ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (112)
  • Aircraft Design, Testing and Performance
  • Cell & Developmental Biology
  • Chemical Engineering
  • 1990-1994  (59)
  • 1940-1944  (43)
  • 1930-1934  (10)
Collection
Years
Year
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Originally developed as part of the Aircraft Energy Efficiency Program in the 1970's, winglets are now used by long-ranging aircraft as well as business jets and smaller planes. The winglet is an upturned wingtip, a lifting surface designed to operate in the wingtip "vortex," a whirlpool of air at an airplane's wingtips. It takes advantage of the turbulent vortex flow by producing forward thrust. This reduces drag and improves fuel efficiency. After McDonnell Douglas conducted wind tunnel tests of winglets in 1978-79, the technology was incorporated into the MD-11, their large payload, long range airplane. There are now more than 100 MD-11s in service.
    Keywords: Aircraft Design, Testing and Performance
    Type: Spinoff 1994; 90-91; NASA-NP-214
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-05
    Description: A new eddy current probe developed at NASA Langley Research Center has been used to detect small cracks at rivets in aircraft lap splices [1]. The device has earlier been used to detect isolated fatigue cracks with a minimum detectable flaw size of roughly 1/2 to 1/3 the diameter of the probe [2]. The present work shows that the detectable flaw size for cracks originating at rivets can be greatly improved upon from that of isolated flaws. The use of a rotating probe method combined with spatial filtering has been used to detect 0.18 cm EDM notches, as measured from the rivet shank, with a 1.27 cm diameter probe and to detect flaws buried under the rivet head, down to a length of 0.076 cm, using a 0.32 cm diameter probe. The Self-Nulling Electromagnetic Flaw Detector induces a high density eddy current ring in the sample under test. A ferromagnetic flux focusing lens is incorporated such that in the absence of any inhomogeneities in the material under test only a minimal magnetic field will reach the interior of the probe. A magnetometer (pickup coil) located in the center of the probe therefore registers a null voltage in the absence of material defects. When a fatigue crack or other discontinuity is present in the test article the path of the eddy currents in the material is changed. The magnetic field associated with these eddy currents then enter into the interior of the probe, producing a large output voltage across the pickup coil leads. Further
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: It has been shown previously that hypersonic air-breathing aircraft exhibit strong aeroelastic/aeropropulsive dynamic interactions. To investigate these, especially from the perspective of the vehicle dynamics and control, analytical expressions for key stability derivatives were derived, and an analysis of the dynamics was performed. In this paper, the important issue of model uncertainty, and the appropriate forms for representing this uncertainty, is addressed. It is shown that the methods suggested in the literature for analyzing the robustness of multivariable feedback systems, which as a prerequisite to their application assume particular forms of model uncertainty, can be difficult to apply on real atmospheric flight vehicles. Also, the extent to which available methods are conservative is demonstrated for this class of vehicle dynamics.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-CR-202600 , NAS 1.26:202600 , AIAA Paper 94-3629
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: A rotary wing, unmanned air vehicle (UAV) is being developed as a research tool at the NASA Langley Research Center by the U.S. Army and NASA. This development program is intended to provide the rotorcraft research community an intermediate step between rotorcraft wind tunnel testing and full scale manned flight testing. The technologies under development for this vehicle are: adaptive electronic flight control systems incorporating artificial intelligence (AI) techniques, small-light weight sophisticated sensors, advanced telepresence-telerobotics systems and rotary wing UAV operational procedures. This paper briefly describes the system's requirements and the techniques used to integrate the various technologies to meet these requirements. The paper also discusses the status of the development effort. In addition to the original aeromechanics research mission, the technology development effort has generated a great deal of interest in the UAV community for related spin-off applications, as briefly described at the end of the paper. In some cases the technologies under development in the free flight program are critical to the ability to perform some applications.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TM-111571 , NAS 1.15:111571
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-17
    Description: Results of flow visualization and tail buffett studies conducted on a full-scale production F/A-18 fighter aircraft in the 80- by 120-Foot Wind Tunnel of the National Full-Scale Aerodynamic Complex are presented. Test conditions range between 20 degrees and 40 degrees angle of attack, 16 degrees and -16 degrees side-slip angle, and up to a Mach number of 0.15 (corresponding to a Reynolds number of 12.3 x 10(exp 6) based on mean aerodynamic chord). Flow visualization results include both surface and off-surface techniques that examine forebody, canopy, leading-edge extension, and wing flow fields. Unsteady pressures measured at 96 locations on the port tail fin are used to determine the effect of a removable leading-edge extension fence on tail buffet loads at high angle of attack. Analyses and comparisons include tail fin bending moment and wave velocities on the tail surface. Repeatability and scaling issues are assessed through comparison with measurements from previous full-scale tests and several small-scales tests.
    Keywords: Aircraft Design, Testing and Performance
    Type: May 24, 1994 - May 26, 1994; Ottawa; Canada|May 31, 1994; Medley, Alberta; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: Study of sonic and supersonic jet plumes are relevant to understanding such phenomenon as jet-noise, plume signatures, and rocket base-heating and radiation. Jet plumes are simple to simulate and yet, have complex flow structures such as Mach disks, triple points, shear-layers, barrel shocks, shock- shear- layer interaction, etc. Experimental and computational simulation of sonic and supersonic jet plumes have been performed for under- and over-expanded, axisymmetric plume conditions. The computational simulation compare very well with the experimental observations of schlieren pictures. Experimental data such as temperature measurements with hot-wire probes are yet to be measured and will be compared with computed values. Extensive analysis of the computational simulations presents a clear picture of how the complex flow structure develops and the conditions under which self-similar flow structures evolve. From the computations, the plume structure can be further classified into many sub-groups. In the proposed paper, detail results from the experimental and computational simulations for single, axisymmetric, under- and over-expanded, sonic and supersonic plumes will be compared and the fluid dynamic aspects of flow structures will be discussed.
    Keywords: Aircraft Design, Testing and Performance
    Type: 29th AIAA Thermophysics Conference; Jun 19, 1995 - Jun 22, 1995; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Description: A small scale wind tunnel test of a realistic fighter configuration has been completed in NASA Ames' 7'x10' wind tunnel. This test was part of the Fighter Lift and Control (FLAC) program, a joint NASA - USAF research program, involving small and large-scale wind-tunnel tests and computational analysis of unique lift augmentation and control devices. The goal of this program is to enhance the maneuver and control capability of next-generation Air Force multi-role fighter aircraft with low-observables geometries. The principal objective of this test was to determine the effectiveness of passive boundary layer control devices at increasing L/D at sustained maneuver lift coefficients. Vortex generators (VGs) were used to energize the boundary layer to prevent or delay separation. Corotating vanes, counter-rotating vanes, and Wheeler Wishbone VGs were used in the vicinity of the leading and trailing edge flap hinge lines. Principle test parameters were leading and trailing edge flap deflections, and location, size, spacing, and orientation for each VG type. Gurney flaps were also tested. Data gathered include balance force and moment data, surface pressures, and flow visualization for characterizing flow behavior and locating separation lines. Results were quite different for the two best flap configurations tested. All VG types tested showed improvement (up to 5%) in maneuver L/D with flaps at LE=20 degrees, TE=0 degrees. The same VGs degraded performance, in all but a few cases, with flaps at LE=15 degrees, TE=10 degrees.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Aerospace Atlantic; Apr 19, 1994 - Apr 21, 1994; Dayton, OH; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Description: One of the goals of NASA's High Alpha Technology Program is to provide flight-validated design methods for the high-angle-of-attack regime. This is an integrated effort utilizing computational simulations, wind tunnel experiments, and flight tests using the F-18 High Alpha Research Vehicle (HARV). The dominant physics of the aircraft flows in the high alpha regime changes as the angle of attack is increased. At moderate angle of attack the flow is characterized by boundary layer separation and the formation of tight vortices. As the angle of attack is increased, these vortices break down producing unsteady wakes. With further increase in angle of attack, the, vortex breakdown moves progressively upstream until the entire flowfield becomes dominated by the unsteady wake. Previous computational work has demonstrated the ability to simulate flows about the F-18 HARV in the medium-to-high angle of attack range, where the flowfield is characterized by the vortex formation and subsequent breakdown. This paper extends the previous computations to include conditions of 45 degree angle of attack where the flowfield becomes dominated by the unsteady wake shed from the Leading Edge Extension (LEX), and regions of laminar and transitional flow appear on the fuselage forebody. A more complete surface geometry is utilized, which includes the features of the engine nacelle, inlet diffuser, and the boundary layer diverter duct. A volume grid sensitivity study was also performed to extend the accuracy of the results, most notably in the prediction of the LEX vortex breakdown position. This paper includes comparisons of computational results with both in-flight surface pressure measurements, and flow visualizations of the surface and off-surface particle trajectories.
    Keywords: Aircraft Design, Testing and Performance
    Type: 4th NASA High Alpha Conference/Workshop; Jul 12, 1994 - Jul 14, 1994; Edwards, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The NASA Dryden Flight Research Center conducted flight tests of a propulsion-controlled aircraft system on an F-15 airplane. This system was designed to explore the feasibility of providing safe emergency landing capability using only the engines to provide flight control in the event of a catastrophic loss of conventional flight controls. Control laws were designed to control the flightpath and bank angle using only commands to the throttles. Although the program was highly successful, this paper highlights some of the challenges associated with using engine thrust as a control effector. These challenges include slow engine response time, poorly modeled nonlinear engine dynamics, unmodeled inlet-airframe interactions, and difficulties with ground effect and gust rejection. Flight and simulation data illustrate these difficulties.
    Keywords: Aircraft Design, Testing and Performance
    Type: H-2000 , AIAA Paper 94-3359 , Joint Propulsion; Jun 27, 1994 - Jun 29, 1994; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Equivalent plate modeling techniques based on Ritz analysis with simple polynomials prove to be efficient tools for structural modeling of wings in the preliminary design stage. Accuracy problems are encountered, however, when these models are used to obtain finite difference behavior sensitivities with respect to planform shape. The accuracy problems are associated with the poor numerical conditioning of static and eigenvalue equations. As higher-order polynomials are being used to Improve the analysis itself, the more sensitive is the finite difference derivative to the step size used. This article describes a formulation of wing equivalent plate modeling in which it is simple to obtain analytic, explicit expressions for stiffness and mass matrix elements without the need to perform numerical integration. This formulation leads naturally to analytic expressions for the derivatives of displacements, stresses, and natural frequencies with respect to shape design variables. This article examines the accuracy of finite difference derivatives compared with the analytic derivatives, and shows that In some cases it is impossible to obtain any information of value by finite differences. Analytic sensitivities, in this case, are still sufficiently accurate for design optimization.
    Keywords: Aircraft Design, Testing and Performance
    Type: Journal of Aircraft; 31; 4; 961-969
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-13
    Description: A passive vibration reduction device in which the conventional main rotor blade pitch link is replaced by a spring/damper element is investigated using a comprehensive rotorcraft analysis code. A case study is conducted for a modern articulated helicopter main rotor. Correlation of vibratory pitch link loads with wind tunnel test data is satisfactory for lower harmonics. Inclusion of unsteady aerodynamics had little effect on the correlation. In the absence of pushrod damping, reduction in pushrod stiffness from the baseline value had an adverse effect on vibratory hub loads in forward flight. However, pushrod damping in combination with reduced pushrod stiffness resulted in modest improvements in fixed and rotating system hub loads.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TM-112911 , NAS 1.15:112911 , Annual Forum of the American Helicopter Society; May 11, 1994 - May 13, 1994; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-18
    Description: Abstract Aeroelasticity which involves strong coupling of fluids, structures and controls is an important element in designing an aircraft. Computational aeroelasticity using low fidelity methods such as the linear aerodynamic flow equations coupled with the modal structural equations are well advanced. Though these low fidelity approaches are computationally less intensive, they are not adequate for the analysis of modern aircraft such as High Speed Civil Transport (HSCT) and Advanced Subsonic Transport (AST) which can experience complex flow/structure interactions. HSCT can experience vortex induced aeroelastic oscillations whereas AST can experience transonic buffet associated structural oscillations. Both aircraft may experience a dip in the flutter speed at the transonic regime. For accurate aeroelastic computations at these complex fluid/structure interaction situations, high fidelity equations such as the Navier-Stokes for fluids and the finite-elements for structures are needed. Computations using these high fidelity equations require large computational resources both in memory and speed. Current conventional super computers have reached their limitations both in memory and speed. As a result, parallel computers have evolved to overcome the limitations of conventional computers. This paper will address the transition that is taking place in computational aeroelasticity from conventional computers to parallel computers. The paper will address special techniques needed to take advantage of the architecture of new parallel computers. Results will be illustrated from computations made on iPSC/860 and IBM SP2 computer by using ENSAERO code that directly couples the Euler/Navier-Stokes flow equations with high resolution finite-element structural equations.
    Keywords: Aircraft Design, Testing and Performance
    Type: ASME Symposium on Industrial Applications of Parallel Computing; Nov 12, 1995 - Nov 17, 1995; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: As the operation of large systems becomes ever more dependent on extensive automation, the need for an effective solution to the problem of design and validation of the underlying software becomes more critical. Large systems possess much detailed structure, typically hierarchical, and they are hybrid. Information processing at the top of the hierarchy is by means of formal logic and sentences; on the bottom it is by means of simple scalar differential equations and functions of time; and in the middle it is by an interacting mix of nonlinear multi-axis differential equations and automata, and functions of time and discrete events. The lecture will address the overall problem as it relates to flight vehicle management, describe the middle level, and offer a design approach that is based on Differential Geometry and Discrete Event Dynamic Systems Theory.
    Keywords: Aircraft Design, Testing and Performance
    Type: 33rd IEEE CDC Meeting; Dec 12, 1994 - Dec 14, 1994; Lake Buena Vista, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-18
    Description: This paper describes a new wing-body design procedure which is based on the Euler equations and a constrained numerical optimization technique. The geometry modification is based on a set of fundamental modes defined on the unit interval. A design example involving a generic wing-body model is presented to demonstrate the usefulness of the design program. It is shown that the use of an Euler solver coupled with a direct numerical optimization procedure is affordable on the current generation of supercomputers.
    Keywords: Aircraft Design, Testing and Performance
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-18
    Description: A wind tunnel test was conducted with a full-scale BO 105 helicopter rotor to evaluate the potential of open-loop individual blade control (IBC) to improve rotor performance, to reduce blade vortex interaction (BVI) noise, and to alleviate helicopter vibrations. The wind tunnel test was an international collaborative effort between NASA/U.S. Army AFDD, ZF Luftfahrttechnik, Eurocopter Deutschland, and the German Aerospace Laboratory (DLR) and was conducted under the auspices of the U.S./German MOU on Rotorcraft Aeromechanics. In this test the normal blade pitch links of the rotor were replaced by servo-actuators so that the pitch of each blade could be controlled independently of the other blades. The specially designed servoactuators and IBC control system were designed and manufactured by ZF Luftfahrttechnik, GmbH. The wind tunnel test was conducted in the 40- by 80-Foot Wind Tunnel at the NASA Ames Research Center. An extensive amount of measurement information was acquired for each IBC data point. These data include rotor performance, static and dynamic hub forces and moments, rotor loads, control loads, inboard and outboard blade pitch motion, and BVI noise data. The data indicated very significant (80 percent) simultaneous reductions in both BVI noise and hub vibrations could be obtained using multi-harmonic input at the critical descent (terminal approach) condition. The data also showed that performance improvements of up to 7 percent could be obtained using 2P input at high-speed forward flight conditions.
    Keywords: Aircraft Design, Testing and Performance
    Type: AHS 51st Annual Forum and Technology Display; May 09, 1995 - May 11, 1995; Fort Worth, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-10
    Description: This paper describes a research program aimed at improved methods for multidisciplinary design and optimization of large-scale aeronautical systems. The research involves new approaches to system decomposition, interdisciplinary communication, and methods of exploiting coarse-grained parallelism for analysis and optimization. A new architecture, that involves a tight coupling between optimization and analysis, is intended to improve efficiency while simplifying the structure of multidisciplinary, computation-intensive design problems involving many analysis disciplines and perhaps hundreds of design variables. Work in two areas is described here: system decomposition using compatibility constraints to simplify the analysis structure and take advantage of coarse-grained parallelism; and collaborative optimization, a decomposition of the optimization process to permit parallel design and to simplify interdisciplinary communication requirements.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper -94-4325-CP
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-13
    Description: The aerospace industry is currently addressing the problem of integrating manufacturing and design. To address the difficulties associated with using many conventional procedural techniques and algorithms, one feasible way to integrate the two concepts is with the development of an appropriate Knowledge-Based System (KBS). The authors present their reasons for selecting a KBS to integrate design and manufacturing. A methodology for an aircraft producibility assessment is proposed, utilizing a KBS for manufacturing process selection, that addresses both procedural and heuristic aspects of designing and manufacturing of a High Speed Civil Transport (HSCT) wing. A cost model is discussed that would allow system level trades utilizing information describing the material characteristics as well as the manufacturing process selections. Statements of future work conclude the paper.
    Keywords: Aircraft Design, Testing and Performance
    Type: Research for Future Supersonic and Hypersonic Vehicles; Dec 01, 1994; Greensboro, NC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-13
    Description: The aerospace industry is currently addressing the problem of integrating design and manufacturing. Because of the difficulties associated with using conventional, procedural techniques and algorithms, it is the authors' belief that the only feasible way to integrate the two concepts is with the development of an appropriate Knowledge-Based System (KBS). The authors propose a methodology for an aircraft producibility assessment, including a KBS, that addresses both procedural and heuristic aspects of integrating design and manufacturing of a High Speed Civil Transport (HSCT) wing. The HSCT was chosen as the focus of this investigation since it is a current NASA/aerospace industry initiative full of technological challenges involving many disciplines. The paper gives a brief background of selected previous supersonic transport studies followed by descriptions of key relevant design and manufacturing methodologies. Georgia Tech's Concurrent Engineering/Integrated Product and Process Development methodology is discussed with reference to this proposed conceptual producibility assessment. Evaluation criteria are presented that relate pertinent product and process parameters to overall product producibility. In addition, the authors' integration methodology and reasons for selecting a KBS to integrate design and manufacturing are presented in this paper. Finally, a proposed KBS is given, as well as statements of future work and overall investigation objectives.
    Keywords: Aircraft Design, Testing and Performance
    Type: Aircraft Systems; Sep 01, 1994; Anaheim, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-13
    Description: The University of Maryland Advanced Rotorcraft Code (UMARC) is utilized to study the effects of blade design parameters on the aeroelastic stability of an isolated modern bearingless rotor blade in hover. The McDonnell Douglas Advanced Rotor Technology (MDART) Rotor is the baseline rotor investigated. Results indicate that kinematic pitch-lag coupling introduced through the control system geometry and the damping levels of the shear lag dampers strongly affect the hover inplane damping of the baseline rotor blade. Hub precone, pitchcase chordwise stiffness, and blade fundamental torsion frequency have small to moderate influence on the inplane damping, while blade pre-twist and placements of blade fundamental flapwise and chord-wise frequencies have negligible effects. A damperless configuration with a leading edge pitch-link, 15 deg of pitch-link cant angle, and reduced pitch-link stiffness is shown to be stable with an inplane damping level in excess of 2.7 percent critical at the full hover tip speed.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TM-112912 , NAS 1.15:112912 , Aeromechanics Specialists; Jan 19, 1994 - Jan 21, 1994; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-13
    Description: A new technique for structural modeling of airplane wings is presented taking transverse shear effects into account. The kinematic assumptions of first-order shear deformation plate theory In combination with numerical analysis, where simple polynomials are used to define geometry, construction, and displacement approximations, lead to analytical expressions for elements of the stiffness and mass matrices and load vector. Contributions from the cover skins, spar and rib caps, and spar and rib webs are included as well as concentrated springs and concentrated masses. Limitations of wing modeling techniques based on classical plate theory are discussed, and the Improved accuracy of the new equivalent plate technique is demonstrated through comparison with finite element analysis and test results. Expressions for analytical derivatives of stiffness, mass, and load terms with respect to wing shape are given. Based on these, it is possible to obtain analytic sensitivities of displacements, stresses, and natural frequencies with respect to planform shape and depth distribution. This makes the new capability an effective structural tool for wing shape optimization.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Journal; 32; 6; 1278-1288
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-13
    Description: Computed results from UMARC and DART analyses are compared with the blade bending moments and vibratory hub loads data obtained from a full-scale wind tunnel test of the McDonnell Douglas five-bladed advanced bearingless rotor. The 5 per-rev vibratory hub loads data are corrected using results from a dynamic calibration of the rotor balance. The comparison between UMARC computed blade bending moments at different flight conditions are poor to fair, while DART results are fair to good. Using the free wake module, UMARC adequately computes the 5P vibratory hub loads for this rotor, capturing both magnitude and variations with forward speed. DART employs a uniform inflow wake model and does not adequately compute the 5P vibratory hub loads for this rotor.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TM-111887 , NAS 1.15:111887 , American Helicopter Society Annual Forum; May 11, 1994 - May 13, 1994; Washinton, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2013-08-31
    Description: Effective design of the High Speed Civil Transport requires the systematic application of design resources throughout a product's life-cycle. Information obtained from the use of these resources is used for the decision-making processes of Concurrent Engineering. Integrated computing environments facilitate the acquisition, organization, and use of required information. State-of-the-art computing technologies provide the basis for the Intelligent Multi-disciplinary Aircraft Generation Environment (IMAGE) described in this paper. IMAGE builds upon existing agent technologies by adding a new component called a model. With the addition of a model, the agent can provide accountable resource utilization in the presence of increasing design fidelity. The development of a zeroth-order agent is used to illustrate agent fundamentals. Using a CATIA(TM)-based agent from previous work, a High Speed Civil Transport visualization system linking CATIA, FLOPS, and ASTROS will be shown. These examples illustrate the important role of the agent technologies used to implement IMAGE, and together they demonstrate that IMAGE can provide an integrated computing environment for the design of the High Speed Civil Transport.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Langley Research Center has done extensive research into the effectiveness of tail boom strakes on conventional tail rotor helicopters. (A strake is a "spoiler" whose purpose is to alter the airflow around an aerodynamic body.) By placing strakes on a tail boom, the air loading can be changed, thrust and power requirements of the tail rotor can be reduced, and helicopter low speed flight handling qualities are improved. This research led to the incorporation of tail boom strakes on three production-type commercial helicopters manufactured by McDonnell Douglas Helicopter Company.
    Keywords: Aircraft Design, Testing and Performance
    Type: Spinoff 1993; 92-93; NASA-NP-211
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-06-28
    Description: The accuracy of various methods used to predict tilt rotor hover performance was established by comparing predictions with large-scale experimental data. A wide range of analytical approaches were examined. Blade lift was predicted with a lifting line analysis, two lifting surface analyses, and by a finite-difference solution of the full potential equation. Blade profile drag was predicted with two different types of airfoil tables and an integral boundary layer analysis. The inflow at the rotor was predicted using momentum theory, two types of prescribed wakes, and two free wake analyses. All of the analyses were accurate at moderate thrust coefficients. The accuracy of the analyses at high thrust coefficients was dependent upon their treatment of high sectional angles of attack on the inboard sections of the rotor blade. The analyses which allowed sectional lift coefficients on the inboard stations of the blade to exceed the maximum observed in two-dimensional wind tunnel tests provided better accuracy at high thrust coefficients than those which limited lift to the maximum two-dimensional value. These results provide tilt rotor aircraft designers guidance on which analytical approaches provide the best results, and the level of accuracy which can be expected from the best analyses.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TM-104023 , A-93083 , NAS 1.15:104023 , ARC-E-DAA-TN27262
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-08-17
    Description: This paper examines the design of a 650 passenger aircraft with 8000 nautical mile range to reduce seat mile cost and to reduce airport and airway congestion. This design effort involves the usual issues that require trades between technologies, but must also include consideration of: airport terminal facilities; passenger loading and unloading; and, defeating the 'square-cube' law to design large structures. This paper will review the long range ultra high capacity or megatransport design problem and the variety of solutions developed by senior student design teams at Purdue University.
    Keywords: Aircraft Design, Testing and Performance
    Type: Proceedings of the Ninth Annual Summer Conference: NASA/USRA University Advanced Design Program; 101-111; EP-309
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-08-16
    Description: Concurrent Engineering (CE) concepts seek to coordinate the expertise of various disciplines from initial design configuration selection through product disposal so that cost efficient design solutions may be achieve. Integrating this methodology into an undergraduate design course sequence may provide a needed enhancement to engineering education. The Advanced Design Program (ADP) project at Embry-Riddle Aeronautical University (EMU) is focused on developing recommendations for the general aviation Primary Flight Trainer (PFT) of the twenty first century using methods of CE. This project, over the next two years, will continue synthesizing the collective knowledge of teams composed of engineering students along with students from other degree programs, their faculty, and key industry representatives. During the past year (Phase I). conventional trainer configurations that comply with current regulations and existing technologies have been evaluated. Phase I efforts have resulted in two baseline concepts, a high-wing, conventional design named Triton and a low-wing, mid-engine configuration called Viper. In the second and third years (Phases II and III). applications of advanced propulsion, advanced materials, and unconventional airplane configurations along with military and commercial technologies which are anticipated to be within the economic range of general aviation by the year 2000, will be considered.
    Keywords: Aircraft Design, Testing and Performance
    Type: Proceedings of the Ninth Annual Summer Conference: NASA/USRA University Advanced Design Program; 26-37; EP-309
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-10
    Description: A three-dimensional (3D) computational study has been performed addressing issues related to the wind tunnel testing of a hypersonic powered-simulation model. The study consisted of three objectives. The first objective was to calibrate a state-of-the-art computational fluid dynamics (CFD) code in its ability to predict hypersonic powered-simulation flows by comparing CFD solutions with experimental surface pressure data. Aftbody lower surface pressures were well predicted, but lower surface wing pressures were less accurately predicted. The second objective was to determine the 3D effects on the aftbody created by fairing over the inlet; this was accomplished by comparing the CFD solutions of two closed-inlet powered configurations with a flowing- inlet powered configuration. Although results at four freestream Mach numbers indicate that the exhaust plume tends to isolate the aftbody surface from most forebody flow- field differences, a smooth inlet fairing provides the least aftbody force and moment variation compared to a flowing inlet. The final objective was to predict and understand the 3D characteristics of exhaust plume development at selected points on a representative flight path. Results showed a dramatic effect of plume expansion onto the wings as the freestream Mach number and corresponding nozzle pressure ratio are increased.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 93-3041
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-10
    Description: Since mission profiles for airbreathing hypersonic vehicles such as the National Aero-Space Plane include single-stage-to-orbit requirements, real gas effects may become important with respect to engine performance. The effects of the decrease in the ratio of specific heats have been investigated in generic three-dimensional sidewall compression scramjet inlets with leading-edge sweep angles of 30 and 70 degrees. The effects of a decrease in ratio of specific heats were seen by comparing data from two facilities in two test gases: in the Langley Mach 6 CF4 Tunnel in tetrafluoromethane (where gamma=1.22) and in the Langley 15-Inch Mach 6 Air Tunnel in perfect gas air (where gamma=1.4). In addition to the simulated real gas effects, the parametric effects of cowl position, contraction ratio, leading-edge sweep, and Reynolds number were investigated in the 15-Inch Mach 6 Air Tunnel. The models were instrumented with a total of 45 static pressure orifices distributed on the sidewalls and baseplate. Surface streamline patterns were examined via oil flow, and schlieren videos were made of the external flow field. The results of these tests have significant implications to ground based testing of inlets in facilities which do not operate at flight enthalpies.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 93-0740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-13
    Description: The application of artificial neural networks to capture structural design expertise is demonstrated. The principal advantage of a trained neural network is that it requires a trivial computational effort to produce an acceptable new design. For the class of problems addressed, the development of a conventional expert system would be extremely difficult. In the present effort, a structural optimization code with multiple nonlinear programming algorithms and an artificial neural network code NETS were used. A set of optimum designs for a ring and two aircraft wings for static and dynamic constraints were generated using the optimization codes. The optimum design data were processed to obtain input and output pairs, which were used to develop a trained artificial neural network using the code NETS. Optimum designs for new design conditions were predicted using the trained network. Neural net prediction of optimum designs was found to be satisfactory for the majority of the output design parameters. However, results from the present study indicate that caution must be exercised to ensure that all design variables are within selected error bounds.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TM-112741 , NAS 1.15:112741 , Computers & Structures (ISSN 0045-7949); 48; 6; 1001-1010
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-13
    Description: The flutter characteristics of the first AGARD standard aeroelastic configuration for dynamic response, Wing 445.6, are studied using an unsteady Navier-Stokes algorithm in order to investigate a previously noted discrepancy between Euler flutter characteristics and the experimental data. The algorithm, which is a three-dimensional, implicit, upwind Euler/Navier-Stokes code (CFL3D Version 2.1), was previously modified for the time-marching, aeroelastic analysis of wings using the unsteady Euler equations. These modifications include the incorporation of a deforming mesh algorithm and the addition of the structural equations of motion for their simultaneous time integration with the governing flow equations. In this paper, the aeroelastic method is extended and evaluated for applications that use the Navier- Stokes aerodynamics. The paper presents a brief description of the aeroelastic method and presents unsteady calculations which verify this method for Navier-Stokes calculations. A linear stability analysis and a time-marching aeroelastic analysis are used to determine the flutter characteristics of the isolated 45 deg. swept-back wing. Effects of fluid viscosity, structural damping, and number of modes in the structural model are investigated. For the linear stability analysis, the unsteady generalized aerodynamic forces of the wing are computed for a range of reduced frequencies using the pulse transfer-function approach. The flutter characteristics of the wing are determined using these unsteady generalized aerodynamic forces in a traditional V-g analysis. This stability analysis is used to determine the flutter characteristics of the wing at free-stream Mach numbers of 0.96 and 1.141 using the generalized aerodynamic forces generated by solving the Euler equations and the Navier-Stokes equations. Time-marching aeroelastic calculations are performed at a free-stream Mach number of 1.141 using the Euler and Navier-Stokes equations to compare with the linear V-g flutter analysis method. The V-g analysis, which is used in conjunction with the time-marching analysis, indicates that the fluid viscosity has a significant effect on the supersonic flutter boundary for this wing while the structural damping and number of modes in the structural model have a lesser effect.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 93-3476 , AIAA 11th Applied Aerodynamics Conference; Aug 09, 1993 - Aug 11, 1993; Monterey, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-13
    Description: A computational study was conducted to better understand experimental results obtained from wind tunnel tests of a Mach 4 waverider model and a comparative reference configuration. The experimental results showed that the performance of the reference configuration was slightly better than that of the waverider model. These results contradict waverider design theory, which suggests that a waverider optimized for maximum lift-to-drag should provide better performance than any other non-waverider configuration at a given design point, especially at hypersonic speeds. The computational results showed that the predicted surface pressure values and the integrated lift and drag coefficients from the pressure distributions were much lower for the reference model than for the flat-top model, due to the reference model bottom surface having a slight expansion. The lift-to-drag ratios for the flat-top model were higher due to a relatively low drag for the same amount of lift. These results indicate that the performance advantage of the reference model was due to the shape of the bottom surface and not due to the flat top surface. The results also showed that the reference model exhibited the same shock attachment characteristics as the waverider because the planform shapes were identical. CFD predictions show that the planform shape gives the waverider an advantage in performance over conventional hypersonic vehicles and that altering the bottom surface of a waverider does not cause significant performance degradation.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 93-2921 , AIAA 24th Fluid Dynamics Conference; Jul 06, 1993 - Jul 09, 1993; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-13
    Description: Two computational methods, a surface panel method and an Euler method employing unstructured grid methodology, were used to analyze a subsonic transport aircraft in cruise and high-lift conditions. The computational results were compared with two separate sets of flight data obtained for the cruise and high-lift configurations. For the cruise configuration, the surface pressures obtained by the panel method and the Euler method agreed fairly well with results from flight test. However, for the high-lift configuration considerable differences were observed when the computational surface pressures were compared with the results from high-lift flight test. On the lower surface of all the elements with the exception of the slat, both the panel and Euler methods predicted pressures which were in good agreement with flight data. On the upper surface of all the elements the panel method predicted slightly higher suction compared to the Euler method. On the upper surface of the slat, pressure coefficients obtained by both the Euler and panel methods did not agree with the results of the flight tests. A sensitivity study of the upward deflection of the slat from the 40 deg. flap setting suggested that the differences in the slat deflection between the computational model and the flight configuration could be one of the sources of this discrepancy. The computation time for the implicit version of the Euler code was about 1/3 the time taken by the explicit version though the implicit code required 3 times the memory taken by the explicit version.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 93-3536 , AIAA Applied Aerodynamics Conference; Aug 09, 1993 - Aug 11, 1993; Monterey, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-13
    Description: Designers of the next-generation fighter and attack airplanes are faced with the requirements of good high-angle-of-attack maneuverability as well as efficient high speed cruise capability with low radar cross section (RCS) characteristics. As a result, they are challenged with the task of making critical design trades to achieve the desired levels of maneuverability and performance. This task has highlighted the need for comprehensive, flight-validated lateral-directional control power design guidelines for high angles of attack. A joint NASA/U.S. Navy study has been initiated to address this need and to investigate the complex flight dynamics characteristics and controls requirements for high-angle-of-attack lateral-directional maneuvering. A multi-year research program is underway which includes ground-based piloted simulation and flight validation. This paper will give a status update of this program that will include a program overview, description of test methodology and preliminary results.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 93-3647 , AIAA Atmospheric Flight Mechanics Conference; Aug 09, 1993 - Aug 11, 1993; Monterey, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-10
    Description: The displacement formulation of the finite element method is the most general and most widely used technique for structural analysis of airplane configurations. Modem structural synthesis techniques based on the finite element method have reached a certain maturity in recent years, and large airplane structures can now be optimized with respect to sizing type design variables for many load cases subject to a rich variety of constraints including stress, buckling, frequency, stiffness and aeroelastic constraints (Refs. 1-3). These structural synthesis capabilities use gradient based nonlinear programming techniques to search for improved designs. For these techniques to be practical a major improvement was required in computational cost of finite element analyses (needed repeatedly in the optimization process). Thus, associated with the progress in structural optimization, a new perspective of structural analysis has emerged, namely, structural analysis specialized for design optimization application, or.what is known as "design oriented structural analysis" (Ref. 4). This discipline includes approximation concepts and methods for obtaining behavior sensitivity information (Ref. 1), all needed to make the optimization of large structural systems (modeled by thousands of degrees of freedom and thousands of design variables) practical and cost effective.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-08-15
    Description: The successful design of a commercial aircraft which is intended to be in direct competition with existing aircraft requires a market analysis to establish design requirements, the development of a concept to achieve those goals. and the ability to economically manufacture the aircraft. It is often the case that an engineer designs system components with only the perspective of a particular discipline. The relationship of that component to the entire system is often a minor consideration. In an effort to highlight the interaction that is necessary during the design process, the students were organized into design/build teams and required to integrate aspects of market analysis, engineering design, production and economics into their concepts. In order to facilitate this process a hypothetical "Aeroworld" was established. Having been furnished relevant demographic and economic data for "Aeroworld". students were given the task of designing and building an aircraft for a specific market while achieving an economically competitive design. Involvement of the team in the evolution of the design from market definition to technical development to manufacturing allowed the students to identify critical issues in the design process and to encounter many of the conflicting requirements which arise in an aerospace systems design.
    Keywords: Aircraft Design, Testing and Performance
    Type: Proceedings of the Ninth Annual Summer Conference: NASA/USRA University Advanced Design Program; 81-92
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-08-15
    Description: Reduced quantities of ozone in the atmosphere allow greater levels of ultraviolet (UV) radiation to reach the earth's surface. The 1992/1993 project goals for the Virginia Tech Senior Design Team were to 1) understand the processes which contribute to stratospheric ozone loss, 2) examine ways to prevent ozone loss, and 3) define the requirements for an implementation vehicle to carry out the prevention scheme. A scheme proposed by R.J. Cicerone, el al late in 1991 was selected because of its supporting research and economic feasibility. This scheme uses hydrocarbon injected into the Antarctic ozone hole to form stable compounds with free chlorine, thus reducing ozone depletion. A study of the hydrocarbon injection requirements determined that 130 aircraft traveling Mach 2.4 at a maximum altitude of 66,000 ft. would provide the most economic approach to preventing ozone loss. Each aircraft would require an 8,000 nm. range and be able to carry 35,000 lbs. of propane. The propane would be stored in a three-tank high pressure system. Modularity and multi-role functionality were selected to be key design features. Missions originate from airports located in South America and Australia.
    Keywords: Aircraft Design, Testing and Performance
    Type: Proceedings of the Ninth Annual Summer Conference: NASA/USRA University Advanced Design Program; 112-123; EP-309
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-08-16
    Description: A propulsor blade for an aircraft engine includes an airfoil section formed in the shape of a scimitar. A metallic blade spar is interposed between opposed surfaces of the blade and is bonded to the surfaces to establish structural integrity of the blade. The metallic blade spar includes a root end allowing attachment of the blade to the engine.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Venture, a kit airplane designed and manufactured by Questair, is a high performance lightplane with excellent low speed characteristics and enhanced safety due to NASA technology incorporated in its unusual wing design. In 1987, North Carolina State graduate students and Langley Research Center spent seven months researching and analyzing the Venture. The result was a wing modification, improving control and providing more usable lift. The plane subsequently set 10 world speed records.
    Keywords: Aircraft Design, Testing and Performance
    Type: Spinoff 1992; 59; NASA-NP-201
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: The amount of engine power required for a helicopter to hover is an important, but difficult, consideration in helicopter design. The EHPIC program model produces converged, freely distorted wake geometries that generate accurate analysis of wake-induced downwash, allowing good predictions of rotor thrust and power requirements. Continuum Dynamics, Inc., the Small Business Innovation Research (SBIR) company that developed EHPIC, also produces RotorCRAFT, a program for analysis of aerodynamic loading of helicopter blades in forward flight. Both helicopter codes have been licensed to commercial manufacturers.
    Keywords: Aircraft Design, Testing and Performance
    Type: Spinoff 1992; 122-125; NASA-NP-201
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018-06-02
    Description: This paper presents a summary of results obtained to date in an ongoing cooperative research program between NASA and the U.S. Navy to develop design criteria for high-angle-of-attack nose- down pitch control for combat aircraft. A fundamental design consideration for aircraft incorporating relaxed static stability in pitch is the level of stability which achieves a proper balance between high- speed performance considerations and low-speed requirements for maneuvering at high angles of attack. A comprehensive data base of piloted simulation results was generated for parametric variations of critical parameters affecting nose-down control capability. The results showed a strong correlation of pilot rating to the short-term pitch response for nose-down commands applied at high- angle-of-attack conditions. Using these data, candidate design guidelines and flight demonstration requirements were defined. Full- scale flight testing to validate the research methodology and proposed guidelines is in progress, some preliminary results of which are reviewed.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-08-17
    Description: The invention concerns a connector, in an aircraft engine, for mounting a ring to a turbine rotor which the ring surrounds. The ring carries propeller blades, and the connector transmits both thrust and torque loads between the ring and the rotor, without significant deformation. However, the connector does deform in order to accommodate differential thermal growth between the ring and the rotor.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-08-15
    Description: A rotor disk 18 and rotor blade 26 assembly is disclosed having a blade lock 66 which retains the rotor blade against axial movement in an axially extending blade retention slot 58. Various construction details are developed which shield the dead rim region D.sub.d and shift at least a portion of the loads associated with the locking device from the dead rim. In one detailed embodiment, a projection 68 from the live rim D.sub.1 of the disk 18 is adapted by slots 86 to receive blade locks 66.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-10
    Description: In 1989, NASA's Langley Research Center (LaRC) initiated the High-Speed Airframe Integration Research (HiSAIR) Program to develop and demonstrate an integrated environment for high-speed aircraft design using advanced multidisciplinary analysis and optimization procedures. The major goals of this program were to evolve the interactions among disciplines and promote sharing of information, to provide a timely exchange of information among aeronautical disciplines, and to increase the awareness of the effects each discipline has upon other disciplines. LaRC historically has emphasized the advancement of analysis techniques. HiSAIR was founded to synthesize these advanced methods into a multidisciplinary design process emphasizing information feedback among disciplines and optimization. Crucial to the development of such an environment are the definition of the required data exchanges and the methodology for both recording the information and providing the exchanges in a timely manner. These requirements demand extensive use of data management techniques, graphic visualization, and interactive computing. HiSAIR represents the first attempt at LaRC to promote interdisciplinary information exchange on a large scale using advanced data management methodologies combined with state-of-the-art, scientific visualization techniques on graphics workstations in a distributed computing environment. The subject of this paper is the development of the data management system for HiSAIR.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 92-4720
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-08-16
    Description: A speed and phase sensor counterrotates aircraft propellers. A toothed wheel is attached to each propeller, and the teeth trigger a sensor as they pass, producing a sequence of signals. From the sequence of signals, rotational speed of each propeller is computer based on time intervals between successive signals. The speed can be computed several times during one revolution, thus giving speed information which is highly up-to-date. Given that spacing between teeth may not be uniform, the signals produced may be nonuniform in time. Error coefficients are derived to correct for nonuniformities in the resulting signals, thus allowing accurate speed to be computed despite the spacing nonuniformities. Phase can be viewed as the relative rotational position of one propeller with respect to the other, but measured at a fixed time. Phase is computed from the signals.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-08-15
    Description: The invention concerns a cowling for aircraft propulsion systems of the counterrotating propeller type. The cowling includes a pair of mounting rings located fore and aft of a propeller array. Removable panels extend between the mounting rings and contain openings through which the propeller blades extend.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: The Citation Jet, developed by Cessna Aircraft Company, Wichita, KS, is the first business jet to employ Langley Research Center's natural laminar flow (NLF) technology. NLF reduces drag and therefore saves fuel by using only the shape of the wing to keep the airflow smooth, or laminar. This reduces friction between the air and wing, and therefore, reduces drag. NASA's Central Industrial Applications Center, Rural Enterprises, Inc., Durant, OK, its Kansas affiliate, and Wichita State University assisted in the technology transfer.
    Keywords: Aircraft Design, Testing and Performance
    Type: Spinoff 1991; 72; NASA-NP-147
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-08-15
    Description: Air control mechanism within a power turbine section of a gas turbine engine. The power turbine section includes a rotor and at least one variable pitch propulsor blade. The propulsor blade is coupled to and extends radially outwardly of the rotor. A first annular fairing is rotatable with the propulsor blade and interposed between the propulsor blade and the rotor. A second fairing is located longitudinally adjacent to the first fairing. The first fairing and the second fairing are differentially rotatable. The air control mechanism includes a platform fixedly coupled to a radially inner end of the propulsor blade. The platform is generally positioned in a first opening and a first fairing. The platform and the first fairing define an outer space. In a first position corresponding with a first propulsor blade pitch, the platform is substantially conformal with the first fairing. In a second position corresponding with the second propulsor blade pitch, an edge portion of the platform is displaced radially outwardly from the first fairing. When the blades are in the second position and rotating about the engine axis, the displacement of the edge portion with respect to the first fairing allows air to flow from the outer space to the annular cavity.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: A hybrid ceramic/metallic fastener (bolt) includes a headed ceramic shank carrying a metallic end termination fitting. A conventional cap screw threadably engages the termination fitting to apply tensile force to the fastener.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: A display system for use in an aircraft control wheel steering system provides the pilot with a single, quickened flight path angle display to overcome poor handling qualities due to intrinsic flight path angle response lags, while avoiding multiple information display symbology. The control law for the flight path angle control system is designed such that the aircraft's actual flight path angle response lags the pilot's commanded flight path angle by a constant time lag .tau., independent of flight conditions. The synthesized display signal is produced as a predetermined function of the aircraft's actual flight path angle, the time lag .tau. and command inputs from the pilot's column.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: A jet engine designed to power a supersonic airplane throughout a range of speeds from subsonic to high supersonic includes a housing which bounds an internal passage having in succession a fixed-area inlet section, a diverging passage section, a mixing section, a combustion section, and an outlet section. A fan rotor rotates in the inlet section and includes a plurality of rotor blade members. The housing includes a main body and at least one flap which is movable between one end position in which it externally bounds a portion of the diverging passage section and another end position in which it externally delimits a diverging discharge passage connecting the diverging passage section with the exterior of the housing. The cross-sectional area of the outlet section is adjustable. The rotor is driven in rotation by a fuel/oxygen powered turbine the outlet of which communicates with the mixing section, but the driving action of the turbine is discontinued at actual supersonic velocities exceeding a predetermined supersonic velocity. The pitch of at least one element of each of the rotor blade members is adjustable.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-16
    Description: Gulfstream Aerospace Corporation, Savannah, GA, used a version of a NASA program called WIBCO to design a wing for the Gulfstream IV (G-IV) which will help to reduce transonic drag (created by shock waves that develop as an airplane approaches the speed of sound). The G-IV cruises at 88 percent of the speed of sound, and holds the international record in its class for round-the-world flight. They also used the STANS5 and Profile programs in the design. They will use the NASA program GASP to help determine the gross weight, range, speed, payload and optimum wing area of an intercontinental supersonic business jet being developed in cooperation with Sukhoi Design Bureau, a Soviet organization.
    Keywords: Aircraft Design, Testing and Performance
    Type: Spinoff 1991; 74-75; NASA-NP-147
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-08-27
    Description: The invention is a real-time takeoff and landing performance monitoring system for an aircraft which provides a pilot with graphic and metric information to assist in decisions related to achieving rotation speed (V.sub.R) within the safe zone of a runway, or stopping the aircraft on the runway after landing or take-off abort. The system processes information in two segments: a pretakeoff segment and a real-time segment. One-time inputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data. The real-time segment uses the scheduled performance data, runway length data and transducer measured parameters to monitor the performance of the airplane throughout the takeoff roll. Airplane and engine performance deficiencies are detected and annunciated. A novel and important feature of this segment is that it updates the estimated runway rolling friction coefficient. Airplane performance predictions also reflect changes in head wind occurring as the takeoff roll progresses. The system provides a head-down display and a head-up display. The head-up display is projected onto a partially reflective transparent surface through which the pilot views the runway. By comparing the present performance of the airplane with a predicted nominal performance based upon given conditions, performance deficiencies are detected by the system.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-08-27
    Description: The invention is a method and system for monitoring and directly displaying the actual thrust produced by a jet aircraft engine under determined operating conditions and the available thrust and predicted (commanded) thrust of a functional model of an ideal engine under the same determined operating conditions. A first set of actual value output signals representative of a plurality of actual performance parameters of the engine under the determined operating conditions is generated and compared with a second set of predicted value output signals representative of the predicted value of corresponding performance parameters of a functional model of the engine under the determined operating conditions to produce a third set of difference value output signals within a range of normal, caution, or warning limit values. A thrust indicator displays when any one of the actual value output signals is in the warning range while shaping function means shape each of the respective difference output signals as each approaches the limit of the respective normal, caution, and warning range limits.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-10
    Description: NASA has contracted with the Central Institute of Aviation Motors CIAM to perform a flight test and ground test and provide a scramjet engine for ground test in the United States. The objective of this contract is to obtain ground to flight correlation for a supersonic combustion ramjet (scramjet) engine operating point at a Mach number of 6.5. This paper presents results from a flow path performance and thermal evaluation performed on the design proposed by the CIAM. This study shows that the engine will perform in the scramjet mode for stoichiometric operation at a flight Mach number of 6.5. Thermal assessment of the structure indicates that the combustor cooling liner will provide adequate cooling for a Mach number of 6.5 test condition and that optional material proposed by CIAM for the cowl leading-edge design are required to allow operation with or without a type IV shock-shock interaction.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-15
    Description: A double face sealing device for mounting between two surfaces to provide an airtight and fluid-tight seal between a closure member bearing one of the surfaces and a structure or housing bearing the other surface which extends around the opening or hatchway to be closed. The double face sealing device includes a plurality of sections or segments mounted to one of the surfaces, each having a main body portion, a pair of outwardly extending and diverging, cantilever, spring arms, and a pair of inwardly extending and diverging, cantilever, spring arms, an elastomeric cover on the distal, free, ends of the outwardly extending and diverging spring arms, and an elastomeric cover on the distal, free, ends of the inwardly extending and diverging spring arms. The double face sealing device has application or use in all environments requiring a seal, but is particularly useful to seal openings or hatchways between compartments of spacecraft or aircraft.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-06-28
    Description: An F-14A aircraft was modified for use as the test-bed aircraft for the variable-sweep transition flight experiment (VSTFE) program. The VSTFE program was a laminar flow research program designed to measure the effects of wing sweep on laminar flow. The airplane was modified by adding an upper surface foam and fiberglass glove to the right wing. An existing left wing glove had been added for the previous phase of the program. Ground vibration and flight flutter testing were accomplished to verify the absence of aeroelastic instabilities within a flight envelope of Mach 0.9 or 450 knots, calibrated airspeed, whichever was less. Flight test data indicated satisfactory damping levels and trends for the elastic structural modes of the airplane. Ground vibration test data are presented along with in-flight frequency and damping estimates, time histories and power spectral densities of in-flight sensors, and pressure distribution data.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TM-101717 , H-1598 , NAS 1.15:101717
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-08-24
    Description: These data files contain the inflow measurements made with a laser velocimeter on a helicopter model in forward flight, volume X, rectangular planform blades at an advance ratio of .30, .50 chord above the tip path plane.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TM-102644-SUPPL
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: A new technique was developed for designing optimal flight test inputs for aircraft parameter estimation experiments. The principles of dynamic programming were used for the design in the time domain. This approach made it possible to include realistic practical constraints on the input and output variables. A description of the new approach is presented, followed by an example for a multiple input linear model describing the lateral dynamics of a fighter aircraft. The optimal input designs produced by the new technique demonstrated improved quality and expanded capability relative to the conventional multiple input design method.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper-90-2801 , AIAA Atmospheric Flight Mechanics Conference; Aug 20, 1990 - Aug 22, 1990; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-08-15
    Description: An aircraft propeller blade is constructed by forming two shells of composite material laminates and bonding the two shells to a metallic spar with foam filler pieces interposed between the shells at desired locations. The blade is then balanced radially and chordwise.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-06-28
    Description: A study was made of the performance of a jet-propulsion system composed of an engine-driven blower, a combustion chamber, and a discharge nozzle. A simplified analysis is made of this system for the purpose of showing in concise form the effect of the important design variables and operating conditions on jet thrust, thrust horsepower, and fuel consumption. Curves are presented that permit a rapid evaluation of the performance of this system for a range of operating conditions. The performance for an illustrative case of a power plant of the type under consideration id discussed in detail. It is shown that for a given airplane velocity the jet thrust horsepower depends mainly on the blower power and the amount of fuel burned in the jet; the higher the thrust horsepower is for a given blower power, the higher the fuel consumption per thrust horsepower. Within limits the amount of air pumped has only a secondary effect on the thrust horsepower and efficiency. A lower limit on air flow for a given fuel flow occurs where the combustion-chamber temperature becomes excessive on the basis of the strength of the structure. As the air-flow rate is increased, an upper limit is reached where, for a given blower power, fuel-flow rate, and combustion-chamber size, further increase in air flow causes a decrease in power and efficiency. This decrease in power is caused by excessive velocity through the combustion chamber, attended by an excessive pressure drop caused by momentum changes occurring during combustion.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-WR-E-212 , NACA-ACR-E4E06
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-06-28
    Description: Flights were made in natural icing conditions at the NACA Ice Research Project, Minneapolis, Minn. to test several designs of thermal-electric propeller de-icing blade shoes and a hub-generator design. It was found that a minimum average unit power of 2.5 watts per square inch of blade-shoe area would protect the propeller blades at the test conditions. The most satisfactory blade shoe of the three designs tested extended to the 20-percent-chord point and to 90 percent of the blade radius. A concentration of heat in the leading-edge region of this shoe was found to reduce the power input necessary for satisfactory de-icing. A satisfactory thermal design of blade shoe and a hub generator of sufficient capacity were developed.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-WR-A-47 , NACA-ARR-4A20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-06-28
    Description: The effects of changes in aileron rigging between 2 deg up and 2 deg down on the stick forces were determined from wind-tunnel data for a finite-span wing model. These effects were investigated for ailerons deflecting equally in both directions and linearly with stick deflection. Data were analyzed for a Frise, a sealed internally balanced, and a beveled-trailing-edge aileron. The results of the analysis showed that only ailerons having linear hinge-moment characteristics are unaffected by changes in rigging and indicated that ailerons having decidedly nonlinear hinge-moment-coefficient curves, particularly for deflections near 0 deg, are very sensitive to changes in rigging.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-WR-L-289 , NACA-RB-L4E11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-06-28
    Description: In open box beams subjected to torsion, secondary stresses arise owing to lateral bending of the spar caps. The present paper outlines a simple method for estimating the magnitude of these stresses and gives the results of tests of an open box beam in the neighborhood of a discontinuity where the cover changed from the top to the bottom of the box.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-WR-L-14 , NACA-ARR-L4I23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-06-28
    Description: A correlation of what are believed to be the most reliable data available on duct components of aircraft power-plant installations is presented. The information is given in a convenient form and is offered as an aid in designing duct systems and, subject to certain qualifications, as a guide in estimating their performance. The design and performance data include those for straight ducts; simple bends of square, circular, and elliptical cross sections; compound bends; diverging and converging bends; vaned bends; diffusers; branch ducts; internal inlets; and an angular placement of heat exchangers. Examples are included to illustrate methods of applying these data in analyzing duct systems. (author)
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-WR-L-208 , NACA-ARR-L4F26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-06-28
    Description: An investigation has been made in the Langley free-flight tunnel to obtain an experimental verification of the theoretical rudder-free stability characteristics of an airplane model equipped with conventional rudders having negative floating tendencies and negligible friction. The model used in the tests was equipped with a conventional single vertical tail having rudder area 40 percent of the vertical tail area. The model was tested both in free flight and mounted on a strut that allowed freedom only in yaw. Tests were made with three different amounts of rudder aerodynamic balance and with various values of mass, moment of inertia, and center-of-gravity location of the rudder. Most of the stability derivatives required for the theoretical calculations were determined from forced and free-oscillation tests of the particular model tested. The theoretical analysis showed that the rudder-free motions of an airplane consist largely of two oscillatory modes - a long-period oscillation somewhat similar to the normal rudder-fixed oscillation and a short-period oscillation introduced only when the rudder is set free. It was found possible in the tests to create lateral instability of the rudder-free short-period mode by large values of rudder mass parameters even though the rudder-fixed condition was highly stable. The results of the tests and calculation indicated that for most present-day airplanes having rudders of negative floating tendency, the rudder-free stability characteristics may be examined by simply considering the dynamic lateral stability using the value of the directional-stability parameter Cn(sub p) for the rudder-free condition in the conventional controls-fixed lateral-stability equations. For very large airplanes having relatively high values of the rudder mass parameters with respect to the rudder aerodynamic parameters, however, analysis of the rudder-free stability should be made with the complete equations of motion. Good agreement between calculated and measured rudder-free stability characteristics was obtained by use of the general rudder-free stability theory, in which four degrees of lateral freedom are considered. When this assumption is made that the rolling motions alone or the lateral and rolling motions may be neglected in the calculations of rudder-free stability, it is possible to predict satisfactorily the characteristics of the long-period (Dutch roll type) rudder-free oscillation for airplanes only when the effective-dihedral angle is small. With these simplifying assumptions, however, satisfactory prediction of the short-period oscillation may be obtained for any dihedral. Further simplification of the theory based on the assumption that the rudder moment of inertia might be disregarded was found to be invalid because this assumption made it impossible to calculate the characteristics of the short-period oscillations.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-WR-L-184 , NACA-ARR-L4J05A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-06-28
    Description: Two graphical methods are presented for determining the stick-free neutral point, and they are extensions of the methods commonly used to determine the stick-free neutral point. A mathematical formula for computing the stick-free neutral point is also given. These methods may be applied to determine approximately the increase in tail size necessary to shift the neutral point (stick fixed or free) to any desired location on an airplane having inadequate longitudinal stability.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-WR-L-251 , NACA-RB-4B21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-06-28
    Description: No abstract available
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-MR-A4L14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-12
    Description: The effect of several armament installations on the drag of a 1/8 scale model of the B-32 airplane was determined. Turrets in the following positions were tested: nose, tail, upper forward, upper aft, and lower. The nose and tail turrets were each equipped with two.50-caliber guns. Upper turrets were of three types: two.50-caliber guns, four.50-caliber guns, and 20-millimeter cannon. Lower turrets were of two types: two.50-caliber guns and four.50-caliber guns. The effect of streamlining the upper two- and four-gun turrets and of extending the lower two-gun turret was determined. The tests were conducted in the Langley 19-foot. pressure tunnel at a Reynolds number of approximately 2,960,000 and a Mach number of 0.13. Large increases in drag coefficient were caused by the complete armament installations. At a lift coefficient of 0. 4 the installations with nonstreamlined upper turrets and the lower turret retracted increased the drag coefficient by 0.0022 and 0.0027 for the two-gun and four-gun turret installations, respectively. Streamlining the upper turrets reduced the drag of these installations by approximately 40 percent with the upper turrets streamlined, the drag increase was about the same for either the two- or four-gun turret installation. The streamlined two-cannon upper turrets increased the drag about the same amount as the two-gun upper turrets that were not streamlined. Extension of the lower turret. increased the drag slightly more than the whole streamlined gun-turret installation.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-MR-L4L30a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-08-13
    Description: An experimental investigation concerned primarily with the extension of test data on the drag of revolving disks, cylinders, and streamline rods to high Mach numbers and Reynolds numbers is presented.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TR-793
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-11
    Description: Detail calculations are presented of the shifts in stick-fixed neutral point of the Republic XF-12 airplane due to the windmilling propellers and to the fuselage. The results of these calculations differ somewhat from those previously made for this airplane by Republic Aviation Corporation personnel under the direction of Langley flight division personnel. Due to these differences the neutral point for the airplane is predicted to be 37.8 percent mean aerodynamic chord, instead of 40.8 percent mean aerodynamic chord as previously reported.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-CMR-L4J16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-08-15
    Description: Pressure distribution and spray measurements were carried out on rectangular flat and V-bottom planing surfaces. Lift, resistance, and center of pressure data are analyzed and it is shown how these values may be computed for the pure planing procees of a flat or V-bottom suface of arbitrary beam, load and speed, the method being illustrated with the aid of an example.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TM-1061 , Jahrbuch 1937 der Deutschen Luftfahrtforschung; 320-339
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-08-16
    Description: An analysis is made of the stability of an airplane with ailerons free, with particular attention to the motions when the ailerons have a tendency to float against the wind. The present analysis supersedes the aileron investigation contained in NACA Report No. 709. The equations of motion are first written to include yawing and sideslipping, and it is demonstrated that the principal effects of freeing the ailerons can be determined without regard to these motions. If the ailerons tend to float against the wind and have a high degree of aerodynamic balance, rolling oscillations, in addition to the normal lateral oscillations, are likely to occur. On the basis of the equations including only the rolling motion and the aileron deflection, formulas are derived for the stability and damping of the rolling oscillations in terms of the hinge moment derivatives and other characteristics of the ailerons and airplane. Charts are also presented showing the oscillatory regions and stability boundaries for a fictitious airplane of conventional proportions. The effects of friction in the control system are investigated and discussed. If the ailerons tend to trail with the wind, the condition for stable variation of stick force with aileron deflection is found to determine the amount of aerodynamic balance that may be used. If the ailerons tend to float against the wind, the period and damping of the rolling oscillations are found to be satisfactory (in a mass-balanced system) so long as the restoring moment is not completely balanced out. Unbalanced mass behind the hinge, however, has an unfavorable effect on the damping of the oscillations and so shifts the boundary that close aerodynamic balance may not be attainable.
    Keywords: Aircraft Design, Testing and Performance
    Type: AD-A301275 , NACA-TR-787 , NASA-TM-111361 , NAS 1.15:111361
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2018-06-05
    Description: An extensive series of wind-tunnel tests on a half-scale conventional, nacelle model were made by the United Aircraft Corporation to determine and correlate the effects of many variables on cooling air flow and nacelle drag. The primary investigation was concerned with the reaction of these factors to varying conditions ahead of, across, and behind the engine. In the light of this investigation, common misconceptions and factors which are frequently overlooked in the cooling and cowling of radial engines are considered in some detail. Data are presented to support certain design recommendations and conclusions which should lead toward the improvement of present engine installations. Several charts are included to facilitate the estimation of cooling drag, available cooling pressure, and cowl exit area.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2018-06-05
    Description: Experience has shown that the determination of the take-off and. landing characteristics of airplanes requires specialized, equipment of a high degree of precision and reliability and demands great care in the evaluation and interpretation of data. It is believed, therefore, that a description of the apparatus and methods that have been developed by the NACA for these measurements might be of considerable interest, particularly to flight-test groups that have had little experience with landing and. take-off measurements. The basic principles and essential details of the Committee's equipment are described, the methods of utilizing the apparatus and of reducing the data are explained, and sample test results are presented.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2018-06-05
    Description: The available test results of internally balanced ailerons have been correlated and summarized herein. Although several variables have yet to-be-investigated, the results presented will be useful in the preliminary design of internally balanced ailerons and in the determination of the most promising modifications to unsatisfactory ailerons.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-13
    Description: The extent of agreement of the theoretical impact computations with the actual phenomenon has not as yet been fully clarified. There is on the one hand a certain imperfection in the theory (simplifying assumptions made) and on the other an insufficiency in the experimental data available. The object of our present paper is to show how far test results agree with the available approximate computation methods, to investigate in greater detail the physical nature of impact on water, and to perfect the experimental method of studying the phenomenon.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TM-1046 , ; 438
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-11
    Description: For computing the critical flutter velocity of a wing among the data required are the position of the line of centers of gravity of the wing sections along the span and the mass moments and radii of inertia of any section of the wing about the axis passing through the center of gravity of the section. A sufficiently detailed computation of these magnitudes even if the weights of all the wing elements are known, requires a great deal of time expenditure. Thus a rapid competent worker would require from 70 to 100 hours for the preceding computations for one wing only, while hundreds of hours would be required if all the weights were included. With the aid of the formulas derived in the present paper, the preceding work can be performed with a degree of accuracy sufficient for practical purposes in from one to two hours, the only required data being the geometric dimensions of the outer wing (tapered part), the position of its longerons, the total weight of the outer wing, and the approximate weight of the longerons, The entire material presented in this paper is applicable mainly to wings of longeron construction of the CAHI type and investigations are therefore being conducted by CAHI for the derivation of formulas for the determination of the preceding data for wings of other types.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TM-1052 , Report of the Central Aero-Hydrodynamical Institute, Moscow; Rept-452
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-11
    Description: The few available test data on the heat dissipation of wholly or partly heated airfoil models are compared with the corresponding data for the flat plate as obtained by an extension of Prandtl's momentum theory, with differentiation between laminar and turbulent boundary layer and transitional region between both, the extent and appearance of which depend upon certain critical factors. The satisfactory agreement obtained justifies far-reaching conclusions in respect to other profile forms and arrangements of heated surface areas. The temperature relationship of the material quantities in its effect on the heat dissipation is discussed as far as is possible at tk.e present state of research, and it is shown that the profile drag of heated wing surfaces can increase or decrease with the temperature increase depending upon the momentarily existent structure of the boundary layer.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TM-1044 , Jahrbuch 1938 der Deutschen Luftfahrtforschung; 245-256
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-11-26
    Description: No abstract available
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-ACR-3I30 , NACA-WR-W-6
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-11
    Description: The report presents a method for the computation of axial fan characteristics. The method is based on the assumption that the law of constancy of the circulation along the blade holds, approximately, for all fan conditions for which the blade elements operate at normal angles of attack (up to the stalling angles). Pressure head coefficient K(sub a) and power coefficient K(sub u) for the force components in the axial and tangential directions, respectively, and analogous to the lift and drag coefficients C(sub y) and C(sub x) are conveniently introduced.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TM-1042 , Report of the Central Aero-Hydrodynamical Institute, Moscow; Rept-295
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-11
    Description: An approximate theory of buffeting is here presented, based on the assumption of harmonic disturbing forces. Two cases of buffeting are considered: namely, for a tail angle of attack greater and less than the stalling angle, respectively. On the basis of the tests conducted and the results of foreign investigators, a general analysis is given of the nature of the forced vibrations the possible load limits on the tail, and the methods of elimination of buffeting.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TM-1041 , Report of the Central Aero-Hydrodynamical Institute, Moscow; Rept-395
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-12
    Description: A method that utilizes the Doppler effect on radio signals for determining the speed of an airplane and the distance traveled by the airplane has been developed and found to operate satisfactorily. In this method, called the NACA radio ground-speed system, standard readily available radio equipment is used almost exclusively and extreme frequency stability of the transmitters is not necessary. No complicated equipment need be carried in the airplane, as the standard radio transmitter is usually adequate. Actual flight tests were made in which the method was used and the results were consistent with calibrated air speed indications and stop-watch measurements. Inasmuch as the fundamental accuracy of the radio method is far better than either of the checking systems used, no check was made on the limitations of the accuracy.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-ACR-256 , NACA-SR-256
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-06-28
    Description: An investigation was carried out in the NACA low-turbulence tunnel to develop low-drag airfoil sections suitable for admitting air at the leading edge. A thickness distribution having the desired type of pressure distribution was found from tests of a flexible model. Other airfoil shapes were derived from this original shape by varying the thickness, the camper, the leading-edge radius, and the size of the leading-edge opening. Data are presented giving the characteristics of the airfoil shapes in the range of lift coefficients for high-speed and cruising flight. Shapes have been developed which show no substantial increases in drag over that of the same position along the chord. Many of these shapes appear to have higher critical compressibility speeds than plain airfoils of the same thickness. Low-drag airfoil sections have been developed with openings in the leading edge as large as 41.5 percent of the maximum thickness. The range of lift coefficients for low drag in several cases is nearly as large as that of the corresponding plain airfoil sections. Preliminary measurements of maximum lift characteristics indicate that nose-opening sections of the type herein considered may not produce any marked effects on the maximum lift coefficient.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-WR-L-694
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-06-28
    Description: No abstract available
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-WR-L-577 , AD-A801579
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2018-06-05
    Description: The Army Air Force has made available several pursuit-type airplanes for quantitative investigation of their flying and handling qualities. One Item of special interest obtained from the results of the investigation is a comparison of the aileron control characteristics of the P-36, P-40, Hawker Hurricane, and Supermarine Spitfire airplanes. Figure 1 shows the design characteristics of the ailerons and the control sticks of the four airplanes. Aileron effectiveness may be expressed in terms of the helix angle generated by the wing tip in a steady roll. This angle is given by the expression pb/2V, where p is the rolling velocity, b the wing span, and V the true airspeed, expressed in consistent units. This quantity is convenient to use because, although it does not rep resent directly the rolling velocity of airplanes of different spans or airplanes operating at different speeds, it provides a satisfactory basis for computing the rate of roll and the time required to bank a given amount under any given set of conditions. The ratio of pb/2V obtained in any roll to the maximum value reached with full aileron deflection indicates the fraction of the maximum aileron travel that was reached. A complete discussion of this criterion for aileron effectiveness is given in reference 1. The aileron effectiveness of the various airplanes is compared in the following table on the basis of the response obtained with stick forces of 30 and 5 pounds. A force of 30 pounds is somewhat less than the greatest stick force exerted by the pilot. Repeated flight measurements have shown, however, that this force is a reasonable upper limit for maneuvering at high speeds.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2018-06-05
    Description: The present trend is toward faster and larger pursuit airplanes. Because both speed and size increase the aileron control forces, the design of ailerons for manual operation is becoming increasingly difficult. In order to obtain a clearer picture of the future problem of balancing ailerons, and inspection has been made of the effects of airplane size and speed on the control forces. Computations were made of the aileron control forces required to meet specified rolling conditions for plain ailerons on wings with spans from 40 to 80 feet and for speeds up to 500 miles per hour. The rolling conditions were specified by two alternative criterions. One was the rolling criterion pb/2V of reference 1. For reasons, which will be discussed later, a value of 0.09 rather than the recommended value of 0.07 was assigned to this criterion. For the criterion pb/2V, the required value of the rolling velocity p varies inversely with the airplane span b. There is some question as to whether the rolling velocity of a pursuit airplane can be permitted to decrease simply because its size is increased. For the second criterion, therefore, the rolling velocity is independent of span (p/V is a constant). The value assigned to this criterion was so chosen that for a wing of 40-foot span the value of pb/2V would be 0.09. The computations neglected compressibility effects. Available experimental data and the results of tests given in reference 2 indicate that the effect of compressibility is to increase the control force. Recent flight tests have indicated that, with certain types of aileron, serious compressibility effects may cause discontinuity at speeds of approximately 400 miles per hour in the aileron control force curves.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-17
    Description: The writer sets out to prove by calculation and experiment that by extensive utilization of the skin to carry axial load (reduction of stringer spacing) the stringer sections can be made small enough to afford a substantial saving in structural weight. This saving ranges from 5 to about 40 percent.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TM-1031 , Luftfahrtforschung; 18; 9; 331-337
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-15
    Description: Unduly high diving speeds can be effectively controlled by diving brakes but their employment involves at the same time a number of disagreeable features: namely, rotation of zero lift direction, variation of diviving moment, and, the creation of a potent dead air region.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TM-1033
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-11
    Description: The present paper is devoted to the theoretical and experimental investigation of one of the stationary elements of a fan, namely, the vaneless diffuser. The method of computation is based on the principles developed by Pfleiderer (Forschungsarbeiten No. 295). The practical interest of this investigation arises from the fact that the design of the fan guide elements - vaneless diffusers, guide vanes, spiral casing - is far behind the design of the impeller as regards accuracy and. reliability. The computations conducted by the method here presented have shown sufficiently good agreement with the experimental data and indicate the limits within which the values of the coefficient of friction lie.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TM-1038 , Report of the Central Aero-Hydrodynamical Institute, Moscow; Rept-224
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2013-08-31
    Description: Development work on an arrangement using ailerons and spoilers for lateral control was carried out by the Vought-Sikorsky Aircraft Division of the United Aircraft Corporation on a small commercial airplane in flight and on an airfoil in a wind tunnel. Spoiler hinge moments were reduced by aerodynamic balance. The arrangement was then built into an experimental airplane and further improvements were adopted as the result of flight and tunnel tests. The use of ailerons for lateral control with flaps up, spoilers with flaps full down, and gradual transition as the flaps are lowered was found to provide lateral control under the flight conditions for which they were best suited. The ailerons were of short span, permitting the use of long-span flaps, and were drooped to a relatively large angle when the flaps were deflected. A high maximum lift coefficient was thus attained. With large control deflections in the intermediate flap-angle range and spoiler effectiveness near neutral improved by "ventilating" the spoiler, the lateral control was satisfactory for the experimental airplane and was a definite improvement over that of a conventional control arrangement.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-06-28
    Description: Aerodynamic characteristics of a tapered NACA 23012 airfoil with single and double perforated split flaps have been determined in the NACA 7- by 10-foot wind tunnel. Dynamic pressure surveys were made behind the airfoil at the approximate location of the tail in order to determine the extent and location of the wake for several of the flap arrangements. In addition, computations have been made of an application of perforated double split flaps for use as fighter brakes. The results indicated that single or double perforated split flaps may be used to obtain satisfactory dive control without undue buffeting effects and that single or double perforated split flaps may also be used as fighter brakes. The perforated split flaps had approximately the same effects on the aerodynamic and wake characteristics of the tapered airfoil as on a comparable rectangular airfoil.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-WR-L-373
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-06-28
    Description: Cooling tests were made of a Northrop A-17A attack airplane successively equipped with a conventional.NACA cowling and with a wing-duct cooling system. The method of cooling the engine by admitting air from the propeller slipstream into wing ducts, passing it first through the accessory compartment and then over the engine from rear to front, appeared to offer possibilities for improved engine cooling, increased cooling of the accessories, and better fairing of the power-plant installation. The results showed that ground cooling for the wing duct system without cowl flap was better than for the NACA cowling with flap; ground cooling was appreciably improved by installing a cowl flap. Satisfactory temperatures were maintained in both climb and high-speed flight, but, with the use of conventional baffles, a greater quantity of cooling air appeared to be required for the wing duct system.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TN-813
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-12
    Description: The drag of several types of gunner's turrets, windshields, blisters, and other protuberances, including projecting guns, was investigated at speeds from 75 to 440 miles per hour in the NACA 8-foot high-speed wind tunnel. The various gunner's enclosures were represented by 1/10 and 1/7 full-size models on a midwing-fuselage combination representative of bomber types. Most of the usual types of retractable turrets are very poor aerodynamically; they caused wind drag increments, dependent upon the size of the turret relative to the fuselage and upon the speed, up to twice the drag of the fuselage alone. A large streamline blister sufficient to enclose completely one type of rotating cylindrical turret caused a drag increment of approximately one-half that of the turret and at the same time provided space adequate for two gunners rather than for one gunner. A large portion of the drag increments for some types of turret appeared to be due to adverse effects on the fuselage flow caused by the turret rather than by the direct drag of the turret.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-SR-202
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-12
    Description: It is shown that on the basis of existing high-speed airfoil data, propeller efficiencies appreciably in excess of 40% do not appear possible at speeds above 500 miles per hour at 20,000 feet. The assumption that present propeller-blade thicknesses cannot be reduced radically, is implied. Until the reliability and applicability of the airfoil data are established, this conclusion must not be regarded as infallible. Dive tests with airplanes equipped with thrust meters and torque meters are proposed to provide an urgently needed check. The design of high-speed propellers is dictated wholly by compressibility considerations. The blade width, thickness, and pitch distribution; also the airfoil sections, the lift coefficient, the propeller diameter, and rpm must all be adjusted if reasonable efficiencies are to be maintained at airplane speeds that are now being approached. Research is urgently needed on: 1) airfoils at subsonic, sonic, and supersonic speeds; 2) propellers at high forward speeds in wind tunnels; 3)propellers in free flight at high speeds; and 4) jet propulsion and related devices. The breakdown of propeller efficiency indicated by airfoil data, should serve as an incentive for accelerated research on jet propulsion. This device may extend the attainable speed of current airplanes to the neighborhood of 550 miles per hour at 20,000 feet.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-SR-187
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-12
    Description: A chart is presented for the values of the coefficient in the formula for the critical compressive stress at which buckling may be expected to occur in flat rectangular plates supported along all edges and, in addition, elastically restrained against rotation along the unloaded edges. The mathematical derivations of the formulas required in the construction of the chart are given.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-SR-189
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-12
    Description: A chart is presented for the values of the coefficient in the formula for the critical compressive stress at which buckling may be expected to occur in outstanding flanges. These flanges are flat rectangular plates supported along the Loaded edges, supported and elastically restrained along one unloaded edge, and free along the other unloaded edge. The mathematical derivations of the formulas required for the construction of the chart are given.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-SR-188
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2018-06-05
    Description: An investigation has been conducted on a full-scale model of the proposed XP-46 airplane in the N. A. C. A. full-scale wind tunnel pursuant to the request of the Amy Air Corps, Materiel Division. The primary purpose of the investigation was to determine the optimum arrangement of the various component parts to obtain the maximum high speed and to provide adequate engine cooling. Additional tests included a determination of the stalling characteristics and the effectiveness of ailerons and elevators. The profile drag of the wing was ascertained by the momentum method; the location of the transition point on the wing and the critical compressibility velocities of the various airplane components were determined from surface pressure surveys.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-12
    Description: Adjustable cowling flaps, an adjustable-length cowling skirt, and a bottom opening with adjustable flap were tested as means of controlling the rate of cooling-air flow through an air-cooled radial-engine cowling. The devices were tested in the NACA 20-foot tunnel on a model wing-nacelle-propeller combination, through an airspeed range of 20 to 80 miles per hour, and with the propeller blade angle set 23 degrees at 0.75 of the tip radius. The resistance of the engine to air flow through the cowling was simulated by a perforated plate. The results indicated that the adjustable cowling flap and the bottom opening with adjustable flap were about equally effective on the basis of pressure drop obtainable and that both were more effective means of increasing the pressure drop through the cowling than the adjustable-length skirt. At conditions of equal cooling-air flow, the net efficiency obtained with the adjustable cowling flaps and the adjustable-length cowling skirt was about 1% greater than the net efficiency obtained with the bottom opening with adjustable flap.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-SR-144
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-12
    Description: A preliminary investigation of a number of duct entrances of rectangular shape installed in the leading edge of a wing was conducted in the NACA 20-foot tunnel to determine the external drag, the available pressure, the critical Mach numbers, and the effect on the maximum lift. The results showed that the most satisfactory entrances, which had practically no effect on the wing characteristics, had their lips approximately in the vertical plane of the leading edge of the wing. This requirement necessitated extending the lips outside the wing contour for all except the small entrances. Full dynamic pressure was found to be available over a fairly wide range of angle of attack. The critical Mach number for a small entrance was calculated to be as high as that for the plain wing but was slightly lower for the larger entrances tested.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-SR-154
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-12
    Description: Test of 10-foot diameter, 4- and 6-blade single- and dual-rotating propellers were conducted in the 20-foot propeller-research tunnel. The propellers were mounted at the front end of a streamline body incorporating spinners to house the hub portions. The effect of a symmetrical wing mounted in the slipstream was investigated. The blade angles investigated ranged from 20 degrees to 65 degrees; the latter setting corresponds to airplane speeds of over 500 miles per hour. The results indicate that dual-rotating propellers were from 0 to 6% more efficient than single-rotating ones; but when operating in the presence of a wing the gain was reduced about one-half. Other advantages of dual-rotating propellers were found to include greater power absorption and greater efficiency at the low V/nD operating range of high pitch propellers.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-SR-157
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...