ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Microspectroscopy Analysis  (1)
  • Retrotransposons  (1)
  • American Chemical Society  (1)
  • Oxford University Press  (1)
  • American Institute of Physics (AIP)
  • International Union of Crystallography
  • 2005-2009  (2)
Collection
Publisher
  • American Chemical Society  (1)
  • Oxford University Press  (1)
  • American Institute of Physics (AIP)
  • International Union of Crystallography
Years
  • 2005-2009  (2)
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Society of Systematic Biologists, 2006. This article is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Systematic Biology 55 (2006): 875-885, doi:10.1080/10635150601077683.
    Description: Penelope-like elements (PLEs) are a relatively little studied class of eukaryotic retroelements, distinguished by the presence of the GIY-YIG endonuclease domain, the ability of some representatives to retain introns, and the similarity of PLE-encoded reverse transcriptases to telomerases. Although these retrotransposons are abundant in many animal genomes, the reverse transcriptase moiety can also be found in several protists, fungi, and plants, indicating its ancient origin. A comprehensive phylogenetic analysis of PLEs was conducted, based on extended sequence alignments and a considerably expanded data set. PLEs exhibit the pattern of evolution similar to that of non-LTR retrotransposons, which form deep-branching clades dating back to the Precambrian era. However, PLEs seem to have experienced a much higher degree of lineage losses than non-LTR retrotransposons. It is suggested that PLEs and non-LTR retrotransposons are included into a larger eTPRT (eukaryotic target-primed) group of retroelements, characterized by 5' truncation, variable target-site duplication, and the potential of the 3' end to participate in formation of non-autonomous derivatives.
    Description: This work was supported by the U.S. National Science Foundation (MCB 0614142).
    Keywords: Penelope-like elements ; Retrotransposons ; Reverse transcriptase ; GIY-YIG endonuclease
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Red Pompeian paintings, very famous for their deep intensity, are currently suffering from darkening. The origins of this darkening degradation are not clearly identified yet and remain a major issue for curators. In the specific case of cinnabar (HgS)-based red pigment, a photoinduced conversion into black metacinnabar is usually suspected. This work is focused on the blackening of red cinnabar paintings coated on a sparry calcite mortar. Different samples exhibiting different levels of degradation were selected upon visual observations and analyzed by synchrotron-based microanalytical techniques. Atomic and molecular compositions of the different debased regions revealed two possible degradation mechanisms. On one hand, micro X-ray fluorescence elemental maps show peculiar distributions of chlorine and sulfur. On the other hand, X-ray absorption spectroscopy performed at both Cl and S K-edges confirms the presence of characteristic degradation products: (i) Hg- Cl compounds (e.g., corderoite, calomel, and terlinguaite), which may result from the reaction with exogenous NaCl, in gray areas; (ii) gypsum, produced by the calcite sulfation, in black coatings. Metacinnabar is never detected. Finally, a cross section was analyzed to map the in-depth alteration gradient. Reduced and oxidized sulfur distributions reveal that the sulfated black coating consists of a 5-ím-thick layer covering intact cinnabar.
    Description: Published
    Description: 7484-7492
    Description: reserved
    Keywords: Microspectroscopy Analysis ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...