitrogen cycle suggests that the land should be the primary source of N2O. The gas is removed in the atmosphere by photolysis and by reaction with O(1D), and there may be additional sinks in the ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research - Solid Earth and Planets, 81 (29). pp. 5249-5259.
    Publication Date: 2016-08-02
    Description: The Cape Verde Islands are emerged portions of a Mesozoic-Cenozoic volcanic accretion in the form of a westward-opening horseshoe along fracture zones converging from the mid-Atlantic ridge toward Africa. An interior abyssal plain slopes westward, increasing in depth from 2.7 to 4.5 km. The plain is underlain by low relief on acoustic basement that is associated with a 300-gamma negative magnetic anomaly. The flanks of the Sal-Maio ridge appear bounded by large-displacement normal faults; superficial slumping is common. The trends of magnetic anomalies are linear N-S north of the islands and less linear within the islands and may change coincident with E-W bathymetric trends south of the islands. A triangular pattern of reversed refraction lines 200–250 km long along the north and east ridges and NW-SE across the interior abyssal plain indicated 2–3 km of semiconsolidated sediments underlain by 3–6 km of basalt and 6–8 km of plutonic rocks. The depth of the Moho is between 16 and 17 km. A deep NW-SE trending fault intersects the Sal-Maio ridge near Boa Vista. The consistent depth to Moho and the regional Bouguer anomaly indicate lack of local relief at the base of the crust. The crustal load of the entire archipelago is regionally adjusted.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In:  Science, 191 (4231). pp. 1046-1048.
    Publication Date: 2020-05-08
    Description: Midwater squid respond to overhead illumination by turning on numerous downward-directed photophores; they turn off the photophores when overhead illumination is eliminated. The squid are invisible when the intensity of the photophores matches the intensity of the overhead illumination. These results strongly support the theory of ventral bioluminescent countershading.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research, 80 (21). pp. 3013-3031.
    Publication Date: 2019-05-07
    Description: A model for interstitial silica concentrations is derived, incorporating biological mixing of sediments. This model predicts concentrations and gradients and can account for the observed geographical variations in interstitial silica on the basis of a dynamic balance between solution of silica particles and diffusion from the sediments. The flux of particulate biogenous silica into the sediments is confirmed as an important parameter controlling interstitial silica concentrations. Biological mixing of sea floor sediments also has an important influence on interstitial composition by modifyirig the depth at which dissolving particles react. Faster mixing raises the interstitial concentration. The rate at which siliceous particles dissolve also plays a role; the slower they dissolve, the greater the interstitial silica concentration. Measurements on near‐bottom waters of the Atlantic show no consistent gradients in dissolved silica, but antarctic bottom water seems significantly more variable in the benthic boundary layer than in the water mass above or in the benthic zone of North Atlantic deep water.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research, 80 (21). pp. 3013-3031.
    Publication Date: 2019-05-07
    Description: Biological mixing in deep‐sea sediments is described in terms of a time‐dependent eddy diffusion model where mixing takes place to a depth L at constant eddy diffusivity D. The differential equation that describes this model has been solved for an impulse source of tracer delivered to the plane surface that forms the top of the mixed layer. The solution then serves as a Green's function, which can be used to determine the distribution of tracer in depth and in time for a surface input of tracer specified as any arbitrary function of time. The characteristic properties of the solution are dependent on the dimensionless parameter D/Lυ, where υ is the sedimentation rate. If D/Lυ is greater than 10, the surface layer becomes homogeneous, and the model is identical to the homogeneous layer model proposed by Berger and Heath (1968). If D/Lυ is less than 0.1, little mixing can take place before the sediments are buried, and so the surface concentration propagates downward into the sediments with little dispersion. For all values of D/Lυ the weighted mean depth of the concentration distribution is the depth at which an impulse source would be found in the sediment if no mixing had taken place. The microtektite data of Glass (1969, 1972) and Glass et al. (1973) indicate that abyssal sediments are mixed from the surface to a maximum mixing depth that ranges between 17 and 40 cm below the surface. Mixing occurs at rates between 1 and 100 cm2 kyr−1. Higher mixing rates may occur nearer the surface, but microtektite distributions cannot be used to estimate these rates in the presence of the deeper, slower mixing. Estimates for D based on dimensional analysis of sediment reworking rates for nearshore organisms (103–106 cm2 kyr−1) are used to predict abyssal mixing rates between 1 and 103 cm2 kyr−1 by invoking the assumption that mixing is proportional to biomass. Plutonium distributions in deep‐sea sediments (Noshkin and Bowen, 1973) indicate abyssal mixing rates ranging from 100 to 400 cm2 kyr−1.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...