ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring  (9)
  • 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous  (4)
  • 05. General::05.08. Risk::05.08.99. General or miscellaneous
  • AGU  (12)
  • American Institute of Physics (AIP)
  • Nature Publishing Group
  • Periodicals Archive Online (PAO)
  • 2010-2014  (13)
Collection
Years
Year
  • 1
    Publication Date: 2017-04-04
    Description: Improving lava flow hazard assessment is one of the most important and challenging fields of volcanology, and has an immediate and practical impact on society. Here, we present a methodology for the quantitative assessment of lava flow hazards based on a combination of field data, numerical simulations and probability analyses. With the extensive data available on historic eruptions of Mt. Etna, going back over 2000 years, it has been possible to construct two hazard maps, one for flank and the other for summit eruptions, allowing a quantitative analysis of the most likely future courses of lava flows. The effective use of hazard maps of Etna may help in minimizing the damage from volcanic eruptions through correct land use in densely urbanized area with a population of almost one million people. Although this study was conducted on Mt. Etna, the approach used is designed to be applicable to other volcanic areas.
    Description: This work was developed within the framework of TecnoLab, the Laboratory for Technological Advance in Volcano Geophysics organized by INGV-CT, DIEES-UNICT, and DMI-UNICT.
    Description: Published
    Description: 3493
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: 3IT. Calcolo scientifico e sistemi informatici
    Description: JCR Journal
    Description: restricted
    Keywords: Lava flow hazard ; Etna ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-27
    Description: The Sciara del Fuoco (SdF) landslides that occurred at the end of December 2002 prompted researchers to install geodetic networks to monitor deformations related to potential new slope failures. With this aim, an integrated multiparametric monitoring system was designed and deployed. In particular, this complex monitoring system is composed of four single systems: an electronic distance measurement network, installed immediately after the landslide events, a realtime GPS network, a ground-based interferometric linear synthetic aperture radar (GB-InSAR), and an automated topographic monitoring system (named Theodolite Robotic Observatory of Stromboli, or THEODOROS); the three last systems provided a continuous monitoring of selected points or sectors of the SdF. Data acquired from different systems have been jointly analyzed to reach a better understanding of the SdF dynamics. Displacement data obtained from the topographic systems are compared with those obtained from GB-InSAR, and the results of the comparison are analyzed and discussed. Furthermore, in this chapter, an example of a warning system that can detect slope instability precursors on the SdF based on a statistical analysis of the data collected by the THEODOROS system is reported.
    Description: Published
    Description: 183-199
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: reserved
    Keywords: Flank instability ; Slope failure ; Terrestrial geodesy ; Ground Based InSAR ; Continuous GPS ; Landslide monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: GPS (Global Positioning System) monitoring has been performed on Etna volcano since 1988, making this volcano one of those with the longest records of GPS data. The first order network, measured at least once every year in accurate static mode, was progressively augmented from 9 benchmarks in 1988 to ~70 benchmarks. The whole network is subdivided into seven sub-networks that are surveyed in static, quick-static or kinematic mode, according to the accuracy and density needed, with respect to the volcanic activity. This network provides key constraints to locate the deformation sources inside the volcano (reservoirs, dykes, faults) and track their evolution. Etna has proved an optimum testing ground of new surveying approaches in order to optimize geodetic fieldwork. Several methodological developments related to kinematic surveys and to the correction of tropospheric delays were made on Etna. Here, we discuss the overall picture of the entire data set up to 1999. The results show large scale displacements related to the activity of the volcano during the last twelve years. They are used to infer the location of magma reservoirs acting in this period, identifying a pressure zone beneath the western flank at a depth ranging from 2 to 9 km, several shallow intrusion following the regional NNW-SSE trend, and to quantify the eastward movement of the eastern flank of Mt. Etna, modeling two detachment surfaces beneath the eastern and southern flanks. At a local scale (e.g. in the summit areas and across the Pernicana fault), displacements are also identified and discussed.
    Description: Published
    Description: 321-341
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: reserved
    Keywords: Ground deformation ; Geodesy ; Monitoring ; Geodetic networks ; Geodetic surveys ; GPS ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We present an overview of the volcanic seismicity recorded at Stromboli from January to September 2003. The data set starts few weeks after the onset of the eruption and covers most of the effusive phase and the subsequent recovery of the explosive activity. The most important variations occurred between May and July coinciding with the waning of the lava flow and the reappearance of Strombolian activity at the summit craters. All the parameters indicate that the shallow magmatic system has not undergone permanent changes during this period. The only significant variation related to the shallow conduit is the increase in volcanic tremor amplitude and the change in the spectral content of long-period events during the transition between effusive and explosive activity. A slight increase in the very-long-period (VLP) events source elevation seems to mark the rise of the magma at the end of the effusive phase. The variations in the VLP events occurrence rate are more likely to be attributed to changes in the gas flow rate and the bubble coalescence mechanism, therefore, to a deeper portion of the magmatic system. The 5 April paroxysm is associated only with a small increase of the activity in the following days.
    Description: Published
    Description: 279-286
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: reserved
    Keywords: Stromboli ; Seismological monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-24
    Description: On 7 September 2008 a major ash explosion occurred from the SW summit crater of Stromboli volcano. This explosive event lasted ~2 min and consisted of three discrete eruptive pulses, forming an eruptive ash cloud ~500–600 m high and ~300 m wide, 11 rising with speed of 20–27 m s-1. The event was recorded by our camera and seismic networks, as well as by two electric stations installed at a 500 m mean distance from the SW crater. The electric signals recorded by the two stations during this event were 106 times greater than signals recorded during the persistent Strombolian activity, and the seismic trace had a bigger amplitude and a longer duration. Camera image analysis allowed us to infer that a partial obstruction took place at the SW crater three days before the explosive event, suggesting that a constriction within the upper conduit could have likely led to magma overpressure. Data analysis, combined with previous experimental investigations, revealed that the higher energy output of the ash explosion, when compared to the persistent Strombolian activity, resulted in a greater magma fragmentation and erupted mass. Integration of the different parameters allowed us to classify the event as a Vulcanian type, and electric signal analysis enabled retrieval of the total volume of erupted ash and of the amounts of the juvenile, phreatomagmatic, and lithic components.
    Description: This paper was partially supported by a research project (project INGV-DPC Paroxysm V2/03, 2007–2009) funded by Istituto Nazionale di Geofisica e Vulcanologia and by the Italian Civil Protection.
    Description: Published
    Description: B05201
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: open
    Keywords: Stromboli ; major explosions ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-02-03
    Description: The Kasatochi 2008 eruption was detected by several infrared satellite sensors including Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Very High Resolution Radiometer (AVHRR), and Atmospheric Infrared Sounder (AIRS). In this work a comparison between the volcanic cloud SO2 and ash retrievals derived from these instruments has been undertaken. The SO2 retrieval is carried out by using both the 7.3 and 8.7 micron absorption features while ash retrieval exploits the 10–12 micron atmospheric window. A radiative transfer scheme is also used to correct the volcanic ash effect on the 8.7 micron SO2 signature. As test cases, three near‐contemporary images for each sensor, collected during the first days of the eruption, have been analyzed. The results show that the volcanic SO2 and ash are simultaneously present and generally collocated. The MODIS and AVHRR total ash mass loadings are in good agreement and estimated to be about 0.5 Tg, while the AIRS retrievals are slightly lower and equal to about 0.3 Tg. The AIRS and MODIS 7.3 micron SO2 mass loadings are also in good agreement and vary between 0.3 and 1.2 Tg, while the MODIS ash corrected 8.7 micron SO2 masses vary between 0.4 and 2.7 Tg. The mass increase with time confirms the continuous SO2 injection in the atmosphere after the main explosive episodes. Moreover the difference between the 7.3 and 8.7 micron retrievals suggests a vertical stratification of the volcanic cloud. The results also confirm the importance of the ash correction; the corrected 8.7 micron SO2 total masses are less than 30–40% of the uncorrected values.
    Description: Published
    Description: D00L21
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: reserved
    Keywords: Remote sensing ; ash retrieval ; SO2 retrieval ; multispectral satellite instruments ; MODIS ; AVHRR ; AIRS ; hyperspectral satellite instruments ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: We report here on the first hydrogen determinations in the volcanic gas plume of Mount Etna, in Italy, which we obtained during periodic field surveys on the volcano’s summit area with an upgraded MultiGAS. Using a specific (EZT3HYT) electrochemical sensor, we resolved H2 concentrations in the plume of 1–3 ppm above ambient (background) atmosphere and derived H2‐SO2 and H2‐H2O plume molar ratios of 0.002–0.044 (mean 0.013) and 0.0001–0.0042 (mean 0.0018), respectively. Taking the above H2‐SO2 ratios in combination with a time‐averaged SO2 flux of 1600 Gg yr−1, we evaluate that Etna contributes a time‐averaged H2 flux of ∼0.65 Gg yr−1, suggesting that the volcanogenic contribution to the global atmospheric H2 budget (70,000–100,000 Gg yr−1) is marginal. We also use our observed H2‐H2O ratios to propose that Etna’s passive plume composition is (at least partially) representative of a quenched (temperatures between 750°C and 950°C) equilibrium in the gas‐magma system, at redox conditions close to the nickel‐nickel oxide (NNO) mineral buffer. The positive dependence between H2‐SO2, H2‐H2O, and CO2‐SO2 ratios suggests that H2 is likely supplied (at least in part) by deeply rising CO2‐rich gas bubbles, fluxing through a CO2‐depleted shallow conduit magma.
    Description: Published
    Description: B10204
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: restricted
    Keywords: Hydrogen ; Mount Etna ; Open-vent volcano ; plume ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-04-07
    Description: We present the results of a study of volcanic gases at Soufrière Hills Volcano, Montserrat, which includes the first spectroscopic measurements of the major gas species CO2 and H2S at this volcano using a Multisensor Gas Analyzer System (MultiGAS) sensor. The fluxes of CO2 and H2S were 640–2750 t/d and 84–266 t/d, respectively, during July 2008, during a prolonged eruptive pause. The flux of CO2 is similar to estimates for the entire arc from previous geochemical studies, while the measured H2S flux significantly alters our interpretation of the sulphur budget for this volcano. The fluxes of both sulphur and carbon show considerable excesses over that which can be supplied by degassing of erupted magma. We demonstrate, using thermodynamic models and published constraints on preeruptive volatile concentrations, that the gas composition and fluxes are best modeled by mixing between (1) gases derived from isobaric quenching of mafic magma against cooler andesite magma at depth and (2) gases derived from shallower rhyolitic interstitial melt within the porpyritic andesite. The escape of deep‐derived gases requires pervasive permeability or vapor advection extending to several kilometers depth in the conduit and magma storage system. These results provide more compelling evidence for both the contribution of unerupted mafic magma to the volatile budget of this andesitic arc volcano and the importance of the intruding mafic magma in sustaining the eruption. From a broader perspective, this study illustrates the importance and role of underplating mafic magmas in arc settings. These magmas play an important role in triggering and sustaining eruptions and contribute in a highly significant way to the volatile budget of arc volcanoes.
    Description: Published
    Description: Q04005
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: magma degassing ; thermodynamics ; volcanic gases ; Soufriere Hills ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: We estimate the static stress drop on small exhumed strike-slip faults in the Lake Edison granodiorite of the central Sierra Nevada (California). The subvertical strike-slip faults were exhumed from 4 to 15 km depth and were chosen because they are exposed in outcrop along their entire tip-to-tip lengths of 8–12 m. Slip nucleated on joints and accumulated by crystal-plastic shearing (forming quartz mylonites from early quartz vein filling in joints) and successive brittle faulting (forming epidote-bearing cataclasites). The occurrence of thin, 300 mm wide, pseudotachylytes along some small faults throughout the study area suggests that some, if not all, of the brittle slip on the study area faults may have been seismic. We suggest that the contribution of brittle, cataclastic slip to the total slip along the studied cataclasite-bearing small faults may be estimated by the length of epidote-filled, rhombohedral dilatational jogs (rhombochasms) distributed quasi-periodically along the length of the faults. The interpretation that slip recorded by rhombochasms occurred in single events is based on evidence that (1) epidote crystals are randomly oriented and undeformed within the rhombochasm; (2) cataclasite in principal slip zones does not include clasts of previous cataclasite, and (3) rhombochasm lengths vary systematically along the length of the faults with slip maximum occurring near the fault center, tapering to the fault tips. We thereby constrain both the rupture length and slip. On the basis of these measurements, we calculate stress drops ranging over 90–250 MPa, i.e., one to two orders of magnitude larger than typical seismological estimates for earthquakes, but similar in magnitude to seismological estimates of small (〈M2) earthquakes from the San Andreas Fault Observatory at Depth (SAFOD). The slip events described in the present study occurred along small, deep-seated faults, and, given the calculated stress drops and observations that brittle faults exploited joints sealed by quartz-bearing mylonite, we conclude that these were ‘‘strong’’ faults.
    Description: Published
    Description: B02402
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: earthquakes ; stress drops ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-03
    Description: Episodic tremor and slip (ETS) have been correlated with rupture phenomena in subducting oceanic lithosphere at 30–45 km depth, where high VP/VS ratios, which suggest high-fluid pressures, have been observed. ETS, by accommodating slip in the down-dip portion of the subduction zone, may trigger megathrust earthquakes up-dip in the locked section. During dehydration experiments on serpentinite (typical rock of the oceanic lithosphere) at temperatures found in nature at 30–45 km depth (400– 550 C), we observe seismic signals in the form of acoustic emissions that closely resemble low frequency earthquakes, seismic tremor and regular earthquakes. Our findings support the concept that water released during dehydration reactions increases the pore pressures and can trigger ETS and regular earthquakes by reducing slip resistance. Citation: Burlini, L., G. Di Toro, and P. Meredith (2009), Seismic tremor in subduction zones: Rock physics evidence, Geophys. Res. Lett., 36, L08305, doi:10.1029/2009GL037735.
    Description: Published
    Description: L08305
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Non volcanic tremor ; dehydration reactions ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: We report systematic spatial variations of fault rocks along non-planar strike-slip faults 11 cross-cutting the Lake Edison Granodiorite, Sierra Nevada, California (Sierran wavy fault) and 12 Lobbia outcrops of the Adamello Batholith in the Italian Alps (Lobbia wavy fault). In the case of 13 the Sierran fault, pseudotachylyte formed at contractional fault bends, where it is found as thin 14 (1-2 mm) fault-parallel veins. Epidote and chlorite developed in the same seismic context as the 15 pseudotachylyte and are especially abundant in extensional fault bends. We argue that the 16 presence of fluids, as illustrated by this example, does not necessarily preclude the development 17 of frictional melt. In the case of the Lobbia fault, pseudotachylyte thickness varies along the 18 length of the fault, but the pseudotachylyte veins thicken and pool in extensional bends. We 19 conduct a quantitative analysis of fault roughness, microcrack distribution, stress, and friction 20 along the Lobbia fault. 21 Numerical modeling results show that opening in extensional bends and localized thermal 22 weakening in contractional bends counteract resistance encountered by fault waviness, resulting 23 in an overall weaker fault than suggested by the corresponding static friction coefficient. The 24 models also predict static stress redistribution around bends in the faults which are consistent 25 with distributions of microcracks, indicating significant elastic and inelastic strain energy is 26 dissipated into the wall rocks due to non-planar fault geometry. Together these observations suggest that damage and energy dissipation occurs along the entire non-planar fault during slip, 28 rather than being confined to the region close to the dynamically propagating crack tip.
    Description: Published
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: open
    Keywords: earthquakes ; rutpure ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2012-02-03
    Description: We present results from a campaign in March 2009 to assess the current state of emissions from Masaya Volcano, Nicaragua. These results constitute one of the most comprehensive inventories to date of emissions from an active volcano and update the exceptional record of emissions from Masaya. Results from open‐path Fourier transform infrared spectroscopy and filter packs demonstrate that, in terms of H2O, SO2,CO2, HCl,and HF (molar H2O/SO2 = 63, CO2/SO2 = 2.7, SO2/HCl = 1.7, SO2/HF = 8.8), the 2009 gas composition was highly comparable to that from the 1998 to 2000 period,indicating stability of the shallow magma system. This continuity extends to certain aerosol species (molar SO2/SO42−= 190, Na+ /SO4 2−= 0.68, K+/SO4 2−= 0.71, Ca 2+/SO4 2−= 1.6 × 10−2,Mg2+/SO4 2− = 3.6 × 10−3) and, to a lesser extent, the heavy halogens (i.e., molar HCl/HBr = 2.4 × 103 , HCl/HI = 5.0 × 104). In contrast to an arlier study at Masaya, we did not detect HNO3.SO2 fluxes were low (690 Mg d−1 ), suggesting that Masaya was close to the minimum of its degassing cycle. By combining compositional results with the SO2 flux, we estimate a total volatile flux of 14,000 Mg d−1. This rate is consistent with 1−4 wt% volatile loss from a convective magma flux of 17,000–4000 kg s−1. These results will allow for a better understanding of degassing processes at Masaya and other basaltic volcanoes
    Description: NERC project “Magma dynamics at persistently degassing basaltic volcanoes: A novel approach to linking volcanic gases and magmatic volatiles within a physical model” (NE/F004222/1 and NE/F005342/1).
    Description: Published
    Description: B09215
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Masaya Volcano ; Degassing regime ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: Stromboli is an open conduct volcano characterized by “Strombolian” activity. This activity is the result of a “delicate” dynamic equilibrium between continuous refilling of deep volatiles exsolved from the magma batch and superficial degassing. The volatiles, reaching the surface, interact with superficial fluids modifying peripheral and summit degassing processes. In particular, the main peripheral manifestations are represented by dissolved volatiles in the basal hydrothermal aquifer, as well as structurally controlled soil degassing at the lower parts of the volcanic edifice. Summit degassing is manifested by active (explosions from the conduct) and passive degassing (plume degassing from the conduct and diffuse soil degassing). During “normal” Strombolian activity this dynamic equilibrium allows the discharge of the volatiles in the atmosphere arriving from the depth. When the deep volatile flux increases, we observe that the system reacts by first increasing the diffuse volatile discharge from the superficial system. In fact, the result is the increase of Strombolian activity (frequency and energy of explosions due to the increase of the total volatiles pressure) and the increase of the total dissolved volatiles in the hydrothermal aquifer and soils anomalous flux. During overpressure of the plumbing system paroxistic activity is necessary to maintain the dynamic pressure equilibrium, allows to maintain the dynamic equilibrium between deep and superficial volatiles. In fact, through the opening of new fractures and consecutive lava flow or by major explosions and paroxysms the system decreases the total pressure of volatiles and restores the dynamic equilibrium of the Stromboli plumbing system. On the basis of the experiences acquired during the last two eruptions (2002-2003 and 2007) we improved our geochemical monitoring network by installing new equipments for monitoring, continuously, selected fluid manifestations located on the peripheral areas. In particular, we installed two automatic equipments for measuring dissolved CO2 in the thermal wells located in the N-E side of Stromboli (Stromboli village). In this way we covered wider area of fluid degassing of Stromboli volcano to better understand the relationships between the degassing regimes of the summit and basal hydrothermal systems.
    Description: Published
    Description: San Francisco CA, USA
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: open
    Keywords: CO2 flux ; Volcano monitoring ; Stromboli ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...