ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
  • Elsevier  (5)
  • Nature Publishing Group
  • 2010-2014  (6)
  • 1985-1989
  • 1940-1944
Collection
Years
Year
  • 1
    Publication Date: 2017-04-04
    Description: We re-evaluate the 1984 Abruzzo-Lazio Earthquake on the basis of original seismological data discussed in light of previous interpretations from other authors. This sequence, characterized by two distinct mainshocks (Ms=5.8 and Ms=5.2; NEIS) having low spatial and temporal separation, developed at the border between Central and Southern Apennines. The sequence originated in a narrow area, adjacent to the main NW–SE structures belonging to the Apenninic Chain, crossed by fault segments with different orientation. The spatiotemporal evolution of the seismicity, the focal mechanisms of some aftershocks, never obtained before, and waveform analysis suggest that the sequence developed in several stages. The beginning of the two main stages was marked by two events (Ms=5.8 and Ms=5.2), and the entire sequence was strongly controlled by the structural heterogeneity in the medium involved in the stress release process. The ruptures nucleated on a ENE–WSW striking fault segment belonging to the NNE-striking Ortona-Roccamonfina tectonic line and propagated towards ENE. The presence of the NW–SE structures belonging to the Apennine Chain and their geometry acted as a barrier to the spread of the aftershocks northeastward. As a consequence, a local concentration of static stress in the area enclosed between the northern edge of the rupture segment of the first mainshock and the NW-striking structures triggered the Ms=5.2 event on a W–E pre-existing fault segment. In turn, the static stress changes due to the second mainshock activated adjacent NE–SW and NW– SE fault segments. The NW-striking structures belonging to the Apennines acted as a structural barrier, halting the propagation of the ruptures nucleating on a fault segment that belongs to the NNE-striking Ortona- Roccamonfina tectonic line.
    Description: Published
    Description: 92-104
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic sequence ; Focal mechanisms ; Central–Southern Apennines ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: In this paper we introduce a simple procedure to identify clusters of multivariate waveforms based on a simultaneous assignation and alignment procedure. This approach is aimed at the identification of clusters of earthquakes,assuming that similarities between seismic events with respect to hypocentral parameters and focal mechanism correspond to similarities between waveforms of events. Therefore we define a distance measure between seismic curve, in order to interpret and better understand the main features of the generating seismic process.
    Description: Published
    Description: 60-69
    Description: 2.5. Laboratorio per lo sviluppo di sistemi di rilevamento sottomarini
    Description: JCR Journal
    Description: reserved
    Keywords: Waveforms clustering, multiplets, Ocean Bottom Seismometer ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The MW 8.8 mega-thrust earthquake and tsunami that occurred on February 27, 2010, offshore Maule region, Chile, was not unexpected. A clearly identified seismic gap existed in an area where tectonic loading has been accumulating since the great 1835 earthquake experienced and described by Darwin during the voyage of the Beagle. Here we jointly invert tsunami and geodetic data (InSAR, GPS, land-level changes), to derive a robust model for the co-seismic slip distribution and induced co-seismic stress changes, and compare them to past earthquakes and the pre-seismic locking distribution. We aim to assess if the Maule earthquake has filled the Darwin gap, decreasing the probability of a future shock . We find that the main slip patch is located to the north of the gap, overlapping the rupture zone of the MW 8.0 1928 earthquake, and that a secondary concentration of slip occurred to the south; the Darwin gap was only partially filled and a zone of high pre-seismic locking remains unbroken. This observation is not consistent with the assumption that distributions of seismic rupture might be correlated with pre-seismic locking, potentially allowing the anticipation of slip distributions in seismic gaps. Moreover, increased stress on this unbroken patch might have increased the probability of another major to great earthquake there in the near future.
    Description: Published
    Description: 173-177
    Description: 3.1. Fisica dei terremoti
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: restricted
    Keywords: Source process ; Chile ; Tsunami ; Joint Inversion ; Seismic Gap ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Following the paper by Fraser-Smith et al. (1990), many scientists have focused their research on the ULF geomagnetic field pulsations in the hope of finding possible anomalous signals caused by the seismic activity. Thereafter, many papers have reported ULF geomagnetic field polarization ratio increases which have been claimed to be related to the occurrence of moderate and strong earthquakes. Even if there is no firm evidence of correlation between the polarization ratio increase and seismic events, these publications maintain that these ‘‘anomalous’’ increases are without doubt precursors of pending earthquakes. Furthermore, several researchers suggest that these seismogenic signals may be considered a promising approach towards the possibility of developing short-term earthquake prediction capabilities based on electromagnetic precursory signatures. On the contrary, a part of the scientific community emphasizes the lack of validation of claimed seismogenic anomalies and doubt their association with the seismic activity. Since earthquake prediction is a very important topic of social importance, the authenticity of earthquake precursors needs to be carefully checked. The aim of this paper is to investigate the reliability of the ULF magnetic polarization ratio changes as an earthquakes’ precursor. Several polarization ratio increases of the geomagnetic field, which previous researchers have claimed to have a seismogenic origin, are put into question by a qualitative investigation. The analysis takes into account both the temporal evolution of the geomagnetic field polarization ratio reported in previous papers, and the global geomagnetic activity behaviour. Running averages of the geomagnetic index Kp are plotted onto the original figures from previous publications. Moreover, further quantitative analyses are also reported. Here, nine cases are investigated which include 17 earthquakes. In seven cases it is shown that the suggested association between the geomagnetic field polarization ratio increases and the earthquake preparation process seems to be rather doubtful. More precisely, the claimed seismogenic polarization ratio increases are actually closely related to decreases in the geomagnetic activity level. Furthermore, the last two investigated cases seem to be doubtful as well, although a close correspondence between polarization ratio and geomagnetic activity cannot be unambiguously demonstrated.
    Description: Published
    Description: 19-32
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake precursors ; Short-term earthquake prediction ; Geomagnetic field ; Seismology ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: In this paper we present and discuss an improved picture of the seismicity distribution of the Umbria– Marche–Abruzzi Apennines as obtained through the integration of the national and the regional seismic networks operating from 2002 to 2006. During this period, both the Istituto Nazionale di Geofisica e Vulcanologia (INGV) National Seismic Network and the regional networks have been greatly improved. We compare the results of the integrated catalogue obtained in this study with the Catalogue of the Italian Seismicity between 1981 and 2001 [Castello, B., Selvaggi, G., Chiarabba, C., Amato, A., 2006. CSI Catalogo della sismicità italiana 1981–2002, versione 1.1. INGV-CNT, Roma.http://legacy.ingv.it/CSI )], confirming the basic known features of the seismic activity in the region, but also evidencing some original and interesting results. In particular, the new data set allows us to better define the geometry and kinematics of the crustal seismicity, which is confined to the upper 20 km and shows a clear general deepening from west to east. In the crust, we find additional evidence of extensional seismicity below the central portion of the belt and thrust/reverse faulting mechanisms at the outer fronts of the Apennines. Looking at the seismicity along the belt, it is also possible to observe aseismic regions, which could be due to either locked or creeping portions of the Apenninic fault system. At greater depth, the west-dipping seismicity distribution down to about 70 km confirms the hypothesis of a slab of Adriatic lithosphere subducted below the Apennines, but also suggests that there are strong lateral heterogeneities and possibly tears in the slab.
    Description: Published
    Description: 121-135
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: Seismicity ; Seismic monitoring ; Focal mechanisms ; Subduction ; Apennines ; Italy ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The MATHCAD 2000 professional code to perform the Multiple Lapse Time Analysis (MLTWA) has been revised and rewritten in MATHEMATICA 7. The new code contains two new procedures to find the minimum of the misfit function between observation and model and a new example of application to real data from Chamoli earthquake aftershock sequence
    Description: Published
    Description: 1388–1392
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Seismic attenuation and scattering ; MLTWA ; MATHEMATICA7 ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...