ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (36)
  • yeast  (36)
  • Wiley-Blackwell  (36)
  • Nature Publishing Group
  • Nature publishing company
  • 1995-1999  (18)
  • 1990-1994  (18)
  • 1950-1954
  • Process Engineering, Biotechnology, Nutrition Technology  (36)
Collection
  • Articles  (36)
Publisher
  • Wiley-Blackwell  (36)
  • Nature Publishing Group
  • Nature publishing company
  • Springer  (26)
Years
  • 1995-1999  (18)
  • 1990-1994  (18)
  • 1950-1954
Year
Topic
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 60 (1998), S. 492-497 
    ISSN: 0006-3592
    Keywords: yeast ; inulin ; inulase ; fructose ; secretion ; hexokinases ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The gene encoding inulase of the yeast Kluyveromyces marxianus (INU1Km) was cloned and expressed in the inulin-negative yeast Saccharomyces cerevisiae. Cells of S. cerevisiae transformed with the INU1Km gene have acquired extracellular inulase activity and were able to grow in the medium with inulin as a sole carbon source. The S. cerevisiae strain was constructed that is capable of heterologous expression of secreted K. marxianus inulase and is defective in fructose uptake due to null-mutations of the hexokinase structural genes HXK1 and HXK2. When grown in inulin-containing media, this strain is capable of accumulating at least 10% glucose-free fructose in the culture liquid. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 60: 492-497, 1998.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 445-450 
    ISSN: 0006-3592
    Keywords: on-line control ; pH control ; growth monitoring ; proton titration ; yeast ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The amount of acid or base consumed in yeast cultures has been recently assigned to the pathway of nitrogen assimilation under respiratory conditions with no contribution by carbon metabolism (Castrillo et al., 1995). In this investigation, experiments under respirofermentative conditions have shown that production or consumption of ethanol does not contribute significantly to the specific rate of proton production (qH+), thus extending the previously obtained relationships for all aerobic conditions in which other major acid/base contributions are not involved. Tests in batch and chemostat culture confirm the validity of qH+ as a formal control parameter in aerobic fermentations. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:445-450, 1998.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 59 (1998), S. 647-650 
    ISSN: 0006-3592
    Keywords: biomass separation ; flocculation ; biomass measurement ; yeast ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: We introduce the ratio of nonflocculent versus total biomass as a criterion for starting cell separation from the medium. This criterion can be applied for the automation of the process regardless of the process dynamics. Its minimum indicates the optimum period of time for the start of the separation process with regard not only to nonflocculent cell concentration, but also medium attributes. In contrast to the concentration of nonflocculent cells, which has two minima, first at the beginning of the process and another broader one in the period during which maximum flocculation is present, the ratio has a single minimum and can therefore be implemented as a criterion for cell separation. To calculate the ratio value, in addition to an on-line method for nonflocculent biomass measurement described elsewhere, an on-line method for the total biomass of flocculent yeast is proposed. It is based on the absorbency measurement of the cell biomass, previously deflocculated by EDTA. Therefore, it can be applied in bioprocesses with transparent media and yeast that can be deflocculated by EDTA. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:647-650, 1998.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 133-138 
    ISSN: 0006-3592
    Keywords: metabolic modeling ; model selection ; parameter estimation ; identification ; yeast ; stoichiometry ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A metabolic network model is one of the cornerstones of the emerging Metabolic Engineering methodology. In this article, special attention is therefore, given to the phase of model building. A five-stage structured approach to metabolic network modeling is introduced. The basic steps are: (1) to collect a priori knowledge on the reaction network and to build candidate network models, (2) to perform an a priori check of the model, (3) to estimate the unknown parameters in the model, (4) to check the identified model for acceptability from a biological and thermodynamic point of view, and (5) to validate the model with new data. The approach is illustrated with a growth system involving baker's yeast growing on mixtures of substrates. Special attention is given to the central uncertainties in metabolic network modeling, i.e., estimation of energetic parameters in the network and the choice of the source of anabolic reducing equivalents NADPH. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:133-138, 1998.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 53 (1997), S. 10-16 
    ISSN: 0006-3592
    Keywords: microfiltration ; fouling ; yeast ; antifoam agents ; depressurization ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The fouling effects of yeast fermentation broths of Candida utilis in the presence of various commercial antifoam agents (PPG2000, B5600, and G832) up to 4.0 mL/L were studied, using Millipore polyvinylidene fluoride 0.22-μm hydrophilic membranes (GVWP), in a stirred-cell system at 50 kPa and 700 rpm. PPG2000, which has a low value of work of adhesion (Wa of 0.81 mN/m), gave a steady flux of broth of 29 L/(h m2) and was found to have no significant fouling effect on the microfiltration of broth. G832, which has a high Wa, (26.0 mN/m) reduced the flux of the broth to 17 L/(h m2); i.e., by 42% when only 1.0 mL/L was used. However, B5600, which has a Wa of 14.3 mN/m, was found to enhance the flux of broth to 54 L/(h m2); i.e., by 86%, due to the preferential adsorption of the B5600 components onto the hydrophobic cell contents released. These results were reinforced by the depressurization experiments performed with both hydrophilic (GVWP) and hydrophobic (GVHP) membranes, using both young and aged broths. B5600 was found to be the optimum antifoam agent in this study in terms of membrane performance and defoaming efficiency. © 1997 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 53 (1997), S. 71-78 
    ISSN: 0006-3592
    Keywords: Zymomonas ; yeast ; acetaldehyde ; ethanol ; stress ; inhibition ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The lag phase of Saccharomyces cerevisiae subjected to a step increase in temperature or ethanol concentration was reduced by as much as 60% when acetaldehyde was added to the medium at concentrations less than 0.1 g/L. Maximum specific growth rates were also substantially increased. Even greater proportional reductions in lag time due to acetaldehyde addition were observed for ethanol-shocked cultures of Zymomonas mobilis. Acetaldehyde had no effect on S. cerevisiae cultures started from stationary phase inocula in the absence of environmental shock and its lag-reducing effects were greater in complex medium than in a defined synthetic medium. Acetaldehyde reacted strongly with the ingredients of complex culture media. It is proposed that the effect of added acetaldehyde may be to compensate for the inability of cells to maintain transmembrane acetaldehyde gradients following an environmental shock. © 1997 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 53 (1997), S. 470-477 
    ISSN: 0006-3592
    Keywords: fluidized bed bioreactor ; recombinant ; yeast ; kinetics ; modeling ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Continuous production of a recombinant murine granulocyte-macrophage colony-stimulating factor (GM-CSF) by Saccharomyces cerevisiae strain XV2181 (a/a, Trp 1) containing plasmid pαADH2 and immobilized on porous glass beads in a fluidized bed bioreactor was studied. Kinetic models for plasmid stability, cell growth, and protein production in the three-phase fluidized bed bioreactor were developed and used to study the effects of solid loading or cell immobilization on plasmid stability and recombinant protein production. With increasing cell immobilization or solid loading in the bioreactor, plasmid stability and protein production improved significantly. The improvements could be attributed to the decreased θ value, which is the plasmid loss probability during cell division and is an indication of segregational instability of the recombinant cell, and the increased α value, which is the ratio of the specific growth rate of a plasmid-carrying cell to that of a plasmid-free cell and is indicative of competitive stability of the recombinant cell culture. θ decreased from 0.552 to 0.042 and α increased from 0.351 to 0.991 when solid loading in the bioreactor was increased from 5% (v/v) to 33%. The model simulation also showed that the specific growth rate of cells in the bioreactor was lower at higher solid loading. This indicated that there was significant mass transfer limitation, particularly for oxygen transfer, when the total cell density in the bioreactor was high at high solid loading. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 470-477, 1997.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 54 (1997), S. 535-542 
    ISSN: 0006-3592
    Keywords: fermentor monitoring ; mass spectrometer ; Pichia stipitis ; carbon dioxide ; yeast ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: An in situ sterilizable plug-in membrane inlet mass spectrometer for monitoring dissolved gases and volatiles in fermentors was constructed and tested. The design ensured a minimal distance to be traveled by analyte molecules from the bulk of the fermentation broth to the ionization chamber of the mass spectrometer. Apart from the specific cross talk due to overlapping mass peaks from different compounds, we found that carbon dioxide interfered unspecifically with all the mass peaks of other substances, changing them by the same factor. The interference changed slowly with time and could be positive or negative depending on the history of the mass spectrometer. Also, the general sensitivity of the instrument changed slowly with time. These effects can be neglected or corrected for empirically in short-term measurements. When the fermentor was aerated with a three-component gas mixture including carbon dioxide, a rapid change in the partial pressure of carbon dioxide in the gas mixture gave rise to a transient in the signal of a gas whose partial pressure was kept constant. This effect revealed a transient change in the composition of the gas mixture in the bubbles caused by net import or export of carbon dioxide during equilibration with the new gas mixture. An experimental method to determine the effective partial pressures of gases in the bubbles during steady-state transport of carbon dioxide was designed. The plug-in membrane inlet mass spectrometer was tried as a probe for oxygen and ethanol in an oxystatic culture of the yeast Pichia stipitis. We found that it was possible to keep a steady-state concentration of as little as 0.5 μM throughout the lifetime of the culture. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 535-542, 1997.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 56 (1997), S. 62-70 
    ISSN: 0006-3592
    Keywords: osmotic shock ; water permeability ; mixing time constant ; mathematical model ; yeast ; leukemia K562 cells ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Water permeability (Lp), calculated from the volume variations of cells subjected to an osmotic shock, is classically used to characterize cell membrane properties. In this work, we have shown the importance of the kind of mixing reactor used to measure the Lp parameter. A mathematical model including the mixing time constant has been proposed allowing an accurate Lp estimation even though the mixing time constant is higher than the cell time constant obtained in response to a perfect shock. The estimated Lp values of human leukemia K562 cells were found to be the same whatever the mixing time constant. The Lp value of Saccharomyces cerevisiae could not be exactly estimated. However, S. cerevisiae has unexpectedly high water permeability, implying that this yeast may contain water channels in the membrane. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 62-70, 1997.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 49 (1996), S. 667-674 
    ISSN: 0006-3592
    Keywords: yeast ; threonine biosynthesis ; gene amplification ; amino acid production ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In this work, we have studied the effect of amplifying different alleles involved in the threonine biosynthesis on the amino acid production by Saccharomyces cerevisiae. The genes used were wild-type HOM3, HOM2, HOM6, THR1, and THR4, and two mutant alleles of HOM3 (namely HOM3-R2 and HOM3-R6), that code for feedback-insensitive aspartate kinases. The results show that only the amplification of the HOM3 alleles leads to threonine and, in some instances, to homoserine overproduction. In terms of the regulation of the pathway, the data indicate that the main control is exerted by inhibition of the aspartate kinase and that, probably, a second and less important regulation takes place at the level of the homoserine kinase, the THR1 gene product. However, amplification of THR1 in two related Hom3-R2 strains does not increase the amount of threonine but, in one of them, it does induce accumulation of more homoserine. This result probably reflects differences between these strains in some undetermined genetic factor/s related with threonine metabolism. In general, the data indicate that the common laboratory yeast strains are genetically rather heterogeneous and, thus, extrapolation of conclusions must be done carefully. © 1996 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 50 (1996), S. 248-256 
    ISSN: 0006-3592
    Keywords: yeast ; Saccharomyces ; flotation ; batch culture ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A fast flotation assay was used to select new floating yeast strains. The flotation ability did not seem to be directly correlated to total extracellular protein concentration of the culture. However, the hydrophobicity of the cell was definitely correlated to the flotation capacity. The Saccharomyces strains (FLT strains) were highly hydrophobic and showed an excellent flotation performance in batch cultures without additives (flotation agents) and with no need for a special flotation chamber or flotation column. A stable and well-organized structure was evident in the dried foam as shown by scanning electron microscopy which revealed its unique structure showing mummified cells (dehydrated) attached to each other. The attachment among the cells and the high protein concentration of the foams indicated that proteins might be involved in the foam formation. The floating strains (strains FLT) which were not flocculent and showed no tendency to aggregate, were capable of growing and producing ethanol in a synthetic medium containing high glucose concentration as a carbon source. The phenomenon responsible for flotation seems to be quite different from the flocculation phenomenon. © 1996 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 51 (1996), S. 33-39 
    ISSN: 0006-3592
    Keywords: yeast ; fuel ethanol ; flocculation ; glucose conversion ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: By recycling the contents of a 14 L fermentor through a stripping column to continuously remove ethanol and reduce product inhibition, continuous complete conversion of nutrient feed containing 600 g/L glucose was achieved in a small pilot plant. Ethanol was recovered from the carbon dioxide stripping gas in a refrigerated condenser, and the gas was reheated with steam and recycled by a blower. Productivity of ethanol in the fermentor as high as 15.8 g/L/h and condensate production of up to 10 L/day of almost 50% by volume ethanol were maintained for up to 60 days of continuous operation. Weekly washing of the column packing in situ was required to prevent loss of performance caused by attached growth of yeast cells, which restricts the gas flow rate through the stripping column. © 1996 John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 51 (1996), S. 679-690 
    ISSN: 0006-3592
    Keywords: yeast ; dimorphism ; morphology ; image analysis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A semiautomatic image analysis method has been developed to characterize the morphology of the dimorphic yeast Kluyveromyces marxianus var. marxianus (formerly fragilis) NRRLy2415 undergoing alcoholic fermentation of cheese whey permeate. The method is capable of separating cells into six defined categories, varying from simple ovoid yeast cells to branched mycelial cells. A sample size of 300 cells was found to be sufficient to obtain a statistically significant categorization. The processing time for a sample was found to be approximately 90 min. In addition to qualitative characterization, the method permits the measurement of geometric properties such as the width, length, and volume of individual cells or clusters of cells. When the cells analyzed by the automatic method were categorized on a manual basis, the error level in the automatic routine was found to be less than 3%.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 52 (1996), S. 161-165 
    ISSN: 0006-3592
    Keywords: yeast ; signaling ; regulation ; catabolite repression ; metabolism ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In this article, knowledge concerning the relation between uptake of and signaling by glucose in the yeast Saccharomyces cerevisiae is reviewed and compared to the analogous process in prokaryotes. It is concluded that (much) more fundamental knowledge concerning these processes is required before rational redesign of metabolic fluxes from glucose in yeast can be achieved. © 1996 John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 48 (1995), S. 108-117 
    ISSN: 0006-3592
    Keywords: microfiltration ; hydrulic resistance ; fouling ; yeast ; depressurization ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The hydraulic resistance and membrane fouling effects of Candida utilis in fermentation broth were investigated using Millipore PVDF 0.22-μm membranes (GVWP and GVHP) in a stirred-cell system at 50 kPa and 700 rpm. With the various components of broth, spent medium, which contains colloidal particles and macromolecules having sizes (0.32 to 2.67 μm) comparable with the membrane pores (actual range 0.26 to 0.63 μm), was found to be the major contributing factor to the membrane fouling by broth through pore plugging. This led the spent medium to exhibit the highest hydraulic resistance (Rsm of 5.8E + 12 m-1) and percentage flux loss (81.0%) when compared with either intact cells alone in buffer or to whole broth. Intact cells appeared to physically block and protect the pores without significant adhesion, because of the relatively hydrophilic nature of their cell walls (hydrophobicity of 5.9% at hour 36), resulting in the lowest hydraulic resistance (Rsbc of 7.5E + 11m-1) and percentage flux loss (19.3%).However, the hydraulic resistance and percentage flux loss of broth increased as cells aged. This was attributed to the increase in particle loading (intact cells by 15.37%, released cell contents and cell fragments) and in the hydrophobicity of cell walls. Autoclaved broth, lysed broth and aged broth, which contained a larger portion of colloidal particles and released cell contents caused a more pronounced fouling effect. This was revealed by the absence of flux recovery after depressurization with continuous stirring, even when a hydrophilic membrane was used. Furthermore, the hydrophobicity of C. utilis was found to increase with yeast extract present in medium, and use of hydrophobic membranes helped enhance the fouling effect. Overall, the degree of irreversible membrane fouling could be revealed by the value of Rsm/Rt′ and the hydraulic resistance, which resulted from concentration polarrzation, could be revealed by the value of Rc/Rt′ where Rt = Rm + Rsm + Rc′ and Rm is the clean membrane resistance. © 1995 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 48 (1995), S. 386-400 
    ISSN: 0006-3592
    Keywords: microfiltration ; yeast ; filtration ; Saccharomyces cerevisiae ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: To develop a highly efficient cell harvest step under time constraint, a novel rotating disk dynamic filtration system was studied on the laboratory scale (0.147-ft.2 nylon membrane) for concentrating recombinant yeast cells containing an intracellular product. The existing cross-flow microfiltration method yielded pseudo-steady state flux values below 25 LMH (L/m2. h) even at low membrane loadings (10 L/ft.2). By creating high shear rates (up to 120,000-1) on the membrane surface using a rotating solid disk, this dynamic filter has demonstrated dramatically improved performance, presumably due to minimal cake buildup and reduced membrane fouling. Among the many factors investigated, disk rotating speed, which determines shear rates and flow patterns, was found to be the most important adjustable parameter. Our experimental results have shown that the flux increases with disk rotating speed, increases with transmembrane pressure at higher cell concentrations, and can be sustained at high levels under constant flux mode. At a certain membrane loading level, there was a critical speed below which it behaved similarly to a flat sheet system with equivalent shear. Average flux greater than 200 LMH has been demonstrated at 37-L/ft.2 loading at maximum speed to complete sixfold concentration and 15-volume diafiltration for less than 100 min. An order of magnitude improvement over the crossflow microfiltration control was projected for large scale production. This superior performance, however, would be achieved at the expense of additional power input and heat dissipation, especially when cell concentration reaches above 80 g dry cell weight (DCW)/L. Although a positive linear relationship between power input and dynamic flux at a certain concentration factor has been established, high cell density associated with high viscosity impacted adversely on effective average shear rates and, eventually, severe membrane fouling, rather than cake formation, would limit the performance of this novel system. © 1995 John Wiley & Sons, Inc.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 46 (1995), S. 285-290 
    ISSN: 0006-3592
    Keywords: yeast ; ethanol ; amylases ; strain development ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A procedure was developed for construction of industrial strains of distiller's yeast (Saccharomyces cerevisiae). It includes several steps: construction of congenic genetically marked haploid strains of opposite mating types starting from an industrial strain of hybrid nature, integrative transformation of the above haploid strains with a DNA fragment containing an expression cassette responsible for new technological facilities, and hybridization of transformants and isolation of final industrial homozygous strains under experimental conditions simulating commercial fermentation processes. This strategy permits the generation of strains that have desirable characteristics of traditional races of distiller's yeast along with new technological facilities determined by the particular expression cassette. Using this procedure, we have constructed an industrial strain with improved amylolytic activity. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 48 (1995), S. 375-385 
    ISSN: 0006-3592
    Keywords: membrane microfiltration ; self-cleaning spiral vortices ; fouling ; concentration polarization ; yeast ; colloidal suspension ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A novel method of producing controlled vortices was used to reduce both concentration polarization and membrane fouling during microfiltration of Saccharomyces cerevisiae broth suspensions. The method involves flow around a curved channel at a sufficient rate so as to produce centrifugal instabilities (called Dean vortices). These vortices depolarize the build-up of suspended particles such as yeast cells at the membrane-solution interface and allow for increased membrane permeation rates. Various operating conditions under which such vortices effectively reduced cake build-up of suspended particles such as yeast cells at the membrane-solution interface and allow for increased membrane permeation rates. Various operating conditions under which such vortices effectively reduced cake build-up during microfiltration of 0 to 0.55 dry wt% yeast broth were investigated. Flux improvements of over 60% for 0.25 dry wt% yeast broth for flow with over that without Dean vortices were observed. This beneficial effect increased with increasing retentate flow rate and increasing transmembrane pressure and decreased with increasing concentration of suspended matter. Similar behavior was observed whether the cells were viable of killed. the improvement in flux in the presence over that in the absence of vortices correlated well with centrifugal force or azimuthal velocity squared. The relative cake resistances increased with reservoir yeast concentration. These values with vortices increased from 62% to 75% of that without vortices with increasing yeast concentration. The ratio of the cake thicknesses in the limiting case (at high feed concentration) was 3.25. These results suggest that self-cleaning spiral vortices could be effective in maintaining good and steady microfiltration performance with cell suspensions other than those tested. © 1995 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 43 (1994), S. 165-170 
    ISSN: 0006-3592
    Keywords: visualization chamber ; osmotic pressure ; yeast ; image analysis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A visualization chamber has been developed to analyze potential correlations between osmotic step increase on yeasts and the resultant cell volume decreases. Image analysis was used to characterize the step increases in the center of the chamber and to measure the changes in the cell volume. Step increases of different intensities have been performed on the yeast Saccharomyces cerevisiae. This device has allowed the kinetics of the volumetric evolution of the cells to be observed. The water exit flow rate from the cell was found to occur in the first 10 s following the hypertonic step change. Comparison of the time constants of the chamber and of the cell volume variations allowed to conclude that the time constant of the water transfer across the membrane was short (about 1 s). © 1994 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 43 (1994), S. 155-158 
    ISSN: 0006-3592
    Keywords: Zymomonas ; yeast ; ethanol ; inhibition ; adaptation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In high cell density batch fermentations, Zymomonas mobilis produced 91 g L-1 ethanol in 90 min but culture viability fell significantly. Similar viability losses in rapid fermentations by yeast have recently been shown to be attributable in part to the high rate of change of the extracellular ethanol concentration. However, in simulated rapid fermentations in which ethanol was pumped continuously to low cell density Z. mobilis suspensions, increases in the rate of change of ethanol concentration in the range 21-83 g L-1 h-1 did not lead to accelerated viability losses. The lag phase of Zymomonas cultures exposed to a 30-g L-1 step change in ethanol concentration was much shorter than that of Saccharomyces cerevisiae, providing evidence that the comparative insensitivity of Zymomonas to high rates of change of ethanol concentration is due to its ability to adapt to changes in ethanol concentration more rapidly than yeast. © 1994 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 888-894 
    ISSN: 0006-3592
    Keywords: Rhodotorula glutinis ; Lactobacillus helveticus ; yeast ; whey ; carotenoids ; carotenogenesis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The growth and carotenoid biosynthesis of the yeast Rhodotorula glutinis was studied by cocultivation with Lactobacillus helveticus in cheese ultrafiltrate containing 3.9% and 7.1% lactose. By growing this mixed culture in a 15-L fermentor MBR AG (Switzerland) at an air flow rate of 0.5 L/L min and agitation at 220 rpm for 6 days, a total yield of carotenoids of 268 μg/g dry cells wasobtained. Carotenoids were formed almost parallel with the cell growth, anda maximum production was reached at an early stationary phase. A high-performance liquid chromatographic system (HPLC) permitting simultaneous determination of major carotenoid pigments was used. The three main pigments (torularhodin, β-carotene, and torulene) were formed in Rhodotorula glutinis, and reached a maximum concentration as follows: 182.0, 43.9, 23.0 μg,g dry cells. © 1994 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 297-302 
    ISSN: 0006-3592
    Keywords: cell walls ; metal binding ; polymers ; yeast ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Isolated cell walls of the yeast Saccharomyces cerevisiae were treated by either chemical (alkali and acid) or enzymatic (protease, mannanase or β-glucuronidase) processes to yield partially purified products. These products were partially characterized by infrared analysis. They were subsequently reacted with heavy metal cation solutions and the quantity of metal accumulated by the cell wall material determined. The Cu2+ ion (0.24, 0.36, 1.12, and 0.60 μmol/mg) was accumulated to a greater extent than either Co2+ (0.13, 0.32, 0.43, and 0.32 μmol/mg) or Cd2+ (0.17, 0.34, 0.39, and 0.32 μmol/mg) by yeast cell walls, glucan, mannan, and chitin, respectively The isolated components each accumulated greater quantities of the cations than the intact cell wall. Removal of the protein component of the yeast cell walls by Pronase caused a 29.5% decrease in metal accumulation by yeast cell walls per mass, indicating the protein is a heavy metal accumulating component. The data indicate that the outer mannan-protein layer of the yeast cell wall is more important than the inner glucan-chitin layer in heavy metal action accumulation. © 1994 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 43 (1994), S. 337-341 
    ISSN: 0006-3592
    Keywords: yeast ; on-line ; capacitance ; viable biomass ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A commercially available biomass monitor has been employed in a number of applications. For capacitance monitors, a relationship between capacitance measurement and cell counts or colony forming units has been reported in the literature. However, for use as an online instrument, a more practical correlation with the biomass concentration is needed. In this study, we followed the batch growth of brewer's yeast and a correlation with viable biomass concentration (g DW/L) was demonstrated. This correlation was utilized with the capacitance biomass monitor in a control loop to maintain setpoint biomass levels in a cyclic reactor under perturbations. Not only did the system demonstrate the capability of the biomass monitor to control biomass in such a system, but it also confirmed the correlation reported in our earlier work. © 1994 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 42 (1993), S. 295-302 
    ISSN: 0006-3592
    Keywords: intracellular pH ; bioreactors ; cultivation ; yeast ; 9-aminoacridine ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Intracellular pH (pHi) was measured on-line in a bioreactor using a fluorescent pHi indicator, 9-aminoacridine, and controlled fed-batch cultivations of yeast cells based on pHi (FB-pHi) were performed. In FB-pHi cultivations, automated glucose additions were made to the culture in response to culture pHi. The average ethanol (an-aerobic product) yield was significantly lower [0.12 g g-1 glucose in fed-batch pHi cultivations with 100 ppm glucose additions (FB-pHi-100 cultivation) vs. 0.48 g g-1 glucose in batch] and cell yield was higher (0.54 g g-1 glucose in FB-pHi-100 cultivation vs. 0.3 g g-1 glucose in batch) compared to batch cultivation. An expression has been derived to calculate changes in pHi from measured fluorescence values when the cell concentration increases during growth. Cultivations based on pHi, performed with different magnitudes of glucose addition (100, 50, and 10 ppm additions), showed that lower magnitudes of glucose addition resulted in lower ethanol yields while cell yield remained unaffected. The ratio of specific oxygen uptake rate to specific glucose uptake rate (OUR/GUR) increased with decreased in magnitude of glucose additions in FB-pHi cultivations, suggesting that the culture aerobic state was higher when the magnitude of glucose addition was lower. The average cell productivity in FB-pHi cultivations was 29% higher than in batch cultivation. Cells were also cultivated at high OUR conditions, and the results are compared with other cultivations. © 1993 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 42 (1993), S. 351-356 
    ISSN: 0006-3592
    Keywords: microencapsulation ; selection ; secretion ; yeast ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: We have developed a microencapsulation selection method which allows the rapid and quantitative screening of 〉106 yeast cells for enhanced secretion of Aspergillus awamori glucoamylase. The method provides a 400-fold single-pass enrichment for high-secreting mutants, and can be straightforwardly adapted for application to growth-based selection schemes with other microorganisms and enzymes. © 1993 John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 42 (1993), S. 1151-1156 
    ISSN: 0006-3592
    Keywords: fatty acid synthesis ; yeast ; Rhodotorula glutinis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In nitrogen-limited media, growth and fatty acid formation by the oleaginous yeast Rhodotorula glutinis, i.e., yield and fatty acid cell content, have been characterized regarding carbon and nitrogen availabilities. It was shown that the formation of fatty acid free biomass was limited by nitrogen availability, whereas the fatty acid production was directly dependent on the consumed C/N ratio. According to these observations, the fraction of substrate consumed for fatty acid synthesis was estimated by using a simple method based on the actual yields, i.e., the mass of carbon source strictly converted into fatty acids and fatty acid free biomass. From these results, relationships were established allowing to predict in a simple and performing manner the maximal attainable fatty acid cell content and yield from the available carbon and nitrogen. These relationships were validated by using experimental data obtained by various authors with different yeast strains, and the proposed method was compared to the energetic and mass balance method previously described. © 1993 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 42 (1993), S. 43-49 
    ISSN: 0006-3592
    Keywords: calcium alginate reactor ; NADH regeneration ; Saccharomyces cerevisiae ; yeast ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Saccharomyces cerevisiae cells immobilized in a calcium alginate fiber reactor were used as a source of alcohol dehydrogenase for the NAD+-to-NADH reaction. The reaction was catalyzed by enzyme in cells on the surface of the fiber. Internal diffusional effects were present. The enzyme cell concentration was optimized by harvesting cells finally grown under anaerobic conditions. The results were expressed as an apparent reaction rate constant that was independent of NAD+ and excess ethanol concentration, was slightly affected by flow rate above a minimum value, and increased with immobilized cell concentration in the fiber. The reaction was complete after 6 to 7 h under optimal conditions of 36°C and 9.5 pH. The latter was 0.5 pH units above the free enzyme optimum, indicating that microenvironmental effects were in evidence. © 1993 John Wiley & Sons, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 42 (1993), S. 836-842 
    ISSN: 0006-3592
    Keywords: acid phosphatase ; yeast ; enzyme induction ; electrochemical modulation ; PHO gene ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A novel modulating method of the expression of Saccharomyces PHO 5 gene, responsible for acid phosphatase (APase), is proposed. The method is based on electrochemical modulation of an effector (inorganic phosphate) concentration, as the gene expression is initiated below a threshold concentration of phosphate and is terminated above the threshold value. By positioning the yeast in the close neighborhood of a conducting polymer, the authors show the effectiveness of the electrochemical approach toward PHO 5 induction. Based on the approach, phosphate concentration is easily modulated at the boundary concentration by taking advantage of anion doping-undoping at a conducting polymer and the resulting anion localization-delocalization in the polymer, as the local enrichment of phosphate in the polymer results in the lowering of phosphate in the vicinity of polypyrrole. External phosphate concentration is thus electrochemically modulated when the conducting polymer is positioned in the close neighborhood of the yeast cells; thereby the PHO gene is induced. Here an electrochemical approach for the APase expression as a strategy of selective induction of specific genetic information is described. © 1993 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 42 (1993), S. 24-29 
    ISSN: 0006-3592
    Keywords: acetaldehyde ; intracellular accumulation ; inhibition ; transport ; yeast ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The rate of acetaldehyde efflux from yeast cells and its intracellular concentration were studied in the light of recent suggestions that acetaldehyde inhibition may be an important factor in yeast ethanol fermentations. When the medium surrounding cells containing ethanol and acetaldehyde was suddenly diluted, the rate of efflux of acetaldehyde was slow relative to the rate of ethanol efflux, suggesting that acetaldehyde, unlike ethanol, may accumulate intracellularly. Intracellular acetaldehyde concentrations were measured during high cell density fermentations, using direct injection gas chromatography to avoid the need to concentrate or disrupt the cells. Intracellular acetaldehyde concentrations substantially exceeded the extracellular concentrations throughout fermentation and were generally much higher than the acetaldehyde concentrations normally recorded in the culture broth in ethanol fermentations. The technique used was sensitive to the time taken to cool and freeze the samples. Measured intracellular acetaldehyde concentrations fell rapidly as the time taken to freeze the suspensions was extended beyond 2 s. The results add weight to recent claims that acetaldehyde toxicity is responsible for some of the effects previously ascribed to ethanol in alcohol fermentations, especially Zymomonas fermentations. Further work is required to confirm the importance of acetaldehyde toxicity under other culture conditions. © 1993 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 118-128 
    ISSN: 0006-3592
    Keywords: intracellular pH ; 9-aminoacridine ; bioreactor ; on-line measurement ; yeast ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A method has been developed to continuously measure the intracellular pH (pHi) of cells cultivated in a bioreactor in an on-line fashion over extend time periods. The methods is attractive in its simplicity and involves the use of a fluorescent pHi indicator 9-aminoacridine (9A A) which is a week base. An expression has been derived to calculate changes in pHi from measured 9AA-fluorescence changes. The indicator 9AA was found t be nontoxic to yeast cells at concentrations used to measure pHi (7 μM). The fluorescence of nicotinamide adenine dinucleotide (NADH) molecules did not interfere significantly with the measurement of 9AA-fluorescence. The pHi change in yeast cell following the addition of a proton ionophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP) measured by 9AA compared favorably with that measured by the well-established pHi, indicator (which is however unsuitable for on-line applications in a bioreactor) bis-carboxyethyl carboxy fluorescein (BCECF). The pHi of yeast under substrate starved conditions was 6.4 units. The responses of pHi of yeast cells to induced metabolic transitions were studied. Under aerobic condition, pHi increased by 0.12 unit following a 100-ppm glucose pulse addition and by 0.25 unit following a 300-ppm ethanol pulse addition. Under anaerobic condition, pHi increased by 0.1 unit following a 500-ppm glucose pulse addition. Comparison of pHi with other indicators of cellular metabolic state suggests that pHi is a cellular metabolic state indicator. © 1993 John Wiley & Sons, Inc.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 647-653 
    ISSN: 0006-3592
    Keywords: yeast ; continuous-flow 31P NMR ; intracellular pH ; immobilization ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Phosphorus-31 nuclear magnetic resonance (31P NMR) was used to compare the anaerobic metabolism of glucose by suspended and gel-entrapped Saccharomyces bayanus cells. The fermentation of glucose was carried out in a reaction system with continuous circulation through the NMR sample tube. The intracellular pH and the levels of some phosphorylated compounds were the levels of some phosphorylated compounds were noninvasively monitored by 31P NMR while glucose, fermentation products, and biomass were determined by analytic techniques comparisons showed that no significant differences are observed in the relative concentrations in the spectra, but distinct profiles for the variation of both intracellular and extracellular pH are found. The internal pH of immobilized cells is maintained at a constant value throughout the fermentation as opposed to freely suspended cells for which a steady decrease in the internal pH occurs. A faster and stronger acidification is also observed in the external medium of the assays with suspended cells. Furthermore, higher yields for ethanol and biomass production and lower yields of fermentation by-products are obtained with immobilized cells. It is concluded that the higher intracellular pH achieved in the presence of the gel matrix had a regulatory effect on the metabolism which favored the ethanol production pathway. © 1993 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 40 (1992), S. 475-482 
    ISSN: 0006-3592
    Keywords: yeast ; diffusion ; mass transfer ; sucrose ; floc structure ; fractal ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The sucrose hydrolysis activity of dense spherical yeast flocs, cultivated on a sucrose medium in a continuous reactor with internal settler, is nearly proportional to the particle surface. From computer simulation, in good agreement with experimental determinations, the calculated sucrose penetration depth is in the range 0.2-0.3 mm, a dimension smaller than the usual diameter of strongly flocculating yeast particles. From specific gravity determinations, the flocs can be considered as homogeneous and cannot exhibit a fractal structure, reported in the literature for a number of microbial aggregates. However, the analysis of the sucrose hydrolysis rates reveals that the cell density may be lower in the outer layer of the flocs. © 1992 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 40 (1992), S. 835-843 
    ISSN: 0006-3592
    Keywords: yeast ; aggregation ; separation ; lectin ; concanavalin A ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Specific aggregation and separation of microorganisms was investigated using yeasts and concanavalin A as a model system. Cells of Saccharomyces cerevisiae were specifically aggregated and so separated from those of Schizosaccharomyces pombe. Optimum aggregation with over 99% of cells aggregated was achieved by adjustment to pH value and applied agitation. Dimeric lectin structure caused a far higher degree of aggregation than did tetrameric. Degree of aggregation was also strongly influenced by the ratio of lectin/cell concentrations, optimum aggregation occurring in the middle range of ratios. A high ratio of lectin to cells inhibited aggregation, occupation of most of the available receptors preventing intercellular bonding by divalent lectins. Detachment and reuse of concanavalin A was demonstrated using switching from moderate to low pH value. Potential uses for species-specific-separation of microorganisms are discussed. © 1992 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    ISSN: 0006-3592
    Keywords: bioreactor ; tower loop bioreactor ; yeast ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The local properties of the dispersed gas phase (gasholdup, bubble diamater, and bubble velocity) were measured and evaluated at different positions in the riser and downcomer of a pilot plant reactor and, for comparison, in a laboratory reactor. These were described in Parts I and II of this series of articles during yeast cultivation and with model media. In the riser of the pilot plant reactor, the local gas holdup and bubble velocities varied only slightly in axial direction. The gas holdup increased considerably, while the bubble velocity increased only slightly with aeration rate. The bubble size diminished with increasing distance from the aerator in the riser, since the primary bubble size was larger than the equilibrium bubble size. In the downcomer, the mean bubble size was smaller than in the riser. The mean bubble size varied only slightly, the bubble velocity was accelerated, and the gas holdup decreased from top to bottom in the downcomer. In pilot plant at constant aeration rate, the properties of the dispersed phase were nearly constant during the batch cultivation, i.e., they depended only slightly on the cell concentration. In the laboratory reactor, the mean bubble sizes were much larger than in the pilot plant reactor. In the laboratory reactor, the bubble velocities in the riser and downcomer increased, and the mean gas holdup and bubble diameter in the downcomer remained constant as the aeration rate was increased.
    Additional Material: 20 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 37 (1991), S. 869-875 
    ISSN: 0006-3592
    Keywords: scu-PA ; pro-urokinase ; yeast ; respiratory quotient ; fermentation ; Saccharomyces cerevisiae ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Secretion of a nonglycosylated form of human pro-urokinase, also known as single-chain urinary plasminogen activator (scu-PA), from Saccharomyces cerevisiae is described. A “supersecreting” yeast strain harboring multiple copies of integrated plasmids was grown batchwise and at constant respiratory quotient (RQ) in 20-L fermenters. Because the promoters used to drive expression of the pro-urokinase genes are not tightly regulated, secretion into the culture supernatant was growth associated. Although the final cell density achieved in the perturbed-batch fermentation (45 g dry wt/L) was less than that observed in the RQ-controlled culture (77 g dry wt/L), the scu-PA titer in the perturbed-batch fermentation (1863 IU/mL) was nearly twice that attained at constant RQ (1108 IU/mL). The effects on cell growth and scu-PA titer of other process variables (pH, temperature, phosphate concentration, and medium composition) are also discussed.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 38 (1991), S. 1331-1336 
    ISSN: 0006-3592
    Keywords: plasmid ; yeast ; detection ; sensor ; image ; analysis ; 5-fluoro-orotic acid ; determination ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A novel imaging sensor system for the determination of plasmid carrying yeast cells was developed. The sensor system consisted of an Silicon Intensifier Target (SIT) video camera, a fluorescent microscope, and a personal computer system equipped with an image memory board. This system was based on the fact that the membrane integrity of only plasmid-carrying cells is lost following cell growth in 5-fluoro-orotic acid (5-FOA) containing medium, and consequently these target cell can be stained with fluorescent probes and detected. In this study, plasmid-carrying cells were detected and their fraction determined in a mixture of both plasmid-carring and plasmid-free cells. A good correlation was observed between the values determined by this sensor system and the conventional method in the 30%-80% range, and one assay was possible within 4 h. This sensor system could be used for the monitoring of plasmid-carrying fraction in recombinant yeast cells during cultivation.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...