ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics  (11)
  • 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry  (10)
  • American Geophysical Union  (17)
  • Blackwell Publishing Ltd  (4)
  • Copernicus
  • 2010-2014  (21)
Collection
Years
Year
  • 1
    Publication Date: 2021-03-24
    Description: On 24 August 2013 a sudden gas eruption from the ground occurred in the Tiber river delta, nearby Rome's international airport of Fiumicino. We assessed that this gas, analogous to other minor vents in the area, is dominantly composed of deep, partially mantle-derived CO2, as in the geothermal gas of the surrounding Roman Comagmatic Province. Increased amounts of thermogenic CH4 are likely sourced from Meso-Cenozoic petroleum systems, overlying the deep magmatic fluids. We hypothesize that the intersection of NE-SW and N-S fault systems, which at regional scale controls the location of the Roman volcanic edifices, favors gas uprising through the impermeable Pliocene and deltaic Holocene covers. Pressurized gas may temporarily be stored below these covers or within shallower sandy, permeable layers. The eruption, regardless the triggering cause—natural or man-made, reveals the potential hazard of gas-charged sediments in the delta, even at distances far from the volcanic edifices.
    Description: Published
    Description: 5632–5636
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: geothermal gas ; deep CO2 ; Tiber river delta ; thermogenic CH4 ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The southern New England Orogen (NEO) in eastern Australia is characterized by tight curvatures (oroclines), but the exact geometry of the oroclines and their kinematic evolution are controversial. Here we present new data on the anisotropy ofmagnetic susceptibility (AMS), which provide a petrofabric proxy for the finite strain associated with the oroclines. We focus on a series of preoroclinal Devonian-Carboniferous fore-arc basin rocks, which are aligned parallel to the oroclinal structure, and by examining structural domains, we test whether or not the magnetic fabric is consistent with the strain axes. AMS data show a first-order consistency with the shape of the oroclines, characterized, in most of structural domains, by subparallelism between magnetic lineations, “structural axis” and bedding. With the exception of the Gresford and west Hastings domains, our results are relatively consistent with the existence of the Manning and Nambucca (Hastings) Oroclines. Reconstruction of magnetic lineations to a prerotation (i.e., pre–late Carboniferous) stage, considering available paleomagnetic results, yields a consistent and rather rectilinear NE-SW predeformation fore-arc basin. This supports the validity of AMS as a strain proxy in complex orogens, such as the NEO. In the Hastings Block, magnetic lineations are suborthogonal to bedding, possibly indicating a different deformational history with respect to the rest of the NEO.
    Description: Published
    Description: 2261–2282
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: AMS data, magnetic fabric, oroclines ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.07. Tectonophysics::04.07.01. Continents ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We report the paleomagnetic and magnetic fabric results of 58 sites from Cretaceous-Miocene marine and continental strata from the Eastern Cordillera (EC) and the Cucuta zone, at the junction between the Santander Massif and the Merida Andes of Colombia. The EC is an intracontinental doubly vergent range inverting a Triassic to Early Cretaceous rift zone. Twenty-three sites reveal nonsystematic tectonic rotations, including unrotated areas of the EC range with respect to stable South America. Our data show that the EC inverted a NNE oriented rift zone and that the orientation of the Mesozoic rift and the mountain chain roughly correspond. Interestingly, magnetic lineations from anisotropy of magnetic susceptibility analysis do not trend parallel to the chain but rather are oblique to the main orogenic trend. By also considering GPS evidence of a ~1 cm/yr ENE displacement of central western Colombia accommodated by the EC, we suggest that the Miocene-Recent deformation event of this belt arises from ENE oblique convergence reactivating a NNE oriented rift zone. Oblique shortening was likely partitioned into pure dip-slip shear characterizing thick-skinned frontal thrust sheets (well known along both chain fronts) and by range-parallel right-lateral strike-slip faults, which have not been identified yet, but likely exist in the axial part of the EC. Finally, the 35° ± 9° clockwise rotation observed in four post-Miocene magnetically overprinted sites from the Cucuta zone reflects late Cenozoic and ongoing right-lateral strike-slip displacement occurring along faults parallel to the Boconó fault system, possibly connected with the right-lateral faults inferred to exist along the axial part of the EC.
    Description: Published
    Description: 2233–2260
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Paleomagnetism, magnetic fabric, Eastern Cordillera ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-24
    Description: We present unprecedented data of real-time measurements of the concentration and isotope composition of CO2 in air and in fumarole-plume gases collected in 2013 during two campaigns at Mount Etna volcano, which were made using a laser-based isotope ratio infrared spectrometer. We performed approximately 360 measurements/h, which allowed calculation of the δ13C values of volcanic CO2. The fumarole gases of Torre del Filosofo (2900mabove sea level) range from 3.24 ± 0.06‰to 3.71 ± 0.09‰, comparable to isotope ratio mass spectrometry (IRMS) measurements of discrete samples collected on the same dates. Plume gases sampled more than 1 km from the craters show a δ13C= 2.2 ± 0.4‰, in agreement with the crater fumarole gases analyzed by IRMS. Measurements performed along ~17km driving track from Catania to Mount Etna show more negative δ13C values when passing through populated centers due to anthropogenic-derived CO2 inputs (e.g., car exhaust). The reported results demonstrate that this technique may represent an important advancement for volcanic and environmental monitoring.
    Description: Published
    Description: 2382–2389
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Real-time data of CO2 content and δ13C in atmospheric/volcanic gases ; This study opens new perspective for the community for volcanic surveillance ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Here we use continuous GPS observations to document the geodetic strain accumulation across the South-Eastern Alps (NE Italy). We estimate the interseismic coupling on the intracontinental collision thrust fault and discuss the seismic potential and earthquake recurrence. We invert the GPS velocities using the back slip approach to simultaneously estimate the relative angular velocity and the degree of interseismic coupling on the thrust fault that separates the Eastern Alps and the Venetian-Friulian plain. Comparison between the rigid rotation predicted motion and the shortening observed across the area indicates that the South-Eastern Alpine thrust front absorbs about 70% of the total convergence between the Adria and Eurasia plates. The coupling is computed on a north dipping fault following the continuous external seismogenic thrust front of the South-Eastern Alps. The modeled thrust fault is currently locked from the surface to a depth of ≈10 km. The transition zone between locked and creeping portions of the fault roughly corresponds with the belt of microseismicity parallel and to the north of the mountain front. The estimated moment deficit rate is 1.3 ± 0.4 × 1017 Nm/yr. The comparison between the estimated moment deficit and that released historically by the earthquakes suggests that to account for the moment deficit the following two factors or their combination should be considered: (1) a significant part of the observed interseismic coupling is released aseismically and (2) infrequent “large” events with long return period (〉 1000 years) and with magnitudes larger than the value assigned to the largest historical events (Mw≈ 6.7).
    Description: Published
    Description: 4448-4468
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Eastern Alps; interseismic coupling; seismotectonics; seismic potential; recurrence time; GPS ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.01. Continents ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: We present results from the first crustal seismic tomography for the southern Tyrrhenian area, which includes ocean bottom seismometer (OBS) data and a bathymetry correction. This area comprises Mt. Etna, the Aeolian Islands, and many volcanic seamounts, including the Marsili Seamount. The seismicity distribution in the area depends on the complex interaction between tectonics and volcanism. The 3-D velocity model presented in this study is obtained by the inversion of P wave arrival times from crustal earthquakes. We integrate travel time data recorded by an OBS network (Tyrrhenian Deep Sea Experiment), the SN-1 seafloor observatory, and the land network. Our model shows a high correlation between the P wave anomaly distribution and seismic and volcanic structures. Two main low-velocity anomalies underlie the central Aeolian Islands and Mt. Etna. The two volumes, which are related to the well-known active volcanism, are separated and located at different depths. This finding, in agreement with structural, petrography, and GPS data from literature, confirms the independence of the two systems. The strongest negative anomaly is found below Mt. Etna at the base of the crust, and we associate it with the deep feeding system of the volcano. We infer that most of the seismicity is generated in brittle rock volumes that are affected by the action of hot fluids under high pressure due to the active volcanism in the area. Lateral changes of velocity are related to a transition from the western to the central Aeolian Islands and to the passage from continental crust to the Tyrrhenian oceanic uppermost mantle.
    Description: Published
    Description: 3703–3719
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: open
    Keywords: ocean bottom seismometers ; southern Tyrrhenian Sea ; seismic tomography ; Aeolian Islands ; Etna ; oceanic continental crust ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: We report on the first geochemical investigation of the Monticchio maar lakes (Mt. Vulture volcano, southern Italy) covering an annual cycle that aimed at understanding the characteristic features of the physical structures and dynamics of the two lakes. We provide the first detailed description of the lakes based on high-resolution CTD profiles, chemical and isotopic (H and O) compositions of the water, and the amounts of dissolved gases (e.g., He, Ar, CH4 and CO2). The combined data set reveals that the two lakes, which are separated by less than 200 m, exhibit different dynamics: one is a meromictic lake, where the waters are rich in biogenic and mantle-derived gases, while the other is a monomictic lake, which exhibits complete turnover of the water in winter and the release of dissolved gases. Our data strongly suggest that the differences in the dynamics of the two lakes are due to different density profiles affected by dissolved solutes, mainly Fe, which is strongly enriched in the deep water of the meromictic lake. A conceptual model of water balance was constructed based on the correlation between the chemical composition of the water and the hydrogen isotopic signature. Gas-rich groundwaters that feed both of the lakes and evaporation processes subsequently modify the water chemistry of the lakes. Our data highlight that no further potential hazardous accumulation of lethal gases is expected at the Monticchio lakes. Nevertheless, geochemical monitoring is needed to prevent the possibility of vigorous gas releases that have previously occurred in historical time.
    Description: Published
    Description: 1411–1434
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: geochemistry ; noble gases ; maar lake ; lake dynamics ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Integration of structural, stratigraphic, and paleomagnetic data from the N–S trending structures of the Ainsa Oblique Zone reveals the kinematics of the major thrust salient in the central Pyrenees. These structures experienced clockwise vertical axis rotations that vary from 70° in the east (Mediano anticline) to 55° in the west (Boltaña anticline). Clockwise vertical axis rotations of 60° to 45° occurred from early Lutetian to late Bartonian when the folds and thrusts of the Ainsa Oblique Zone developed. This vertical axis rotation stage resulted from a difference of about 50 km in the amount of displacement on the Gavarnie thrust and an accompanying change in structural style at crustal scale from the central to the western Pyrenees, related to the NE–SW trending pinch out of Triassic evaporites at its basal detachment. A second rotation event of at least 10° took place since Priabonian, as a result of a greater displacement of the Serres Marginals thrust sheet with respect to the Gavarnie thrust sheet above the Upper Eocene-Oligocene salts. The deduced kinematics demonstrates that the orogenic curvature of the central Pyrenees is a progressive curvature resulting from divergent thrust transport direction. Layer parallel shortening mesostructures and kilometer-scale folds also developed by a progressive curvature related to divergent shortening directions during vertical axis rotation. Rotation space problems were solved by along-strike extension which triggered the formation of transverse extensional faults and diapirs at the outer arcs of structural bends.
    Description: Published
    Description: 1142–1175
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: vertical-axis rotation ; thrust-sheet ; Eocene ; orogen ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Despite the advance in our understanding of the carbon exchange between terrestrial ecosystems and the atmosphere, semiarid ecosystems have been poorly investigated and little is known about their role in the global carbon balance. We used eddy covariance measurements to determine the exchange of CO2 between a semiarid steppe and the atmosphere over 3 years. The vegetation is a perennial grassland of Stipa tenacissima L. located in the SE of Spain. We examined diurnal, seasonal and interannual variations in the net ecosystem carbon balance (NECB) in relation to biophysical variables. Cumulative NECB was a net source of 65.7, 143.6 and 92.1 g C mˉ2 yrˉ1 for the 3 years studied, respectively. We separated the year into two distinctive periods: dry period and growing season. The ecosystem was a net source of CO2 to the atmosphere, particularly during the dry period when large CO2 positive fluxes of up to 15 μmol mˉ2 sˉ1 were observed in concomitance with large wind speeds. Over the growing season, the ecosystem was a slight sink or neutral with maximum rates of -2.3 μmol mˉ2 sˉ1. Rainfall events caused large fluxes of CO2 to the atmosphere and determined the length of the growing season. In this season, photosynthetic photon flux density controlled day-time NECB just below 1000 μmol mˉ2 sˉ1. The analyses of the diurnal and seasonal data and preliminary geological and gas-geochemical evaluations, including C isotopic analyses, suggest that the CO2 released was not only biogenic but most likely included a component of geothermal origin, presumably related to deep fluids occurring in the area. These results highlight the importance of considering geological carbon sources, as well as the need to carefully interpret the results of eddy covariance partitioning techniques when applied in geologically active areas potentially affected by CO2-rich geofluid circulation.
    Description: Published
    Description: 539–554
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: alpha grass ; carbon sequestration ; ecosystem respiration ; eddy covariance ; geogas ; geothermal activity ; grasslands ; net ecosystem carbon balance ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-03
    Description: Here we report new data on the sulfur isotopic compositions (d34S) of fumarolic and plume gases collected at Mount Etna volcano during 2008–2009. While low-temperature fumaroles are affected by postmagmatic processes that modify the pristine isotopic signature, high-temperature and plume gases allow establishment of a d34S range of 0 1‰ for magmatic SO2. We compared our data with those from S dissolved in primitive melt inclusions from 2002 lava and in whole rocks that erupted during the past two thousand years. Such a comparison revealed that d34S is systematically lower for magmatic gases than for sulfur dissolved in the melt. We modeled how isotopic fractionation due to magma degassing process may vary d34S value in both the melt and gaseous phases. This modeling required assessment of the fractionation factor (agas-melt). The most recent measurements on the oxidation state of sulfur in basaltic melt inclusions indicate that nearly all S is dissolved as sulfate (S6+), which would be possible in oxidized magmatic systems (DNNO ≥ 1). Under these conditions the exsolved gaseous phase is depleted with respect to the melt and the proposed model fits both gas and melt data, and constrains the Etnean magmatic d34S to 1.0 1.5‰. It is remarkable that the assessed redox conditions—which are significantly more oxidizing than previously thought—are able to explain why the dominant sulfur species measured in the Etnean plume is SO2.
    Description: Published
    Description: Q05015
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: Mount Etna ; SO2 ; degassing ; fumarole ; plume ; sulfur isotope ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: This paper presents a magnetotelluric (MT) survey of the unstable eastern flank of Mt. Etna. We take thirty soundings along two profiles oriented in the N-S and NW-SE directions, and from these data recover two 2D resistivity models of the subsurface. Both models reveal three major layers in a resistive-conductive-resistive sequence, the deepest extending to 14 km bsl. The shallow layer corresponds to the volcanic cover, and the intermediate conductive layer corresponds to underlying sediments segmented by faults. These two electrical units are cut by E-W-striking faults. The third layer (basement) is interpreted as mainly pertinent to the Apennine-Maghrebian Chain associated with SW-NE-striking regional faults. The detailed shapes of the resistivity profiles clearly show that the NE Rift is shallow-rooted ( 0–1 km bsl), thus presumably fed by lateral dikes from the central volcano conduit. The NW-SE profile suggests by a series of listric faults reaching up to 3 km bsl, then becoming almost horizontal. Toward the SE, the resistive basement dramatically dips (from 3 km to 10 km bsl), in correspondence with the Timpe Fault System. Several high-conductivity zones close to the main faults suggest the presence of hydrothermal activity and fluid circulation that could enhance flank instability. Our results provide new findings about the geometry of the unstable Etna flank and its relation to faults and subsurface structures.
    Description: This paper presents a magnetotelluric (MT) survey of the unstable eastern flank of Mt. Etna. We take thirty soundings along two profiles oriented in the N-S and NW-SE directions, and from these data recover two 2D resistivity models of the subsurface. Both models reveal three major layers in a resistive-conductive-resistive sequence, the deepest extending to 14 km bsl. The shallow layer corresponds to the volcanic cover, and the intermediate conductive layer corresponds to underlying sediments segmented by faults. These two electrical units are cut by E-W-striking faults. The third layer (basement) is interpreted as mainly pertinent to the Apennine-Maghrebian Chain associated with SW-NE-striking regional faults. The detailed shapes of the resistivity profiles clearly show that the NE Rift is shallow-rooted ( 0–1 km bsl), thus presumably fed by lateral dikes from the central volcano conduit. The NW-SE profile suggests by a series of listric faults reaching up to 3 km bsl, then becoming almost horizontal. Toward the SE, the resistive basement dramatically dips (from 3 km to 10 km bsl), in correspondence with the Timpe Fault System. Several high-conductivity zones close to the main faults suggest the presence of hydrothermal activity and fluid circulation that could enhance flank instability. Our results provide new findings about the geometry of the unstable Etna flank and its relation to faults and subsurface structures.
    Description: Published
    Description: B03216
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: restricted
    Keywords: Etna ; magnetotelluric ; flank instability ; volcano ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: Volcanic rift zones, characterized by repeated dike emplacements, are expected to delimit the upper portion of unstable flanks at basaltic edifices. We use nearly two decades of InSAR observations excluding wintertime acquisitions, to analyze the relationships between rift zones, dike emplacement and flank instability at Etna. The results highlight a general eastward shift of the volcano summit, including the northeast and south rifts. This steadystate eastward movement (1-2 cm/yr) is interrupted or even reversed during transient dike injections. Detailed analysis of the northeast rift shows that only during phases of dike injection, as in 2002, does the rift transiently becomes the upper border of the unstable flank. The flank's steady-state eastward movement is inferred to result from the interplay between magmatic activity, asymmetric topographic unbuttressing, and east-dipping detachment geometry at its base. This study documents the first evidence of steady-state volcano rift instability interrupted by transient dike injection at basaltic edifices.
    Description: Partially funded by INGV and the Italian DPC (DPC-INGV project V4 “Flank”). ERS and ENVISAT SAR data were provided by ESA through the Cat-1 project no. 4532 and the GEO Supersite initiative. The DEM was obtained from the SRTM archive. ERS-1/2 orbits are courtesy of the TU-Delft, The Netherlands. SAR data processing has been done at IREACNR, partially carried out under contract “Volcanic Risk System (SRV)” funded by the Italian Space Agency (ASI).
    Description: Published
    Description: L20311
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: restricted
    Keywords: flank instability ; rift zones ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: We present estimates of slip rates for active faults in the External Dinarides. This thrust-and-fold belt formed in the Adria-Eurasia collision zone by the progressive formation of NE-dipping thrusts in the footwalls of older structures. We calculated the long-term horizontal velocity field, slip rates and related uncertainties for active faults using a thin-shell finite element method. We incorporated active faults with different effective fault frictions, rheological properties, appropriate geodynamic boundary conditions, laterally varying heat flow and topography. The results were obtained by comparing the modeled maximum compressive horizontal stress orientations with the World Stress Map database. The calculated horizontal velocities decrease from the southeastern External Dinarides to the northwestern parts of the thrust-and-fold belt. This spatial pattern is also evident in the long-term slip rates of active faults. The highest slip rate was obtained for the Montenegro active fault, while the lowest rates were obtained for active faults in northwestern Slovenia. Low slip rates, influenced by local active diapirism, are also characteristic for active faults in the offshore central External Dinarides. These findings are contradictory to the concept of Adria as an internally rigid, aseismic lithospheric block because the faults located in its interior release a part of the regional compressive stress. We merged the modeling results and available slip rate estimates to obtain a composite solution for slip rates.
    Description: Published
    Description: TC3019
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: External Dinarides ; active fault ; fault friction ; fault slip rate ; rheology ; seismic hazard ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: Methane soil flux measurements have been made in 38 sites at the geothermal system of Sousaki (Greece) with the closed chamber method. Fluxes range from –47.6 to 29,150 mg m-2 d-1 and the diffuse CH4 output of the system has been estimated at 19 t a-1. Contemporaneous CO2 flux measurements showed a moderate positive correlation between CO2 and CH4 fluxes. Comparison of the CO2/CH4 soil flux ratios with the CO2/CH4 ratio of the gases of the main gas manifestations provided evidence for methanotrophic activity within the soil. Laboratory CH4 consumption experiments confirmed the presence of methanotrophic microorganisms in soil samples collected at Sousaki. Consumption was generally in the range from –4.9 to –38.9 pmolCH4 h-1 g-1 but could sometimes reach extremely high values (–33,000 pmolCH4 h-1 g-1.). These results are consistent with recent studies on other geothermal systems that revealed the existence of thermoacidophilic bacteria exerting methanotrophic activity in hot, acid soils, thereby reducing methane emissions to the atmosphere.
    Description: Published
    Description: 97–107
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Sousaki ; accumulation chamber ; soil degassing ; hydrothermal systems ; methane output ; methanotrophic activity ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: Long duration time-series of the chemical composition of fumaroles and of soil CO2 flux reveal that important variations in the activity of the Solfatara fumarolic field, the most important hydrothermal site of Campi Flegrei, occurred in the 2000-2008 period. A continuous increase of the CO2 concentrations, and a general decrease of the CH4 concentrations are interpreted as the consequence of the increment of the relative amount of magmatic fluids, rich in CO2 and poor in CH4, hosted by the hydrothermal system. Contemporaneously, the H2O-CO2-He-N2 gas system shows remarkable compositional variations in the samples collected after July 2000 with respect to the previous ones, indicating the progressive arrival at the surface of a magmatic component different from that involved in the 1983-84 episode of volcanic unrest (1983-1984 bradyseism). The change starts in 2000 concurrently with the occurrence of relatively deep, long-period seismic events which were the indicator of the opening of an easy-ascent pathway for the transfer of magmatic fluids towards the shallower, brittle domain hosting the hydrothermal system. Since 2000, this magmatic gas source is active and causes ground deformations, seismicity as well as the expansion of the area affected by soil degassing of deeply derived CO2. Even though the activity will most probably be limited to the expulsion of large amounts of gases and thermal energy, as observed in other volcanoes and in the past activity of Campi Flegrei, the behavior of the system in the future is, at the moment, unpredictable.
    Description: Published
    Description: B03205
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Campi Flegrei ; CO2 ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2012-02-03
    Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union.
    Description: Volcano deformation may occur under different conditions. To understand how a volcano deforms, as well as relations with magmatic activity, we studied Mt. Etna in detail using interferometric synthetic aperture radar (InSAR) data from 1994 to 2008. From 1994 to 2000, the volcano inflated with a linear behavior. The inflation was accompanied by eastward and westward slip on the eastern and western flanks, respectively. The portions proximal to the summit showed higher inflation rates, whereas the distal portions showed several sectors bounded by faults, in some cases behaving as rigid blocks. From 2000 to 2003, the deformation became nonlinear, especially on the proximal eastern and western flanks, showing marked eastward and westward displacements, respectively. This behavior resulted from the deformation induced by the emplacement of feeder dikes during the 2001 and 2002–2003 eruptions. From 2003 to 2008, the deformation approached linearity again, even though the overall pattern continued to be influenced by the emplacement of the dikes from 2001 to 2002. The eastward velocity on the eastern flank showed a marked asymmetry between the faster sectors to the north and those (largely inactive) to the south. In addition, from 1994 to 2008 part of the volcano base (south, west, and north lower slopes) experienced a consistent trend of uplift on the order of ∼0.5 cm/yr. This study reveals that the flanks of Etna have undergone a complex instability resulting from three main processes. In the long term (103–104 years), the load of the volcano is responsible for the development of a peripheral bulge. In the intermediate term (≤101 years, observed from 1994 to 2000), inflation due to the accumulation of magma induces a moderate and linear uplift and outward slip of the flanks. In the short term (≤1 year, observed from 2001 to 2002), the emplacement of feeder dikes along the NE and south rifts results in a nonlinear, focused, and asymmetric deformation on the eastern and western flanks. Deformation due to flank instability is widespread at Mt. Etna, regardless of volcanic activity, and remains by far the predominant type of deformation on the volcano.
    Description: ESA provided the SAR data (Cat‐1 no. 4532 and GEO Supersite initiative). The DEM was obtained from the SRTM archive, while the ERS‐1/2 orbits are courtesy of the TU‐Delft, The Netherlands. This work was partially funded by INGV and the Italian DPC (DPCINGV project V4 “Flank”), the Italian DPC (under special agreement with IREA‐CNR), and the Italian Space Agency under contract “sistema rischio vulcanico (SRV).” The authors thank Francesco Casu, Paolo Berardino, and Riccardo Lanari for their support and Geoff Wadge and Michael Poland for their helpful and constructive review of the manuscript.
    Description: Published
    Description: B10405
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Flank instability ; InSAR ; volcanoes ; Etna ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: Long time series of fumarolic compositions at Campi Flegrei (Italy), Mammoth Mountain (California), Panarea (Italy) and Nisyros (Greece) show rapid increases, up to orders of magnitude, of the CO2/CH4 ratio systematically with the occurrence of volcanic unrest periods. These easily detected anomalies originate with the arrival of CH4-poor magmatic fluids in the shallower levels of the volcanoes. The data suggest that volcanoes are characterized by magmatic activity at depth also in periods of apparent quiescence. The activity is constituted by the pulsing release of large amount of fluids which either cause unrest periods (seismicity and ground deformation) or possibly could precede volcanic eruption. This type of volcanic activity can be monitored trough the classical geophysical techniques together with the systematic sampling and analysis of fumaroles.
    Description: Published
    Description: L02302
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: CO2/CH4 ; magma degassing ; quiescent volcanoes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-04
    Description: This thematic issue of Geofluids includes 11 papers representing the three main topics discussed in the 10th edition of the International Conference on Gas Geochemistry (ICGG-10): (i) gas in petroleum systems and seepage, (ii) gas in geothermal systems and volcanoes and (iii) gas, seismicity and geohazards. ICGG-10 was held in 2009 in Romania, a country extraordinarily rich in surface gas manifestations, that offers innumerable opportunities for innovative studies on gas geochemistry. We briefly describe the present knowledge on gases occurring both in petroliferous sedimentary basins and geothermal areas of Romania. The 11 contributions of this special issue, which include data from eight countries, are then summarised. Based on these papers and other works presented at the ICGG-10, we find that significant advances in analytical capabilities, data treating and interpretation have led to innovative insights into the origin, distribution and environmental impact of gases migrating to the Earth’s surface. It is increasingly clear, in particular, that gas geochemistry can be more effective for petroleum exploration, volcano-tectonic, geodynamic and environmental studies, if multiparametric studies are performed and the data are interpreted in the geological context.
    Description: Published
    Description: 457-462
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: geothermal gas ; international conference on gas geochemistry ; natural gas ; romania ; seeps ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-04
    Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union
    Description: We investigate the role of the Africa-Eurasia convergence in the recent tectonic evolution of the central Mediterranean. To this end we focused on two sectors of the Adriatic-Hyblean foreland of the Apennine-Maghrebian chain as they allow tectonic evidence for relative plate motions to be analyzed aside from the masking effect of other more local tectonic phenomena (e.g., subduction, chain building, etc.). We present a thorough review of data and interpretations on two major shear zones cutting these foreland sectors: the E-W Molise-Gondola in central Adriatic and the N-S Vizzini-Scicli in southern Sicily. The selected foreland areas exhibit remarkable similarities, including an unexpectedly high level of seismicity and the presence of the investigated shear zones since the Mesozoic. We analyze the tectonic framework, active tectonics, and seismicity of each of the foreland areas, highlighting the evolution of the tectonic understanding. In both areas, we find that current strains at midcrustal levels seem to respond to the same far-field force oriented NNW-SSE to NW-SE, similar to the orientation of the Africa-Eurasia convergence. We conclude that this convergence plays a primary role in the seismotectonics of the central Mediterranean and is partly accommodated by the reactivation of large Mesozoic shear zones.
    Description: The work has been funded by project “Sviluppo Nuove Tecnologie per la Protezione e Difesa del Territorio dai Rischi Naturali,” by the Italian Ministry of Education and Research (MIUR), and by the Italian Presidenza del Consiglio dei Ministri – Dipartimento della Protezione Civile (DPC).
    Description: Published
    Description: B12404
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: partially_open
    Keywords: Molise-Gondola shear zone ; Vizzini-Scicli shear zone ; Gargano Promontory ; Hyblean Plateau ; slip reversal ; 1627 earthquake ; 1693 earthquake ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-04-04
    Description: Natural gas seeps in the Alpine region are poorly investigated. However, they can provide useful information regarding the hydrocarbon potential of sedimentary Alpine units and related geofluid migration, typically controlled by pressurized gas accumulations and tectonics. A gas seep located near Giswil, in the Swiss Northern Alps, was investigated, for the first time, for molecular and isotopic gas composition, methane flux to the atmosphere, and gas flux variations over time. The analyses indicated that the gas was thermogenic (CH4 〉 96%; d13C1: )35.5& to )40.2&) and showed evidence of subsurface petroleum biodegradation (13C-enriched CO2, and very low C3+ concentrations). The source rock in the region is marine Type II kerogen, which is likely the same as that providing thermogenic gas in the nearby Wilen shallow well, close to Lake Sarnen. However, the lack of d13CCO2 and d13C3 data for that well prevented us from determining whether the Wilen and Giswil seeps are fed by the same reservoir and seepage system. Gas fluxes from the Giswil seep, measured using a closedchamber system, were significant and mainly from two major vents. However, a substantial gas exhalation from the soil occurs diffusely in an area of at least 115 m2, leading to a total CH4 output conservatively estimated to be at least 16 tonnes per year. Gas flux variations, monitored over a 1-month period by a special tent and flowmeter, showed not only daily meteorological oscillations, but also an intrinsic ‘pulsation’ with periods of enhanced flux that lasted 2–6 h each, occurring every few days. The pulses are likely related to episodes of gas pressure build-up and discharge along the seepage system. However, to date, no relationship to seismicity in the active Sarnen strike-slip fault system has been established.
    Description: Published
    Description: 476-485
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: Alps ; isotopes ; methane ; organic geochemistry ; seeps ; Switzerland ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-04-04
    Description: Flank instability is common at volcanoes, even though the subsurface structures, including the depth to a detachment fault, remain poorly constrained. Here, we use a multidisciplinary approach, applicable to most volcanoes, to evaluate the detachment depth of the unstable NE flank of Mt. Etna. InSAR observations of Mount Etna during 1995–2008 show a trapdoor subsidence of the upper NE flank, with a maximum deformation against the NE Rift. The trapdoor tilt was highest in magnitude in 2002–2004, contemporaneous with the maximum rates of eastward slip along the east flank. We explain this deformation as due to a general eastward displacement of the flank, activating a rotational detachment and forming a rollover anticline, the head of which is against the NE Rift. Established 2D rollover construction models, constrained by morphological and structural data, suggest that the east‐dipping detachment below the upper NE flank lies at around 4 km below the surface. This depth is consistent with seismicity that clusters above 2–3 km below sea level. Therefore, the episodically unstable NE flank lies above an east‐dipping rotational detachment confined by the NE Rift and Pernicana Fault. Our approach, which combines short‐term (InSAR) and long‐term (geological) observations, constrains the 3D geometry and kinematics of part of the unstable flank of Etna and may be applicable and effective to understand the deeper structure of volcanoes undergoing flank instability or unrest.
    Description: This work was partially funded by INGV and the DPC‐INGV project “Flank”, and partially by the ASI (SRV project).
    Description: Published
    Description: L16304
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: flank instability ; fault ; InSAR ; Etna ; rollover ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...