ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (249)
  • Public Library of Science  (124)
  • Oxford Univ. Press  (98)
  • American Association of Petroleum Geologists (AAPG)
  • American Institute of Physics (AIP)
  • Copernicus
  • 2015-2019  (124)
  • 2010-2014  (125)
Collection
Source
Publisher
Years
Year
  • 1
    Publication Date: 2020-01-02
    Description: This review article aims to provide an overview and insight into the most relevant aspects of wind energy development and current state-of-the-art. The industry is in a very mature stage, so it seems to be the right time to take stock of the relevant areas of wind energy use for power generation. For this review, the authors considered the essential aspects of the development of wind energy technology: research, modeling, and prediction of wind speed as an energy source, the technology development of the plants divided into the mechanical and electrical systems and the plant control, and finally the optimal plant operation including the maintenance strategies. The focus is on the development in Europe, with a partial focus on Germany. The authors are employees of the Fraunhofer Institutes, Institute for Energy Economics and Energy Systems Technology and Institute for Wind Energy Systems, who have contributed to the development of this technology for decades.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-08
    Description: Heinrich events are among the dominant modes of glacial climate variability. During these events, massive iceberg armadas were released by the Laurentide Ice Sheet, sailed across the Atlantic, and caused large-scale climate changes. We study these events in a fully coupled complex ice sheet–climate model with synchronous coupling between ice sheets and oceans. The ice discharges occur as internal variability of the model with a recurrence period of 5kyr, an event duration of 1–1.5kyr, and a peak discharge rate of about 50mSv, roughly consistent with reconstructions. The climate response shows a two-stage behavior, with freshwater release effects dominating the surge phase and ice-sheet elevation effects dominating in the post-surge phase. As a direct response to the freshwater discharge during the surge phase, the deepwater formation in the North Atlantic decreases and the North Atlantic deepwater cell weakens by 3.5Sv. With the reduced oceanic heat transport, the surface temperatures across the North Atlantic decrease, and the associated reduction in evaporation causes a drying in Europe. The ice discharge lowers the surface elevation in the Hudson Bay area and thus leads to increased precipitation and accelerated ice sheet regrowth in the post-surge phase. Furthermore, the jet stream widens to the north and becomes more zonal. This contributes to a weakening of the subpolar gyre, and a continued cooling over Europe even after the ice discharge. This two-stage behavior can explain previously contradicting model results and understandings of Heinrich Events.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-31
    Description: Diurnal vertical migration (DVM) is a widespread phenomenon in the upper ocean, but it remains unclear to what degree it also involves passively transported micro- and meso-zooplankton. These organisms are difficult to monitor by in situ sensing and observations from discrete samples are often inconclusive. Prime examples of such ambiguity are planktonic foraminifera, where contradictory evidence for DVM continues to cast doubt on the stability of species vertical habitats, which introduces uncertainties in geochemical proxy interpretation. To provide a robust answer, we carried out highly replicated randomised sampling with 41 vertically resolved plankton net hauls taken within 26 hours in a confined area of 400 km2 in the tropical North Atlantic, where DVM in larger plankton occurs. Manual enumeration of planktonic foraminifera cell density consistently reveals the highest total cell concentrations in the surface mixed layer (top 50 m) and analysis of cell density in seven individual species representing different shell sizes, life strategies and presumed depth habitats reveals consistent vertical habitats not changing over the 26 hours sampling period. These observations robustly reject the existence of DVM in planktonic foraminifera in a setting where DVM occurs in other organisms.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-01-31
    Description: Sponges are one of the most dominant organisms in marine ecosystems. One reason for their success is their association with microorganisms that are besides the host itself responsible for the chemical defence. Sponge abundances have been increasing on coral reefs in the Western Indian Ocean (WIO) and are predicted to increase further with rising anthropogenic impacts on coral reefs. However, there is a paucity of information on chemical ecology of sponges from the WIO and their prokaryotic community composition. We used a combination of Illumina sequencing and a predictive metagenomic analysis to (i) assess the prokaryotic community composition of sponges from Zanzibar, (ii) predict the presence of KEGG metabolic pathways responsible for bioactive compound production and (iii) relate their presence to the degree of observed chemical defence in their respective sponge host. We found that sponges from Zanzibar host diverse prokaryotic communities that are host species-specific. Sponge-species and respective specimens that showed strong chemical defences in previous studies were also predicted to be highly enriched in various pathways responsible for secondary metabolite production. Hence, the combined sequencing and predictive metagenomic approach proved to be a useful indicator for the metabolic potential of sponge holobionts
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Oxford Univ. Press
    In:  Journal of Plankton Research, 41 (4). pp. 561-565.
    Publication Date: 2022-01-31
    Description: Transparent exopolymer particles (TEP) are polysaccharide-rich microgels that are prevalent in the marine environment and have important roles in the aggregation of organic matter and carbon export from the euphotic zone. TEP are readily colonized by bacteria and utilized by specialized taxa, such as Alteromonadaceae. However, bacterial community composition specifically attached to natural TEP remains largely unknown. In this study, we isolated individual TEP from Plymouth Sound (UK) and performed DNA sequencing of the TEP-attached bacterial communities. We also sampled the cognate bulk seawater total bacterial communities for comparison. The bacterial communities associated with individual TEP showed distinct differences compared to the total bulk bacterioplankton communities, with Alteromonadaceae significantly more abundant on TEP. The TEP-associated Alteromonadaceae consisted of two operational taxonomic units that were closely related to Marinobacter and Glaciecola, both previously associated with biogenic aggregates and microgel-rich habitats. This study provides novel insight into marine bacterial–microgel interactions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-01-31
    Description: Atlantic cod (Gadus morhua) is a species of great ecological and economical importance in the Baltic Sea. Here, two genetically differentiated stocks, the western and the eastern Baltic cod, display substantial mechanical mixing, hampering our understanding of cod ecology and impeding stock assessments and management. Based on whole-genome re-sequencing data from reference samples obtained from the study area, we designed two different panels of Single Nucleotide Polymorphisms markers (SNPs), which take into account the exceptional genome architecture of cod. A minimum panel of 20 diagnostic SNPs and an extended panel (20 diagnostic and 18 biologically informative SNPs, 38 in total) were developed and validated to distinguish unambiguously between the western and the eastern Baltic cod stocks and to enable studies of local adaptation to the specific environment in the Baltic Sea, respectively. We tested both panels on cod sampled from the southern Baltic Sea (n = 603) caught in 2015 and 2016. Genotyping results showed that catches from the mixing zone in the Arkona Sea, were composed of similar proportions of individuals of the western and the eastern stock. Catches from adjacent areas to the east, the Bornholm Basin and Gdańsk Deep, were exclusively composed of eastern Baltic cod, whereas catches from adjacent western areas (Belt Sea and Öresund) were composed of western Baltic cod. Interestingly, the two Baltic cod stocks showed strong genetic differences at loci associated with life-history trait candidate genes, highlighting the species’ potential for ecological adaptation even at small geographical scales. The minimum and the extended panel of SNP markers presented in this study provide powerful tools for future applications in research and fisheries management to further illuminate the mixing dynamics of cod in the Baltic Sea and to better understand Baltic cod ecology.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-01-31
    Description: We present the first study to examine the year-round distribution, activity patterns, and habitat use of one of New Zealand's most common seabirds, the fluttering shearwater (Puffinus gavia). Seven adults from Burgess Island, in the Hauraki Gulf, and one individual from Long Island, in the Marlborough Sounds, were successfully tracked with combined light-saltwater immersion loggers for one to three years. Our tracking data confirms that fluttering shearwaters employ different overwintering dispersal strategies, where three out of eight individuals, for at least one of the three years when they were being tracked, crossed the Tasman Sea to forage over coastal waters along eastern Tasmania and southeastern Australia. Resident birds stayed confined to waters of northern and central New Zealand year-round. Although birds frequently foraged over pelagic shelf waters, the majority of tracking locations were found over shallow waters close to the coast. All birds foraged predominantly in daylight and frequently visited the colony at night throughout the year. We found no significant inter-seasonal differences in the activity patterns, or between migratory and resident individuals. Although further studies of inter-colony variation in different age groups will be necessary, this study presents novel insights into year-round distribution, activity patterns and habitat use of the fluttering shearwater, which provide valuable baseline information for conservation as well as for further ecological studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-01-31
    Description: The evaluation of large amounts of digital image data is of growing importance for biology, including for the exploration and monitoring of marine habitats. However, only a tiny percentage of the image data collected is evaluated by marine biologists who manually interpret and annotate the image contents, which can be slow and laborious. In order to overcome the bottleneck in image annotation, two strategies are increasingly proposed: “citizen science” and “machine learning”. In this study, we investigated how the combination of citizen science, to detect objects, and machine learning, to classify megafauna, could be used to automate annotation of underwater images. For this purpose, multiple large data sets of citizen science annotations with different degrees of common errors and inaccuracies observed in citizen science data were simulated by modifying “gold standard” annotations done by an experienced marine biologist. The parameters of the simulation were determined on the basis of two citizen science experiments. It allowed us to analyze the relationship between the outcome of a citizen science study and the quality of the classifications of a deep learning megafauna classifier. The results show great potential for combining citizen science with machine learning, provided that the participants are informed precisely about the annotation protocol. Inaccuracies in the position of the annotation had the most substantial influence on the classification accuracy, whereas the size of the marking and false positive detections had a smaller influence.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-01-31
    Description: As a general trend in the life history of marine organisms, species inhabiting cold waters have reduced growth rates and increased lifespans. Studies based on egg sizes and brooding times of deep-sea and polar octopods support this hypothesis, but empirical data on growth are still scarce. To test the hypothesis that octopods inhabiting cold waters (〈 3°C) live longer than temperate and warm water species, this study investigated size-at-age, maturation and growth rates in incirrate Antarctic octopods. Octopod age was estimated via the interpretation and quantification of beak growth increments, which in shallow water octopods have been validated to be formed on a daily basis. Specimens from the families Megaleledonidae (Adelieledone spp., Pareledone spp. and Megaleledone setebos) and Enteroctopodidae (Muusoctopus rigbyae) were collected on the shelf and slope regions off the Antarctic Peninsula during a cruise in 2012. Examined specimens included early juveniles to animals in advanced maturity. The total number of growth increments ranged from 192–599 in Pareledone aequipapillae (body mass [BM] 2–109 g), 182–431 in Pareledone charcoti (BM 5–124 g), 98–906 in M. setebos (BM 10–6000 g) and 207–425 in M. rigbyae (BM 24–256 g). After the cruise, eleven specimens of P. charcoti were kept alive in captivity for more than 12 months and these animals had 219–364 growth increments, suggesting that increment formation in this species takes longer than one day. The complex population structure (size, age and maturity range) of the specimens that were captured during a relatively short time, the number of beak increments quantified, and the preliminary validation observations indicate that Antarctic octopods do not deposit increments daily, and may have lifespans exceeding 3 years. These findings corroborate the general trend that cold water molluscs have a longer lifespan than their warm water relatives.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-01-31
    Description: We present the first study to examine the year-round distribution, activity patterns, and habitat use of one of New Zealand’s most common seabirds, the fluttering shearwater (Puffinus gavia). Seven adults from Burgess Island, in the Hauraki Gulf, and one individual from Long Island, in the Marlborough Sounds, were successfully tracked with combined light-saltwater immersion loggers for one to three years. Our tracking data confirms that fluttering shearwaters employ different overwintering dispersal strategies, where three out of eight individuals, for at least one of the three years when they were being tracked, crossed the Tasman Sea to forage over coastal waters along eastern Tasmania and southeastern Australia. Resident birds stayed confined to waters of northern and central New Zealand year-round. Although birds frequently foraged over pelagic shelf waters, the majority of tracking locations were found over shallow waters close to the coast. All birds foraged predominantly in daylight and frequently visited the colony at night throughout the year. We found no significant inter-seasonal differences in the activity patterns, or between migratory and resident individuals. Although further studies of inter-colony variation in different age groups will be necessary, this study presents novel insights into year-round distribution, activity patterns and habitat use of the fluttering shearwater, which provide valuable baseline information for conservation as well as for further ecological studies.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2023-01-12
    Description: There is a recognized need for new methods with modest data requirements to provide preliminary estimates of stock status for data-limited stocks (e.g. Rudd and Thorson, 2018). Froese et al. (2018) provide such a method, which derives estimates of relative stock size from length frequency (LF) data of exploited stocks. They show that their length-based Bayesian biomass estimation method (LBB) can reproduce the “true” parameters used in simulated data and can approximate the relative stock size as estimated independently by more data-demanding methods in 34 real stocks. However, in a comment on LBB, Hordyk et al. (2019) claim (i) that the master equation of LBB is incomplete because it does not correct for the pile-up effect caused by aggregating length measurements into length classes or “bins”, (ii) that LBB is highly sensitive to equilibrium assumptions and wrongly uses maximum observed length (Lmax) for guidance in setting a prior for the estimation of asymptotic length (Linf), and (iii) that the default prior used by LBB for the ratio between natural mortality and somatic growth rate (M/K) of 1.5 (SD = 0.15) is inadequate for many exploited species. These comments are addressed below
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Format: archive
    Format: text
    Format: archive
    Format: text
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2021-02-08
    Description: On 25 December 2016, a Mw 7.6 earthquake broke a portion of the Southern Chilean subduction zone south of Chiloé Island, located in the central part of the Mw 9.5 1960 Valdivia earthquake. This region is characterized by repeated earthquakes in 1960 and historical times with very sparse interseismic activity due to the subduction of a young (~15 Ma), and therefore hot, oceanic plate. We estimate the co-seismic slip distribution based on a kinematic finite fault source model, and through joint inversion of teleseismic body waves and strong motion data. The coseismic slip model yields a total seismic moment of 3.94×1020 Nm that occurred over ~30 s, with the rupture propagating mainly downdip, reaching a peak-slip of ~4.2 m. Regional moment tensor inversion of stronger aftershocks reveals thrust type faulting at depths of the plate interface. The fore- and aftershock seismicity is mostly related to the subduction interface with sparse seismicity in the overriding crust. The 2016 Chiloé event broke a region with increased locking and most likely broke an asperity of the 1960 earthquake. The updip limit of the main event, aftershocks, foreshocks and interseismic activity are spatially similar, located ~15 km offshore and parallel to Chiloé Islands west coast. The coseismic slip model of the 2016 Chiloé earthquake suggests a peak slip of 4.2 m that locally exceeds the 3.38 m slip deficit that has accumulated since 1960. Therefore, the 2016 Chiloé earthquake possibly released strain that has built up prior to the 1960 Valdivia earthquake.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-02-08
    Description: We used a molecular phylogenetic approach to investigate species delimitation and diversification in the northeastern Atlantic and Mediterranean musseldrills of the Ocinebrina aciculata complex, based on molecular data from topotypical material of many of the nominal taxa. The complex is shown to consist of at least five species: Ocinebrina aciculata (Lamarck, 1822) from the Atlantic and western Mediterranean; O. cf. corallina (Scacchi, 1836) from the central Mediterranean Sea; O. reinai Bonomolo & Crocetta, 2012 from the Tyrrhenian Sea; O. corallinoides Pallary, 1912 from the Gulf of Gabès; and O. aegeensis n. sp. currently known from the Aegean Sea only. The new species is differentiated from the other taxa by very subtle morphological diagnostic features, although it is clearly identified by genetic distance and apomorphic DNA-sequence characters. The identity of Murex corallinus Scacchi, 1836 (type species of Ocinebrina Jousseaume, 1880) could not be defined with certainty, pending genetic comparison of specimens of the â €? large Tyrrhenian morphotype' (corresponding to the neotype, but not assayed herein) with the assayed â €? small morphotype'.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-02-08
    Description: Marine sponges are early-branched metazoans known to harbor dense and diverse microbial communities. Yet the role of the so far uncultivable alphaproteobacterial lineages that populate these sessile invertebrates remains unclear. We applied a sequence composition-dependent binning approach to assemble one Rhodospirillaceae genome from the Spongia officinalis microbial metagenome and contrast its functional features with those of closely related sponge-associated and free-living genomes. Both symbiotic and free-living Rhodospirillaceae shared a suite of common features, possessing versatile carbon, nitrogen, sulfur and phosphorus metabolisms. Symbiotic genomes could be distinguished from their free-living counterparts by the lack of chemotaxis and motility traits, enrichment of genes required for the uptake and utilization of organic sulfur compounds—particularly taurine—, higher diversity and abundance of ABC transporters, and a distinct repertoire of genes involved in natural product biosynthesis, plasmid stability, cell detoxification and oxidative stress remediation. These sessile symbionts may more effectively contribute to host fitness via nutrient exchange, and also host detoxification and chemical defense. Considering the worldwide occurrence and high diversity of sponge-associated Rhodospirillaceae verified here using a tailored in silico approach, we suggest that these organisms are not only relevant to holobiont homeostasis but also to nutrient cycling in benthic ecosystems.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2021-02-08
    Description: Coral bleaching continues to be one of the most devastating and immediate impacts of climate change on coral reef ecosystems worldwide. In 2015, a major bleaching event was declared as the “3rd global coral bleaching event” by the United States National Oceanic and Atmospheric Administration, impacting a large number of reefs in every major ocean. The Red Sea was no exception, and we present herein in situ observations of the status of coral reefs in the central Saudi Arabian Red Sea from September 2015, following extended periods of high temperatures reaching upwards of 32.5C in our study area. We examined eleven reefs using line-intercept transects at three different depths, including all reefs that were surveyed during a previous bleaching event in 2010. Bleaching was most prevalent on inshore reefs (55.6% ± 14.6% of live coral cover exhibited bleaching) and on shallower transects (41% ± 10.2% of live corals surveyed at 5m depth) within reefs. Similar taxonomic groups (e.g., Agariciidae) were affected in 2015 and in 2010. Most interestingly, Acropora and Porites had similar bleaching rates (~30% each) and similar relative coral cover (~7% each) across all reefs in 2015. Coral genera with the highest levels of bleaching (〉60%) were also among the rarest (〈1% of coral cover) in 2015. While this bodes well for the relative retention of coral cover, it may ultimately lead to decreased species richness, often considered an important component of a healthy coral reef. The resultant long-term changes in these coral reef communities remain to be seen.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-02-08
    Description: Continental hyperextension during magma-poor rifting at the Deep Galicia Margin is characterised by a complex pattern of faulting, thin continental fault blocks, and the serpentinisation, with local exhumation, of mantle peridotites along the S-reflector, interpreted as a detachment surface. In order to understand fully the evolution of these features, it is important to image seismically the structure and to model the velocity structure to the greatest resolution possible. Travel-time tomography models have revealed the long-wavelength velocity structure of this hyperextended domain, but are often insufficient to match accurately the short-wavelength structure observed in reflection seismic imaging. Here we demonstrate the application of two-dimensional (2D) time-domain acoustic full-waveform inversion to deep water seismic data collected at the Deep Galicia Margin, in order to attain a high resolution velocity model of continental hyperextension. We have used several quality assurance procedures to assess the velocity model, including comparison of the observed and modelled waveforms, checkerboard tests, testing of parameter and inversion strategy, and comparison with the migrated reflection image. Our final model exhibits an increase in the resolution of subsurface velocities, with particular improvement observed in the westernmost continental fault blocks, with a clear rotation of the velocity field to match steeply dipping reflectors. Across the S-reflector there is a sharpening in the velocity contrast, with lower velocities beneath S indicative of preferential mantle serpentinisation. This study supports the hypothesis that normal faulting acts to hydrate the upper mantle peridotite, observed as a systematic decrease in seismic velocities, consistent with increased serpentinisation. Our results confirm the feasibility of applying the full-waveform inversion method to sparse, deep water crustal datasets.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2021-04-23
    Description: Ongoing acidification of the ocean through uptake of anthropogenic CO2 is known to affect marine biota and ecosystems with largely unknown consequences for marine food webs. Changes in food web structure have the potential to alter trophic transfer, partitioning, and biogeochemical cycling of elements in the ocean. Here we investigated the impact of realistic end-of-the-century CO2 concentrations on the development and partitioning of the carbon, nitrogen, phosphorus, and silica pools in a coastal pelagic ecosystem (Gullmar Fjord, Sweden). We covered the entire winter-to-summer plankton succession (100 days) in two sets of five pelagic mesocosms, with one set being CO2 enriched (~760 μatm pCO2) and the other one left at ambient CO2 concentrations. Elemental mass balances were calculated and we highlight important challenges and uncertainties we have faced in the closed mesocosm system. Our key observations under high CO2 were: (1) A significantly amplified transfer of carbon, nitrogen, and phosphorus from primary producers to higher trophic levels, during times of regenerated primary production. (2) A prolonged retention of all three elements in the pelagic food web that significantly reduced nitrogen and phosphorus sedimentation by about 11 and 9%, respectively. (3) A positive trend in carbon fixation (relative to nitrogen) that appeared in the particulate matter pool as well as the downward particle flux. This excess carbon counteracted a potential reduction in carbon sedimentation that could have been expected from patterns of nitrogen and phosphorus fluxes. Our findings highlight the potential for ocean acidification to alter partitioning and cycling of carbon and nutrients in the surface ocean but also show that impacts are temporarily variable and likely depending upon the structure of the plankton food web.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2021-02-08
    Description: The surface microlayer (SML) in marine systems is often characterized by an enrichment of biogenic, gel-like particles, such as the polysaccharide-containing transparent exopolymer particles (TEP) and the protein-containing Coomassie stainable particles (CSP). This study investigated the distribution of TEP and CSP, in the SML and underlying water, as well as their bio-physical controlling factors in Daya Bay, an area impacted by warm discharge from two Nuclear power plants (Npp’s) and aquaculture during a research cruise in July 2014. The SML had higher proportions of cyanobacteria and of pico-size Chl a contrast to the underlayer water, particularly at the nearest outlet station characterized by higher temperature. Diatoms, dinoflagellates and chlorophyll a were depleted in the SML. Both CSP and TEP abundance and total area were enriched in the SML relative to the underlying water, with enrichment factors (EFs) of 1.5–3.4 for CSP numbers and 1.32–3.2 for TEP numbers. Although TEP and CSP showed highest concentration in the region where high productivity and high nutrient concertation were observed, EFs of gels and of dissolved organic carbon (DOC) and dissolved acidic polysaccharide (〉 1 kDa), exhibited higher values near the outlet of the Npp’s than in the adjacent waters. The positive relation between EF’s of gels and temperature and the enrichment of cyanobacteria in the SML may be indicative of future conditions in a warmer ocean, suggesting potential effects on adjusting phytoplankton community, biogenic element cycling and air-sea exchange processes
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2021-02-08
    Description: Overfishing and rapid environmental shifts pose severe challenges to the resilience and viability of marine fish populations. To develop and implement measures that enhance species’ adaptive potential to cope with those pressures while, at the same time, ensuring sustainable exploitation rates is part of the central goal of fisheries management. Here, we argue that a combination of biophysical modelling and population genomic assessments offer ideal management tools to define stocks, their physical connectivity and ultimately, their short-term adaptive potential. To date, biophysical modelling has often been confined to fisheries ecology whereas evolutionary hypotheses remain rarely considered. When identified, connectivity patterns are seldom explored to understand the evolution and distribution of adaptive genetic variation, a proxy for species’ evolutionary potential. Here, we describe a framework that expands on the conventional seascape genetics approach by using biophysical modelling and population genomics. The goals are to identify connectivity patterns and selective pressures, as well as putative adaptive variants directly responding to the selective pressures and, ultimately, link both to define testable hypotheses over species response to shifting ecological conditions and overexploitation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2021-02-08
    Description: Ocean warming and acidification (OA) may alter the fitness of species in marine pelagic ecosystems through community effects or direct physiological impacts. We used the zooplanktonic appendicularian, Oikopleura dioica, to assess temperature and pH effects at mesocosm and microcosm scales. In mesocosms, both OA and warming positively impacted O. dioica abundance over successive generations. In microcosms, the positive impact of OA, was observed to result from increased fecundity. In contrast, increased pH, observed for example during phytoplankton blooms, reduced fecundity. Oocyte fertility and juvenile development were equivalent under all pH conditions, indicating that the positive effect of lower pH on O. dioica abundance was principally due to increased egg number. This effect was influenced by food quantity and quality, supporting possible improved digestion and assimilation at lowered pH. Higher temperature resulted in more rapid growth, faster maturation and earlier reproduction. Thus, increased temperature and reduced pH had significant positive impacts on O. dioica fitness through increased fecundity and shortened generation time, suggesting that predicted future ocean conditions may favour this zooplankton species. © 2018 Bouquet et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2021-03-19
    Description: In the coming decades, environmental change like warming and acidification will affect life in the ocean. While data on single stressor effects on fish are accumulating rapidly, we still know relatively little about interactive effects of multiple drivers. Of particular concern in this context are the early life stages of fish, for which direct effects of increased CO2 on growth and development have been observed. Whether these effects are further modified by elevated temperature was investigated here for the larvae of Atlantic herring (Clupea harengus), a commercially important fish species. Over a period of 32 days, larval survival, growth in size and weight, and instantaneous growth rate were assessed in a crossed experimental design of two temperatures (10°C and 12°C) with two CO2 levels (400 μatm and 900 μatm CO2) at food levels mimicking natural levels using natural prey. Elevated temperature alone led to increased swimming activity, as well as decreased survival and instantaneous growth rate (Gi). The comparatively high sensitivity to elevated temperature in this study may have been influenced by low food levels offered to the larvae. Larval size, Gi and swimming activity were not affected by CO2, indicating tolerance of this species to projected "end of the century" CO2 levels. A synergistic effect of elevated temperature and CO2 was found for larval weight, where no effect of elevated CO2 concentrations was detected in the 12°C treatment, but a negative CO2 effect was found in the 10°C treatment. Contrasting CO2 effects were found for survival between the two temperatures. Under ambient CO2 conditions survival was increased at 12°C compared to 10°C. In general, CO2 effects were minor and considered negligible compared to the effect of temperature under these mimicked natural food conditions. These findings emphasize the need to include biotic factors such as energy supply via prey availability in future studies on interactive effects of multiple stressors. © 2018 Sswat et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2021-02-08
    Description: This study presents a new method (LBB) for the analysis of length frequency data from commercial catches. LBB works for species that grow throughout their lives, such as most commercially-important fish and invertebrates, and requires no input in addition to length frequency data. It estimates asymptotic length, length at first capture, relative natural mortality, and relative fishing mortality. Standard fisheries equations can then be used to approximate current exploited biomass relative to unexploited biomass. In addition, these parameters allow the estimation of length at first capture that would maximize catch and biomass for a given fishing effort, and estimation of a proxy for the relative biomass capable of producing maximum sustainable yields. Relative biomass estimates of LBB were not significantly different from the “true” values in simulated data and were similar to independent estimates from full stock assessments. LBB also presents a new indicator for assessing whether an observed size structure is indicative of a healthy stock. LBB results will obviously be misleading if the length frequency data do not represent the size composition of the exploited size range of the stock or if length frequencies resulting from the interplay of growth and mortality are masked by strong recruitment pulses.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: archive
    Format: archive
    Format: text
    Format: text
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2021-02-08
    Description: Climate variability plays a central role in the dynamics of marine pelagic ecosystems shaping the structure and abundance changes of plankton communities, thereby affecting energy pathways and biogeochemical fluxes in the ocean. Here we have investigated complex interactions driven a climate-hydrology-plankton system in the southern East China Sea over the period 2000 to 2012. In particular, we aimed at quantifying the influence of climate phenomena playing out in tropical (El Nino 3.4) and middle-high latitudes (East Asia Winter Monsoon, EAWM, and Pacific Decadal Oscillation, PDO) on pelagic copepods. We found that the EAWM and El Nino 3.4 showed a non-stationary and non-linear relationship with local temperature variability. In the two cases, the strength of the relationship, as indexed by the wavelet coherence analysis, decreased along with the positive phase of the PDO. Likewise, the influence of EAWM and El Nino3.4 on copepods exhibited a non-stationary link that changed along with the PDO state. Indeed, copepods and EAWM were closely related during the positive phase, while the link copepods–El Nino 3.4 was stronger during the negative phase. Our results pointed out cascading effects from climate to plankton driven by the positive phase of the PDO through its effect on temperature conditions, and likely through a larger southward transport of nutrient-rich water masses to northern Taiwan and the Taiwan Strait. We suggest a chain of mechanisms whereby the PDO shapes interannual dynamics of pelagic copepods and highlight that these results have implications for integrative management measures, as pelagic copepods plays a prominent role in food web dynamics and for harvested fish in the East China Sea. © 2018 Molinero et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    Oxford Univ. Press
    In:  Geophysical Journal International, 212 (1). pp. 333-344.
    Publication Date: 2021-02-08
    Description: In this study, the complex frequency-shifted perfectly matched layer (CFS-PML) in stretching Cartesian coordinates, is successfully applied to three-dimensional (3D) frequency-domain marine controlled-source electromagnetic (CSEM) field modelling. The Dirichlet boundary, which is usually used within the traditional framework of EM modeling algorithms, assumes the electric or magnetic field values are zero at the boundaries. This requires the boundaries be sufficiently far away from the sources in the area of interest. To mitigate the boundary artifacts, a large modelling area may be necessary even though cell sizes are allowed to grow toward the boundaries due to the diffusion of the electromagnetic wave propagation. Compared with the conventional Dirichlet boundary, the PML boundary is preferred as the modelling area of interest could be restricted to the target region and only a few absorbing layers surrounding can effectively depress the artificial boundary effect without losing the numerical accuracy. Furthermore, for joint inversion of seismic and marine CSEM data, if we used the PML for CSEM field simulation instead of the conventional Dirichlet, the modeling area for these two different geophysical data collected from the same survey area could the same, which is convenient for joint inversion grid matching. We apply the CFS-PML boundary to 3D marine CSEM modelling by using the staggered finite-difference (SFD) discretization. Numerical test indicates that the modeling algorithm using the CFS-PML also shows good accuracy compared to the Dirichlet. Furthermore, the modeling algorithm using the CFS-PML shows advantages in computational time and memory saving than that using the Dirichlet boundary. For the 3D example in this study, the memory saving using the PML is nearly 42 % and the time saving is around 48% compared to using the Dirichlet.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2021-02-08
    Description: Climate change research is advancing to more complex and more comprehensive studies that include long-term experiments, multiple life-history stages, multi-population, and multi-trait approaches. We used a population of the barnacle Balanus improvisus known to be sensitive to short-term acidification to determine its potential for long-term acclimation to acidification. We reared laboratory-bred individuals (as singles or pairs), and field-collected assemblages of barnacles, at pH 8.1 and 7.5 ( 400 and 1600 ?atm pCO2 respectively) for up to 16 months. Acidification caused strong mortality and reduced growth rates. Acidification suppressed respiration rates and induced a higher feeding activity of barnacles after 6 months, but this suppression of respiration rate was absent after 15 months. Laboratory-bred barnacles developed mature gonads only when they were held in pairs, but nonetheless failed to produce fertilized embryos. Field-collected barnacles reared in the laboratory for 8 months at the same pH’s developed mature gonads, but only those in pH 8.1 produced viable embryos and larvae. Because survivors of long-term acidification were not capable of reproducing, this demonstrates that B. improvisus can only partially acclimate to long-term acidification. This represents a clear and significant bottleneck in the ontogeny of this barnacle population that may limit its potential to persist in a future ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2021-02-08
    Description: Seepage of methane (CH4) on land and in the sea may significantly affect Earth's biogeochemical cycles. However processes of CH4 generation and consumption, both abiotic and microbial, are not always clear. We provide new geochemical and isotope data to evaluate if a recently discovered CH4 seepage from the shallow seafloor close to the Island of Elba (Tuscany) and two small islands nearby are derived from abiogenic or biogenic sources and whether carbonate encrusted vents are the result of microbial or abiotic processes. Emission of gas bubbles (predominantly CH4) from unlithified sands was observed at seven spots in an area of 100 m(2) at Pomonte (Island of Elba), with a total rate of 234 ml m(-2) d(-1). The measured carbon isotope values of CH4 of around -18 parts per thousand (VPDB) in combination with the measured delta H-2 value of -120 parts per thousand (VSMOW) and the inverse correlation of delta C-13-value with carbon number of hydrocarbon gases are characteristic for sites of CH4 formation through abiogenic processes, specifically abiogenic formation of CH4 via reduction of CO2 by H-2. The H-2 for methanogenesis likely derives from ophiolitic host rock within the Ligurian accretionary prism. The lack of hydrothermal activity allows CH4 gas to become decoupled from the stagnant aqueous phase. Hence no hyperalkaline fluid is currently released at the vent sites. Within the seep area a decrease in porewater sulphate concentrations by ca. 5 mmol/l relative to seawater and a concomitant increase in sulphide and dissolved inorganic carbon (DIC) indicate substantial activity of sulphate-dependent anaerobic oxidation of methane (AOM). In absence of any other dissimilatory pathway, the delta C-13-values between -17 and -5 parts per thousand in dissolved inorganic carbon and aragonite cements suggest that the inorganic carbon is largely derived from CH4. The formation of seep carbonates is thus microbially induced via anaerobic oxidation of abiotic CH4.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2021-02-08
    Description: The BONUS symposium “Science delivery for sustainable use of the Baltic Sea living resources” held in Tallinn, Estonia, in October 2017 was an opportunity for the presentation and discussion of 107 papers that examined the state and dynamics of living resources of the Baltic Sea, and associated management challenges. The symposium included a half-day stakeholder panel discussion that addressed the main challenges related to sustainable management and matching research and policy/management needs. Based on the five symposium papers published in this Special Issue as well as the stakeholder panel discussion, it can be concluded that (i) new observations about the feeding ecology of clupeids supports a more complete understanding of trophic interactions in the pelagic realm and improved calibration of ecosystem models, (ii) to safequard sustainable and diverse fisheries resources, one should take into account the specific local characteristics of the fish community, (iii) to safeguard sustainable use of marine resources and mitigate cross-sectoral and transboundary conflicts, a risk-based approach should be adopted, and (iv) incorporation of scientific advice into management faces several obstacles including the reality that not all readily available knowledge is currently being incorporated into the decision-making process.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2021-02-08
    Description: Fisheries and marine ecosystem-based management requires a holistic understanding of the dynamics of fish communities and their responses to changes in environmental conditions. Environmental conditions can simultaneously shape the spatial distribution and the temporal dynamics of a population, which together can trigger changes in the functional structure of communities. Here, we developed a comprehensive framework based on complementary multivariate statistical methodologies to simultaneously investigate the effects of environmental conditions on the spatial, temporal and functional dynamics of species assemblages. The framework is tested using survey data collected during more than 4000 fisheries hauls over the Baltic Sea between 2001 and 2016. The approach revealed the Baltic fish community to be structured into three sub-assemblages along a strong and temporally stable salinity gradient decreasing from West to the East. Additionally, we highlight a mismatch between species and functional richness associated with a lower functional redundancy in the Baltic Proper compared with other sub-areas, suggesting an ecosystem more susceptible to external pressures. Based on a large dataset of community data analysed in an innovative and comprehensive way, we could disentangle the effects of environmental changes on the structure of biotic communities-key information for the management and conservation of ecosystems.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2021-02-08
    Description: Digital imaging has become one of the most important techniques in environmental monitoring and exploration. In the case of the marine environment, mobile platforms such as autonomous underwater vehicles (AUVs) are now equipped with high-resolution cameras to capture huge collections of images from the seabed. However, the timely evaluation of all these images presents a bottleneck problem as tens of thousands or more images can be collected during a single dive. This makes computational support for marine image analysis essential. Computer-aided analysis of environmental images (and marine images in particular) with machine learning algorithms is promising, but challenging and different to other imaging domains because training data and class labels cannot be collected as efficiently and comprehensively as in other areas. In this paper, we present Machine learning Assisted Image Annotation (MAIA), a new image annotation method for environmental monitoring and exploration that overcomes the obstacle of missing training data. The method uses a combination of autoencoder networks and Mask Region-based Convolutional Neural Network (Mask R-CNN), which allows human observers to annotate large image collections much faster than before. We evaluated the method with three marine image datasets featuring different types of background, imaging equipment and object classes. Using MAIA, we were able to annotate objects of interest with an average recall of 84.1% more than twice as fast as compared to “traditional” annotation methods, which are purely based on software-supported direct visual inspection and manual annotation. The speed gain increases proportionally with the size of a dataset. The MAIA approach represents a substantial improvement on the path to greater efficiency in the annotation of large benthic image collections.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2021-02-08
    Description: Tropical corals are often associated with dinitrogen (N-2)-fixing bacteria (diazotrophs), and seasonal changes in key environmental parameters, such as dissolved inorganic nitrogen (DIN) availability and seawater temperature, are known to affect N-2 fixation in coral-microbial holobionts. Despite, then, such potential for seasonal and depth-related changes in N-2 fixation in reef corals, such variation has not yet been investigated. Therefore, this study quantified seasonal (winter vs. summer) N-2 fixation rates associated with the reef-building coral Stylophora pistillata collected from depths of 5, 10 and 20 m in the northern Gulf of Aqaba (Red Sea). Findings revealed that corals from all depths exhibited the highest N-2 fixation rates during the oligotrophic summer season, when up to 11% of their photo-metabolic nitrogen demand (CPND) could be met by N-2 fixation. While N-2 fixation remained seasonally stable for deep corals (20 m), it significantly decreased for the shallow corals (5 and 10 m) during the DIN-enriched winter season, accounting for less than 2% of the corals' CPND. This contrasting seasonal response in N-2 fixation across corals of different depths could be driven by 1) release rates of coral-derived organic matter, 2) the community composition of the associated diazotrophs, and/or 3) nutrient acquisition by the Symbiodinium community.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2021-02-08
    Description: The European and American eels spawn in the subtropical convergence zone (STCZ) in the Sargasso Sea, a dynamic and relatively productive area that is strongly influenced by front and eddy formations and subducted high-saline water masses. To understand how the physical and biological environments may affect the early life history of eels, we conducted a detailed bio-physical investigation of the water column at a site of high eel larvae abundance. Diel measurements and sampling in the upper 300 m revealed strong variations in hydrographic conditions and mean depths of different taxonomic groups; however, characteristics patterns of distribution were apparent. Most species showed diel vertical migrations, ascending about 20-30 m at night, whereas examples of night-time downward migration were also seen. European eel larvae were among the species showing more extensive diel vertical migration: their population mean depth changed from 160 m at day to 100 m at night where abundance peaked at 45 m depth. Distribution and migration of eel larvae corresponded to patterns observed for small hydrozoans, supporting a proposed predator-prey linkage. The study demonstrates the diverse and vertically strongly structured plankton community of STCZ where larvae of eel and other fish find a wide range of potential niches.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2021-03-19
    Description: An indoor mesocosm experiment was carried out to investigate the combined effects of ocean acidification and warming on the species composition and biogeochemical element cycling during a winter/spring bloom with a natural phytoplankton assemblage from the Kiel fjord, Germany. The experimental setup consisted of a "Control" (ambient temperature of similar to 4.8 degrees C and similar to 535 +/- 25 mu atm pCO(2)), a "High-CO2" treatment (ambient temperature and initially 1020 +/- 45 mu atm pCO(2)) and a "Greenhouse" treatment (similar to 8.5 degrees C and initially 990 +/- 60 mu atm pCO(2)). Nutrient replete conditions prevailed at the beginning of the experiment and light was provided at in situ levels upon reaching pCO(2) target levels. A diatom-dominated bloom developed in all treatments with Skeletonema costatum as the dominant species but with an increased abundance and biomass contribution of larger diatom species in the Greenhouse treatment. Conditions in the Greenhouse treatment accelerated bloom development with faster utilization of inorganic nutrients and an earlier peak in phytoplankton biomass compared to the Control and High CO2 but no difference in maximum concentration of particulate organic matter (POM) between treatments. Loss of POM in the Greenhouse treatment, however, was twice as high as in the Control and High CO2 treatment at the end of the experiment, most likely due to an increased proportion of larger diatom species in that treatment. We hypothesize that the combination of warming and acidification can induce shifts in diatom species composition with potential feedbacks on biogeochemical element cycling.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2021-02-08
    Description: Between the 8th January and the 25th February 2016, the largest sperm whale Physeter macrocephalus mortality event ever recorded in the North Sea occurred with 30 sperm whales stranding in five countries within six weeks. All sperm whales were immature males. Groups were stratified by size, with the smaller animals stranding in the Netherlands, and the largest in England. The majority (n = 27) of the stranded animals were necropsied and/or sampled, allowing for an international and comprehensive investigation into this mortality event. The animals were in fair to good nutritional condition and, aside from the pathologies caused by stranding, did not exhibit significant evidence of disease or trauma. Infectious agents were found, including various parasite species, several bacterial and fungal pathogens and a novel alphaherpesvirus. In nine of the sperm whales a variety of marine litter was found. However, none of these findings were considered to have been the primary cause of the stranding event. Potential anthropogenic and environmental factors that may have caused the sperm whales to enter the North Sea were assessed. Once sperm whales enter the North Sea and head south, the water becomes progressively shallower (〈40 m), making this region a global hotspot for sperm whale strandings. We conclude that the reasons for sperm whales to enter the southern North Sea are the result of complex interactions of extrinsic environmental factors. As such, these large mortality events seldom have a single ultimate cause and it is only through multidisciplinary, collaborative approaches that potentially multifactorial large-scale stranding events can be effectively investigated.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2021-02-08
    Description: European eel (Anguilla anguilla) is a euryhaline species, that has adapted to cope with both, hyper- and hypo-osmotic environments. This study investigates the effect of salinity, from a morphological and molecular point of view on European eel larvae reared from 0 to 12 days post hatch (dph). Offspring reared in 36 practical salinity units (psu; control), were compared with larvae reared in six scenarios, where salinity was decreased on 0 or 3 dph and in rates of 1, 2 or 4 psu/day, towards iso-osmotic conditions. Results showed that several genes relating to osmoregulation (nkcc2α, nkcc2β, aqp1dup, aqpe), stress response (hsp70, hsp90), and thyroid metabolism (thrαA, thrαB, thrβB, dio1, dio2, dio3) were differentially expressed throughout larval development, while nkcc1α, nkcc2β, aqp3, aqp1dup, aqpe, hsp90, thrαA and dio3 showed lower expression in response to the salinity reduction. Moreover, larvae were able to keep energy metabolism related gene expression (atp6, cox1) at stable levels, irrespective of the salinity reduction. As such, when reducing salinity, an energy surplus associated to reduced osmoregulation demands and stress (lower nkcc, aqp and hsp expression), likely facilitated the observed increased survival, improved biometry and enhanced growth efficiency. Additionally, the salinity reduction decreased the amount of severe deformities such as spinal curvature and emaciation but also induced an edematous state of the larval heart, resulting in the most balanced mortality/deformity ratio when salinity was decreased on 3 dph and at 2 psu/day. However, the persistency of the pericardial edema and if or how it represents an obstacle in further larval development needs to be further clarified. In conclusion, this study clearly showed that salinity reduction regimes towards iso-osmotic conditions facilitated the European eel pre-leptocephalus development and revealed the existence of highly sensitive and regulated osmoregulation processes at such early life stage of this species.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    Oxford Univ. Press
    In:  Journal of Plankton Research, 40 (5). pp. 568-579.
    Publication Date: 2021-02-08
    Description: Light and nutrients are essential resources for phytoplankton growth and considered to shape the size structure and other morphometric traits (surface:volume ratio, deviation from spherical shape) of phytoplankton communities. If morphometric traits influence the growth and resource use, shifts by one of the two factors should influence the capability to utilize the other factor. We performed a two-step experiment, where a natural phytoplankton community was first exposed to three different light levels (supposed to be limiting, saturating and slightly inhibiting for the majority of species) and grown until stationary phase. Then, the pre-conditioned communities were split into two nutrient treatments (control and saturating nutrient pulse) and again grown until stationary phase under the medium light intensity. During the experimental light phase, community mean cell-size increased with light, but surface:volume ratio and deviation from spherical shape decreased. Moreover, in response to the following nutrient pulse, the low light pre-conditioned communities showed the highest initial growth rates in response to the nutrient pulse. The high light pre-conditioned communities showed the highest conversion of the nutrient pulse into biomass during the stationary phase. These results demonstrate how the imprint of one environmental factor on trait distribution influences the ability to cope with another.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2021-02-08
    Description: Aurelia aurita (Linneaus, 1758) is a cosmopolitan scyphozoan, probably the most investigated jellyfish in temperate and highly productive coastal ecosystems. Despite a prominent top-down control in plankton food webs, a mechanistic understanding of A. aurita population dynamics and trophic interactions has been barely addressed. Here we develop a food web dynamic model to assess A. aurita role in the seasonal plankton dynamics of the Kiel Fjord, southwestern Baltic Sea. The model couples low trophic level dynamics, based on a classical Nutrient Phytoplankton Zooplankton Detritus (NPZD) model, to a stage-resolved copepod model (referencing Pseudocalanus sp.) and a jellyfish model (A. aurita ephyra and medusa) as consumers and predators, respectively. Simulations showed the relevance of high abundances of A. aurita, which appear related with warm winter temperatures, promoting a shift from a copepod-dominated food web to a ciliate and medusa dominated one. The model captured the intraspecific competition triggered by the medusae abundance and characterized by a negative relationship between population density and individual size/weight. Our results provide a mechanistic understanding of an emergent trait such as size shaping the food web functioning, driving predation rates and population dynamics of A. aurita, driving its sexual reproductive strategy at the end of the pelagic phase.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: image
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018-12-17
    Description: Atlantic herring (Clupea harengus) is a benthic spawner, therefore its eggs are prone to encounter different water conditions during embryonic development, with bottom waters often depleted of oxygen and enriched in CO2. Some Atlantic herring spawning grounds are predicted to be highly affected by ongoing Ocean Acidification and Warming with water temperature increasing by up to +3°C and CO2 levels reaching ca. 1000 μatm (RCP 8.5). Although many studies investigated the effects of high levels of CO2 on the embryonic development of Atlantic herring, little is known about the combination of temperature and ecologically relevant levels of CO2. In this study, we investigated the effects of Ocean Acidification and Warming on embryonic metabolic and developmental performance such as mitochondrial function, respiration, hatching success (HS) and growth in Atlantic herring from the Oslo Fjord, one of the spawning grounds predicted to be greatly affected by climate change. Fertilized eggs were incubated under combinations of two PCO2 conditions (400 μatm and 1100 μatm) and three temperatures (6, 10 and 14°C), which correspond to current and end-of-the-century conditions. We analysed HS, oxygen consumption (MO2) and mitochondrial function of embryos as well as larval length at hatch. The capacity of the electron transport system (ETS) increased with temperature, reaching a plateau at 14°C, where the contribution of Complex I to the ETS declined in favour of Complex II. This relative shift was coupled with a dramatic increase in MO2 at 14°C. HS was high under ambient spawning conditions (6–10°C), but decreased at 14°C and hatched larvae at this temperature were smaller. Elevated PCO2 increased larval malformations, indicating sub-lethal effects. These results indicate that energetic limitations due to thermally affected mitochondria and higher energy demand for maintenance occur at the expense of embryonic development and growth.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2021-02-08
    Description: The ocean load in glacial isostatic adjustment (GIA) modelling is represented by the so-called sea level equation (SLE). The SLE describes the mass redistribution of water between ice sheets and oceans on a deforming Earth. Despite various teams independently investigating GIA, there has been no systematic intercomparison among the numerical solvers of the SLE through which the methods may be validated. The goal of this paper is to present a series of synthetic examples designed for testing and comparing the numerical implementations of the SLE in GIA modelling. The 10 numerical codes tested combine various temporal and spatial parametrizations. The time-domain or Laplace-domain discretizations are used to solve the SLE through time, while spherical harmonics, finite differences or finite elements parametrize the GIA-related field variables spatially. The surface ice-water load and solid Earth’s topography are represented spatially either on an equiangular grid, a Gauss–Legendre or an equiarea grid with icosahedron-shaped spherical pixels. Comparisons are made in a series of five benchmark examples with an increasing degree of complexity. Due to the complexity of the SLE, there is no analytical solution to it. The accuracy of the numerical implementations is therefore assessed by the differences of the individual solutions with respect to a reference solution. While the benchmark study does not result in GIA predictions for a realistic loading scenario, we establish a set of agreed-upon results that can be extended in the future by including more complex case studies, such as solutions with realistic loading scenarios, the rotational feedback in the linear-momentum equation, and by considering a 3-D viscosity structure of the Earth’s mantle. The test computations performed so far show very good agreement between the individual results and their ability to capture the main features of sea-surface variation and the surface vertical displacement. The differences found can often be attributed to the different approximations inherent in the various algorithms. This shows the accuracy that can be expected from different implementations of the SLE, which helps to assess differences noted in the literature between predictions for realistic loading cases.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2018-09-12
    Description: In this study, we propose a statistical method to validate sea-level reconstructions using geological records known as sea-level indicators (SLIs). SLIs are often the only available data to retrace late-glacial relative sea level (RSL). Determining the RSL from SLI height is not straight forward, the elevation at which an SLI was found usually does not represent the past RSL. In contrast, it has to be related to past RSL by investigating sample’s type, habitat and deposition conditions. For instance, water distribution at which a specific specimen is found today can be related to the indicator's depositional height range. Furthermore, the precision of dating varies between geological samples, and, in case of radiocarbon dating, the age has to be calibrated using a non-linear calibration curve. To avoid an a-priori assumption like normal-distributed uncertainties, we define likelihood functions which take into account the indicative meaning’s available error information and calibration statistics represented by joint probabilities. For this conceptional study, we restrict ourselves to one type of indicators, shallow-water shells, which are usually considered as low-grade samples giving only a lower limit of former sea level, as the depth range in which they live spreads over several tens of meters, and does not follow a normal distribution. The presented method is aimed to serve as a strategy for glacial isostatic adjustment reconstructions, in this case for the German Paleo-Climate Modelling Initiative PalMod (https://www.palmod.de/en) and by extending it to other SLI types.
    Type: Article , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    Copernicus
    In:  Climate of the Past Discussions . pp. 1-51.
    Publication Date: 2018-09-05
    Description: Dynamic vegetation models simulate global vegetation in terms of fractional coverages of a few plant functional types (PFTs). Although these models often share the same concept, they differ with respect to the number and kind of PFTs, complicating the comparability of simulated vegetation distributions. Pollen-based reconstructions are initially only available in form of time-series of individual taxa that are not distinguished in the models. Thus, to evaluate simulated vegetation distributions, the modelling results and pollen-based reconstructions have to be converted into a comparable format. The classical approach is the method of biomisation, but hitherto, PFT-based biomisation methods were only available for individual models. We introduce and evaluate a simple, universally applicable technique to harmonize PFT-distributions by assigning them into nine mega-biomes that follow the definitions commonly used for vegetation reconstructions. The method works well for all state-of the art dynamic vegetation models, independent of the spatial resolution or the complexity of the models. Large biome belts (such as tropical forest) are well represented, but regionally confined biomes (warm-mixed forest, Savanna) are only partly captured. Overall, the PFT-based biomisation is able to keep up with the conventional biomisation approach of forcing biome models (here: BIOME1) with the background climate states. The new method has, however, the advantage that it allows a more direct comparison and evaluation of the vegetation distributions simulated by Earth System Models. Thereby, the new method provides a powerful tool for the evaluation of Earth System Models in general.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2021-02-08
    Description: Seafloor massive sulphides (SMSs) are regarded as a potential future resource to satisfy the growing global demand of metals including copper, zinc and gold. Aside from mining and retrieving profitable amounts of massive sulphides from the seafloor, the present challenge is to detect and delineate significant SMS accumulations, which are generally located near mid-ocean ridges and along submarine volcanic arc and backarc spreading centres. Currently, several geophysical technologies are being developed to detect and quantify SMS occurrences that often exhibit measurable contrasts in their physical parameters compared to the surrounding host rock. Here, we use a short, fixed-offset controlled source electromagnetic (CSEM) system and a coincident-loop transient electromagnetic (TEM) system, which in theory allow the detection of SMS in the shallow seafloor due to a significant electrical conductivity contrast to their surroundings. In 2016, CSEM and TEM experiments were carried out at several locations near the Trans- Atlantic Geotraverse hydrothermal field to investigate shallow occurrences of massive sulphides below the seafloor. Measurements were conducted in an area that contains distinct SMS sites located several kilometres off-axis from the Mid-Atlantic ridge, some of which are still connected to hydrothermal activity and others where hydrothermal activity has ceased. Based on the quality of the acquired data, both experiments were operationally successful. However, the data analysis indicates bias caused by three-dimensional (3D) effects of the rough bathymetry in the study area and, thus, data interpretation remains challenging. Therefore, we study the influence of 3D bathymetry for marine CSEM and TEM experiments, focusing on shallow 3D conductors located beneath mound-like structures.We analyse synthetic inversion models for attributes associated with 3D distortions of CSEM and TEM data that are not sufficiently accounted for in conventional 1D (TEM) and 2D (CSEM) interpretation schemes. Before an adequate quantification of SMS in the region is feasible, these 3D effects need to be studied to avoid over/underestimation of SMS using the acquired EM data. The sensitivity of CSEM and TEM to bathymetry is investigated by means of 3D forward modelling, followed by 1D (TEM) and 2D (CSEM) inversion of the synthetic data using realistic error conditions. Subsequently, inversion models of the synthetic 3D data are analysed and compared to models derived from the measured data to illustrate that 3D distortions are evident in the recorded data sets.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2018-09-14
    Description: We have developed a new module to calculate soil organic carbon (SOC) accumulation in perennially frozen ground in the land surface model JSBACH. Running this offline version of MPI-ESM we have modelled permafrost carbon accumulation and release from the Last Glacial Maximum (LGM) to the Pre-industrial (PI). Our simulated near-surface PI permafrost extent of 16.9Miokm2 is close to observational evidence. Glacial boundary conditions, especially ice sheet coverage, result in profoundly different spatial patterns of glacial permafrost extent. Deglacial warming leads to large-scale changes in soil temperatures, manifested in permafrost disappearance in southerly regions, and permafrost aggregation in formerly glaciated grid cells. In contrast to the large spatial shift in simulated permafrost occurrence, we infer an only moderate increase of total LGM permafrost area (18.3Miokm2) – together with pronounced changes in the depth of seasonal thaw. Reconstructions suggest a larger spread of glacial permafrost towards more southerly regions, but with a highly uncertain extent of non-continuous permafrost. Compared to a control simulation without describing the transport of SOC into perennially frozen ground, the implementation of our newly developed module for simulating permafrost SOC accumulation leads to a doubling of simulated LGM permafrost SOC storage (amounting to a total of ~150PgC). Despite LGM temperatures favouring a larger permafrost extent, simulated cold glacial temperatures – together with low precipitation and low CO2 levels – limit vegetation productivity and therefore prevent a larger glacial SOC build-up in our model. Changes in physical and biogeochemical boundary conditions during deglacial warming lead to an increase in mineral SOC storage towards the Holocene (168PgC at PI), which is below observational estimates (575PgC in continuous and discontinuous permafrost). Additional model experiments clarified the sensitivity of simulated SOC storage to model parameters, affecting long-term soil carbon respiration rates and simulated active layer depths. Rather than a steady increase in carbon release from the LGM to PI as a consequence of deglacial permafrost degradation, our results suggest alternating phases of soil carbon accumulation and loss as an effect of dynamic changes in permafrost extent, active layer depths, soil litter input, and heterotrophic respiration.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    Copernicus
    In:  Climate of the Past Discussions . pp. 1-31.
    Publication Date: 2018-09-14
    Description: Climate reconstructions based on proxy records recovered from marine sediments, such as alkenone records or geochemical parameters measured on foraminifera, play an important role in our understanding of the climate system. They provide information about the state of the ocean ranging back hundreds to millions of years and form the backbone of paleo-oceanography. However, there are many sources of uncertainty associated with the signal recovered from sediment archived proxies. These include seasonal or depth habitat biases in the recorded signal, a frequency dependent reduction in the amplitude of the recorded signal due to bioturbation of the sediment, aliasing of high frequency climate variation onto a nominally annual, decadal or centennial resolution signal, and additional sample processing and measurement error introduced when the proxy signal is recovered. Here we present a forward model for sediment archived proxies that jointly models the above processes, so that the magnitude of their separate and combined effects can be investigated. Applications include the interpretation and analysis of uncertainty in existing proxy records, parameter sensitivity analysis to optimize future studies, and the generation of pseudo-proxy records that can be used to test reconstruction methods. We provide examples, such as the simulation of individual foraminifera records, that demonstrate the usefulness of the forward model for paleoclimate studies. The model is implemented as a user-friendly R package, sedproxy, the use of which we hope will contribute to a better understanding of both the limitations and potential of marine sediment proxies to inform about past climate.
    Type: Article , NonPeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2022-04-26
    Description: The semi-enclosed nature and estuarine characteristics, together with its strongly alternating bathymetry, make the Baltic Sea prone to much stronger interannual variations in the abiotic environment, than other spawning habitats of Atlantic cod (Gadus morhua). Processes determining salinity and oxygen conditions in the basins are influenced both by long term gradual climate change, e.g. global warming, but also by short-term meteorological variations and events. Specifically one main factor influencing cod spawning conditions, the advection of highly saline and well-oxygenated water masses from the North Sea, is observed in irregular frequencies and causes strong interannual variations in stock productivity. This study investigates the possibility to use the available hydrographic process knowledge to predict the annual spawning conditions for Eastern Baltic cod in its most important spawning ground, the Bornholm Basin, only by salinity measurements from a specific location in the western Baltic. Such a prediction could serve as an environmental early warning indicator to inform stock assessment and management. Here we used a hydrodynamic model to hindcast hydrographic property fields for the last 40+ years. High and significant correlations were found for months early in the year between the 33m salinity level in the Arkona Basin and the oxygen-dependent cod spawning environment in the Bornholm Basin. Direct prediction of the Eastern Baltic cod egg survival in the Bornholm Basin based on salinity values in the Arkona Basin at the 33 m depth level is shown to be possible for eggs spawned by mid-age and young females, which currently predominate the stock structure. We recommend to routinely perform short-term predictions of the Eastern Baltic cod spawning environment, in order to generate environmental information highly relevant for stock dynamics. Our statistical approach offers the opportunity to make best use of permanently existing infrastructure in the western Baltic to timely provide scientific knowledge on the spawning conditions of Eastern Baltic cod. Furthermore it could be a tool to assist ecosystem-based fisheries management with a cost-effective implementation by including the short term predictions as a simple indicator in the annual assessments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2020-02-06
    Description: Plankton communities play a key role in the marine food web and are expected to be highly sensitive to ongoing environmental change. Oceanic uptake of anthropogenic carbon dioxide (CO2) causes pronounced shifts in marine carbonate chemistry and a decrease in seawater pH. These changes–summarized by the term ocean acidification (OA)–can significantly affect the physiology of planktonic organisms. However, studies on the response of entire plankton communities to OA, which also include indirect effects via food-web interactions, are still relatively rare. Thus, it is presently unclear how OA could affect the functioning of entire ecosystems and biogeochemical element cycles. In this study, we report from a long-term in situ mesocosm experiment, where we investigated the response of natural plankton communities in temperate waters (Gullmarfjord, Sweden) to elevated CO2 concentrations and OA as expected for the end of the century (~760 μatm pCO2). Based on a plankton-imaging approach, we examined size structure, community composition and food web characteristics of the whole plankton assemblage, ranging from picoplankton to mesozooplankton, during an entire winter-to-summer succession. The plankton imaging system revealed pronounced temporal changes in the size structure of the copepod community over the course of the plankton bloom. The observed shift towards smaller individuals resulted in an overall decrease of copepod biomass by 25%, despite increasing numerical abundances. Furthermore, we observed distinct effects of elevated CO2 on biomass and size structure of the entire plankton community. Notably, the biomass of copepods, dominated by Pseudocalanus acuspes, displayed a tendency towards elevated biomass by up to 30–40% under simulated ocean acidification. This effect was significant for certain copepod size classes and was most likely driven by CO2-stimulated responses of primary producers and a complex interplay of trophic interactions that allowed this CO2 effect to propagate up the food web. Such OA-induced shifts in plankton community structure could have far-reaching consequences for food-web interactions, biomass transfer to higher trophic levels and biogeochemical cycling of marine ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2020-02-06
    Description: The transition from benthos to plankton requires multiple adaptations, yet so far it remains unclear how these are acquired in the course of the transition. To investigate this process, we analyzed the genetic diversity and distribution patterns of a group of foraminifera of the genus Bolivina with a tychopelagic mode of life (same species occurring both in benthos and plankton). We assembled a global sequence data set for this group from single-cell DNA extractions and occurrences in metabarcodes from pelagic environmental samples. The pelagic sequences all cluster within a single monophyletic clade within Bolivina. This clade harbors three distinct genetic lineages, which are associated with incipient morphological differentiation. All lineages occur in the plankton and benthos, but only one lineage exhibits no limit to offshore dispersal and has been shown to grow in the plankton. These observations indicate that the emergence of buoyancy regulation within the clade preceded the evolution of pelagic feeding and that the evolution of both traits was not channeled into a full transition into the plankton. We infer that in foraminifera, colonization of the planktonic niche may occur by sequential cooptation of independently acquired traits, with holoplanktonic species being recruited from tychopelagic ancestors
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    Oxford Univ. Press
    In:  Journal of Plankton Research, 39 (6). pp. 943-961.
    Publication Date: 2020-02-06
    Description: The sea surface microlayer (SML) is the uppermost layer of the water column that links the ocean and atmosphere. It accumulates a variety of biogenic surface-active and buoyant substances, including gelatinous material, such as transparent exopolymer particles (TEP) and Coomassie stainable particles (CSP), potentially affecting air–sea exchange processes. Here, we studied the influence of the annual cycle of phytoplankton production on organic matter (OM) accumulation in the SML relative to the subsurface water (SSW). Sampling was performed monthly from April 2012 to November 2013 at the Boknis Eck Time Series Station (Baltic Sea). For SML sampling, we used the Garrett screen, while SSW samples were collected by Niskin bottles at 1 m depth. Samples were analyzed for carbohydrates, amino acids, TEP, CSP, chlorophyll a (SSW only) and bacterial abundance. Our data showed that the SML reflected the SSW during most parts of the year, with changes mainly responding to bloom formation and decay. OM composition during phytoplankton blooms clearly differed from periods of higher bacterial abundance. Of all components investigated, only the enrichment of total carbohydrates in the SML was inversely related to the wind speed indicating that wind-driven mixing also affected the accumulation of OM in the SML during our study.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2020-02-06
    Description: The oceans absorb ~25% of the annual anthropogenic CO2 emissions. This causes a shift in the marine carbonate chemistry termed ocean acidification (OA). OA is expected to influence metabolic processes in phytoplankton species but it is unclear how the combination of individual physiological changes alters the structure of entire phytoplankton communities. To investigate this, we deployed ten pelagic mesocosms (volume ~50 m3) for 113 days at the west coast of Sweden and simulated OA (pCO2 = 760 μatm) in five of them while the other five served as controls (380 μatm). We found: (1) Bulk chlorophyll a concentration and 10 out of 16 investigated phytoplankton groups were significantly and mostly positively affected by elevated CO2 concentrations. However, CO2 effects on abundance or biomass were generally subtle and present only during certain succession stages. (2) Some of the CO2-affected phytoplankton groups seemed to respond directly to altered carbonate chemistry (e.g. diatoms) while others (e.g. Synechococcus) were more likely to be indirectly affected through CO2 sensitive competitors or grazers. (3) Picoeukaryotic phytoplankton (0.2–2 μm) showed the clearest and relatively strong positive CO2 responses during several succession stages. We attribute this not only to a CO2 fertilization of their photosynthetic apparatus but also to an increased nutrient competitiveness under acidified (i.e. low pH) conditions. The stimulating influence of high CO2/low pH on picoeukaryote abundance observed in this experiment is strikingly consistent with results from previous studies, suggesting that picoeukaryotes are among the winners in a future ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: image
    Format: other
    Format: other
    Format: image
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2020-02-06
    Description: The eastern tropical South Pacific (ETSP) upwelling region is one of the ocean’s largest sinks of fixed nitrogen, which is lost as N2 via the anaerobic processes of anammox and denitrification. One-third of nitrogen loss occurs in productive shelf waters stimulated by organic matter export as a result of eastern boundary upwelling. Offshore, nitrogen loss rates are lower, but due to its sheer size this area accounts for ~70% of ETSP nitrogen loss. How nitrogen loss and primary production are regulated in the offshore ETSP region where coastal upwelling is less influential remains unclear. Mesoscale eddies, ubiquitous in the ETSP region, have been suggested to enhance vertical nutrient transport and thereby regulate primary productivity and hence organic matter export. Here, we investigated the impact of mesoscale eddies on anammox and denitrification activity using 15N-labelled in situ incubation experiments. Anammox was shown to be the dominant nitrogen loss process, but varied across the eddy, whereas denitrification was below detection at all stations. Anammox rates at the eddy periphery were greater than at the center. Similarly, depth-integrated chlorophyll paralleled anammox activity, increasing at the periphery relative to the eddy center; suggestive of enhanced organic matter export along the periphery supporting nitrogen loss. This can be attributed to enhanced vertical nutrient transport caused by an eddy-driven submesoscale mechanism operating at the eddy periphery. In the ETSP region, the widespread distribution of eddies and the large heterogeneity observed in anammox rates from a compilation of stations suggests that eddy-driven vertical nutrient transport may regulate offshore primary production and thereby nitrogen loss.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2020-02-06
    Description: Commercial-scale mining for polymetallic nodules could have a major impact on the deepsea environment, but the effects of these mining activities on deep-sea ecosystems are very poorly known. The first commercial test mining for polymetallic nodules was carried out in 1970. Since then a number of small-scale commercial test mining or scientific disturbance studies have been carried out. Here we evaluate changes in faunal densities and diversity of benthic communities measured in response to these 11 simulated or test nodule mining disturbances using meta-analysis techniques. We find that impacts are often severe immediately after mining, with major negative changes in density and diversity of most groups occurring. However, in some cases, the mobile fauna and small-sized fauna experienced less negative impacts over the longer term. At seven sites in the Pacific, multiple surveys assessed recovery in fauna over periods of up to 26 years. Almost all studies show some recovery in faunal density and diversity for meiofauna and mobile megafauna, often within one year. However, very few faunal groups return to baseline or control conditions after two decades. The effects of polymetallic nodule mining are likely to be long term. Our analyses show considerable negative biological effects of seafloor nodule mining, even at the small scale of test mining experiments, although there is variation in sensitivity amongst organisms of different sizes and functional groups, which have important implications for ecosystem responses. Unfortunately, many past studies have limitations that reduce their effectiveness in determining responses. We provide recommendations to improve future mining impact test studies. Further research to assess the effects of test-mining activities will inform ways to improve mining practices and guide effective environmental management of mining activities.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2021-04-23
    Description: Concentrations of heme b were determined in a mesocosm experiment situated in Gullmar Fjord off Sweden. The mesocosm experiment lasted for ca. one hundred days and was characterised by the growth of a primary nutrient replete and a secondary nutrient deplete phytoplankton bloom. Heme b varied between 40 ± 10 pmol L-1 in the prebloom period up to a maximum of 700 ± 400 pmol L-1 just prior to the time of the primary chlorophyll a maximum. Thereafter, heme b concentrations decreased again to an average of 120 ± 60 pmol L-1. When normalised to total particulate carbon, heme b was most abundant during the initiation of the nutrient replete spring bloom, when ratios reached 52 ± 24 μmol mol-1; ten times higher than values observed both pre and post the primary bloom. Concentrations of heme b correlated with those of chlorophyll a. Nevertheless, differences were observed in the relative concentrations of the two parameters, with heme b concentrations increasing relative to chlorophyll a during the growth of the primary bloom, decreasing over the period of the secondary bloom and increasing again through the latter period of the experiment. Heme b abundance was therefore influenced by nutrient concentrations and also likely by changing community composition. In half of the mesocosms, pCO2 was elevated and maintained at ca.1000 μatm, however we observed no significant differences between heme b in plus or ambient pCO2 mesocosms, either in absolute terms, or relative to total particulate carbon and chlorophyll a. The results obtained in this study contribute to our understanding of the distribution of this significant component of the biogenic iron pool, and provide an iron replete coastal water end member that aids the interpretation of the distributions of heme b in more iron deplete open ocean waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2020-02-06
    Description: Ocean acidification may affect zooplankton directly by decreasing in pH, as well as indirectly via trophic pathways, where changes in carbon availability or pH effects on primary producers may cascade up the food web thereby altering ecosystem functioning and community composition. Here, we present results from a mesocosm experiment carried out during 113 days in the Gullmar Fjord, Skagerrak coast of Sweden, studying plankton responses to predicted end-of-century pCO2 levels. We did not observe any pCO2 effect on the diversity of the mesozooplankton community, but a positive pCO2 effect on the total mesozooplankton abundance. Furthermore, we observed species-specific sensitivities to pCO2 in the two major groups in this experiment, copepods and hydromedusae. Also stage-specific pCO2 sensitivities were detected in copepods, with copepodites being the most responsive stage. Focusing on the most abundant species, Pseudocalanus acuspes, we observed that copepodites were significantly more abundant in the high-pCO2 treatment during most of the experiment, probably fuelled by phytoplankton community responses to high-pCO2 conditions. Physiological and reproductive output was analysed on P. acuspes females through two additional laboratory experiments, showing no pCO2 effect on females’ condition nor on egg hatching. Overall, our results suggest that the Gullmar Fjord mesozooplankton community structure is not expected to change much under realistic end-of-century OA scenarios as used here. However, the positive pCO2 effect detected on mesozooplankton abundance could potentially affect biomass transfer to higher trophic levels in the future.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2017-11-01
    Description: The Argentine margin contains important sedimentological, paleontological and chemical records of regional and local tectonic evolution, sea level, climate evolution and ocean circulation since the opening of the South Atlantic in the Late Jurassic–Early Cretaceous as well as the present-day results of post-depositional chemical and biological alteration. Despite its important location, which underlies the exchange of southern- and northern-sourced water masses, the Argentine margin has not been investigated in detail using scientific drilling techniques, perhaps because the margin has the reputation of being erosional. However, a number of papers published since 2009 have reported new high-resolution and/or multichannel seismic surveys, often combined with multi-beam bathymetric data, which show the common occurrence of layered sediments and prominent sediment drifts on the Argentine and adjacent Uruguayan margins. There has also been significant progress in studying the climatic records in surficial and near-surface sediments recovered in sediment cores from the Argentine margin. Encouraged by these recent results, our 3.5-day IODP (International Ocean Discovery Program) workshop in Buenos Aires (8–11 September 2015) focused on opportunities for scientific drilling on the Atlantic margin of Argentina, which lies beneath a key portion of the global ocean conveyor belt of thermohaline circulation. Significant opportunities exist to study the tectonic evolution, paleoceanography and stratigraphy, sedimentology, and biosphere and geochemistry of this margin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2020-02-06
    Description: Upwelling is the process by which deep, cold, relatively high-CO2, nutrient-rich seawater rises to the sunlit surface of the ocean. This seasonal process has fueled geoengineering initiatives to fertilize the surface ocean with deep seawater to enhance productivity and thus promote the drawdown of CO2. Coccolithophores, which inhabit many upwelling regions naturally ‘fertilized’ by deep seawater, have been investigated in the laboratory in the context of ocean acidification to determine the extent to which nutrients and CO2 impact their physiology, but few data exist in the field except from mesocosms. Here, we used the Porcupine Abyssal Plain (north Atlantic Ocean) Observatory to retrieve seawater from depths with elevated CO2 and nutrients, mimicking geoengineering approaches. We tested the effects of abrupt natural deep seawater fertilization on the physiology and biogeochemistry of two strains of Emiliania huxleyi of known physiology. None of the strains tested underwent cell divisions when incubated in waters obtained from 〈1,000 m (pH = 7.99–8.08; CO2 = 373–485 p.p.m; 1.5–12 μM nitrate). However, growth was promoted in both strains when cells were incubated in seawater from ~1,000 m (pH = 7.9; CO2 ~560 p.p.m.; 14–17 μM nitrate) and ~4,800 m (pH = 7.9; CO2 ~600 p.p.m.; 21 μM nitrate). Emiliania huxleyi strain CCMP 88E showed no differences in growth rate or in cellular content or production rates of particulate organic (POC) and inorganic (PIC) carbon and cellular particulate organic nitrogen (PON) between treatments using water from 1,000 m and 4,800 m. However, despite the N:P ratio of seawater being comparable in water from ~1,000 and ~4,800 m, the PON production rates were three times lower in one incubation using water from ~1,000 m compared to values observed in water from ~4,800 m. Thus, the POC:PON ratios were threefold higher in cells that were incubated in ~1,000 m seawater. The heavily calcified strain NZEH exhibited lower growth rates and PIC production rates when incubated in water from ~4,800 m compared to ~1,000 m, while cellular PIC, POC and PON were higher in water from 4,800 m. Calcite Sr/Ca ratios increased with depth despite constant seawater Sr/Ca, indicating that upwelling changes coccolith geochemistry. Our study provides the first experimental and field trial of a geoengineering approach to test how deep seawater impacts coccolithophore physiological and biogeochemical properties. Given that coccolithophore growth was only stimulated using waters obtained from 〉1,000 m, artificial upwelling using shallower waters may not be a suitable approach for promoting carbon sequestration for some locations and assemblages, and should therefore be investigated on a site-by-site basis.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2020-02-06
    Description: Temperature is important for optimization of rearing conditions in aquaculture, especially during the critical early life history stages of fish. Here, we experimentally investigated the impact of temperature (16, 18, 20, 22 and 24°C) on thermally induced phenotypic variability, from larval hatch to first-feeding, and the linked expression of targeted genes [heat shock proteins (hsp), growth hormone (gh) and insulin-like growth factors (igf)] associated to larval performance of European eel, Anguilla anguilla. Temperature effects on larval morphology and gene expression were investigated throughout early larval development (in real time from 0 to 18 days post hatch) and at specific developmental stages (hatch, jaw/teeth formation, and first-feeding). Results showed that hatch success, yolk utilization efficiency, survival, deformities, yolk utilization, and growth rates were all significantly affected by temperature. In real time, increasing temperature from 16 to 22°C accelerated larval development, while larval gene expression patterns (hsp70, hsp90, gh and igf-1) were delayed at cold temperatures (16°C) or accelerated at warm temperatures (20–22°C). All targeted genes (hsp70, hsp90, gh, igf-1, igf-2a, igf-2b) were differentially expressed during larval development. Moreover, expression of gh was highest at 16°C during the jaw/teeth formation, and the first-feeding developmental stages, while expression of hsp90 was highest at 22°C, suggesting thermal stress. Furthermore, 24°C was shown to be deleterious (resulting in 100% mortality), while 16°C and 22°C (~50 and 90% deformities respectively) represent the lower and upper thermal tolerance limits. In conclusion, the high survival, lowest incidence of deformities at hatch, high yolk utilization efficiency, high gh and low hsp expression, suggest 18°C as the optimal temperature for offspring of European eel. Furthermore, our results suggest that the still enigmatic early life history stages of European eel may inhabit the deeper layer of the Sargasso Sea and indicate vulnerability of this critically endangered species to increasing ocean temperature.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2020-02-06
    Description: Processes linked with the genesis, evolution and emplacement of silicic complexes in arcs are still poorly constrained. Of particular interest are the depth of magma production, the relative contribution of crystal fractionation versus crustal partial melting and the timescales involved. The Soufrière Volcanic Complex (SVC) on St Lucia is one of the largest silicic centres in the Lesser Antilles arc. Here we present the results of a detailed mineralogical study, including in situ Sr isotopes in plagioclase and in situ δ18O in dated zircons, of both SVC and Pre-SVC volcanic rocks to place constraints on the processes intrinsic to the development and evolution of the silicic complex. These data suggest that the production of silicic magma in the SVC occurs in two stages. The first stage involves differentiation of mafic magma by crustal assimilation and mineral fractionation in the middle–lower crust of the arc to produce magmas with intermediate compositions. These intermediate magmas are water-rich (∼7 wt %) and have high 87Sr/86Sr, Ba, Sr and La/Sm (∼5) compared with Pre-SVC lavas. Near-constant trace element and isotopic compositions throughout the SVC lifespan indicate that the same process was persistent over the last 600 kyr. In the second stage, the intermediate magmas are transferred to a shallower and more differentiated chamber (∼6 km depth). During ascent, any crystals or xenocrysts residual from stage one in the deeper chamber become fully resorbed and the magma crystallizes calcic amphibole microphenocrysts, followed by anorthite-rich plagioclase close to or at the water saturation depth. During mixing upon recharge within the shallow chamber, anorthite-rich plagioclase from the recharging magma is partially resorbed; so are the crystals in equilibrium with the resident differentiated magma. The recharge event probably causes chamber-wide convection. Mixing is thought to trigger eruption of the silicic complex magmas.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2020-11-09
    Description: The responses of macroalgae to ocean acidification could be altered by availability of macronutrients, such as ammonium (NH4+). This study determined how the opportunistic macroalga, Ulva australis responded to simultaneous changes in decreasing pH and NH4+ enrichment. This was investigated in a week-long growth experiment across a range of predicted future pHs with ambient and enriched NH4+ treatments followed by measurements of relative growth rates (RGR), NH4+ uptake rates and pools, total chlorophyll, and tissue carbon and nitrogen content. Rapid light curves (RLCs) were used to measure the maximum relative electron transport rate (rETRmax) and maximum quantum yield of photosystem II (PSII) photochemistry (Fv/Fm). Photosynthetic capacity was derived from the RLCs and included the efficiency of light harvesting (α), slope of photoinhibition (β), and the light saturation point (Ek). The results showed that NH4+ enrichment did not modify the effects of pH on RGRs, NH4+ uptake rates and pools, total chlorophyll, rETRmax, α, β, Fv/Fm, tissue C and N, and the C:N ratio. However, Ek was differentially affected by pH under different NH4+ treatments. Ek increased with decreasing pH in the ambient NH4+ treatment, but not in the enriched NH4+ treatment. NH4+ enrichment increased RGRs, NH4+ pools, total chlorophyll, rETRmax, α, β, Fv/Fm, and tissue N, and decreased NH4+ uptake rates and the C:N ratio. Decreased pH increased total chlorophyll content, rETRmax, Fv/Fm, and tissue N content, and decreased the C:N ratio. Therefore, the results indicate that U. australis growth is increased with NH4+ enrichment and not with decreasing pH. While decreasing pH influenced the carbon and nitrogen metabolisms of U. australis, it did not result in changes in growth.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2021-05-19
    Description: In the eastern tropical Atlantic, the orangeback flying squid Sthenoteuthis pteropus (Steenstrup 1855) (Cephalopoda, Ommastrephidae) is a dominant species of the epipelagic nekton community. This carnivore squid has a short lifespan and is one of the fastest-growing squids. In this study, we characterise the role of S. pteropus in the pelagic food web of the eastern tropical Atlantic by investigating its diet and the dynamics of its feeding habits throughout its ontogeny and migration. During three expeditions in the eastern tropical Atlantic in 2015, 129 specimens were caught by hand jigging. Stomach content analyses (via visual identification and DNA barcoding) were combined with stable isotope data (∂15N and ∂13C) of muscle tissue to describe diet, feeding habits and trophic ecology of S. pteropus. Additionally, stable isotope analyses of incremental samples along the squid’s gladius—the chitinous spiniform structure supporting the muscles and organs—were carried out to explore possible diet shifts through ontogeny and migration. Our results show that S. pteropus preys mainly on myctophid fishes (e.g. Myctophum asperum, Myctophum nitidulum, Vinciguerria spp.), but also on other teleost species, cephalopods (e.g. Enoploteuthidae, Bolitinidae, Ommastrephidae), crustaceans and possibly on gelatinous zooplankton as well. The squid shows a highly opportunistic feeding behaviour that includes cannibalism. Our study indicates that the trophic position of S. pteropus may increase by approximately one trophic level from a mantle length of 15 cm to 47 cm. The reconstructed isotope-based feeding chronologies of the gladii revealed high intra- and inter-individual variability in the squid’s trophic position and foraging area. These findings are not revealed by diet or muscle tissue stable isotope analysis. This suggests a variable and complex life history involving individual variation and migration. The role of S. pteropus in transferring energy and nutrients from lower to higher trophic levels may be underestimated and important for understanding how a changing ocean impacts food webs in the eastern Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2020-02-06
    Description: Eukaryotic phytoplankton exhibit an enormous species richness, displaying a range of phylogenetic, morphological and physiological diversity. Yet, until recently, very little was known about the diversity, genetic variation and evolutionary processes within species and populations. An approach to explore this diversity and to understand evolution of phytoplankton is to use population genetics as a conceptual framework and methodology. Here, we discuss the patterns, processes and questions that population genetic studies have revealed in eukaryotic phytoplankton. First, we describe the main biological processes generating genetic variation. We specifically discuss the importance of life-cycle complexity for genetic and phenotypic diversity and consider how such diversity can be maintained during blooms when rapid asexual proliferation dominates. Next, we explore how genetic diversity is partitioned over time and space, with a focus on the processes shaping this structure, in particular selection and genetic exchange. Our aim is also to show how population genetics can be used to make inferences about realized dispersal and sexual recombination, as these processes are so difficult to study directly. Finally, we highlight important open questions and suggest promising avenues for future studies that will be made possible by new sequencing technologies
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    Oxford Univ. Press
    In:  ICES Journal of Marine Science, 74 (1). pp. 102-111.
    Publication Date: 2020-02-06
    Description: Marine spatial planning (MSP) is considered a valuable tool in the ecosystem-based management of marine areas. Predictive modelling may be applied in the MSP framework to obtain spatially explicit information about biodiversity patterns. The growing number of statistical approaches used for this purpose implies the urgent need for comparisons between different predictive techniques. In this study, we evaluated the performance of selected machine learning and regression-based methods that were applied for modelling fish community indices. We hypothesized that habitat features can influence fish assemblage and investigated the effect of environmental gradients on demersal fish diversity (species richness and Shannon–Weaver Index). We used fish data from the Baltic International Trawl Surveys (2001–2014) and maps of six potential predictors: bottom salinity, depth, seabed slope, growth season bottom temperature, seabed sediments and annual mean bottom current velocity. We compared the performance of six alternative modelling approaches: generalized linear models, generalized additive models, multivariate adaptive regression splines, support vector machines, boosted regression trees and random forests. We applied repeated 10-fold cross-validation, using accuracy as the measure of model quality. Finally, we selected random forest as the best performing algorithm and implemented it for the spatial prediction of fish diversity from the Baltic Proper to the Kattegat. To obtain information on the data reliability and confidence of the developed models, which are essential for MSP, we estimated the uncertainty of predictions with standard deviation of predictions obtained from all the trees in the ensemble random forest method. We showed how state-of-the-art predictive techniques, based on easily available data and simple Geographic Information System tools, can be used to obtain reliable spatial information about fish diversity. Our comparative work highlighted the potential of machine learning method to reduce prediction error in modelling of demersal fish diversity in the framework of MSP.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    Oxford Univ. Press
    In:  Geophysical Journal International, 208 (1). pp. 449-467.
    Publication Date: 2020-02-06
    Description: The Mozambique Ridge, a prominent basement high in the southwestern Indian Ocean, consists of four major geomorphological segments associated with numerous phases of volcanic activity in the Lower Cretaceous. The nature and origin of the Mozambique Ridge have been intensely debated with one hypothesis suggesting a Large Igneous Province origin. High-resolution seismic reflection data reveal a large number of extrusion centres with a random distribution throughout the southern Mozambique Ridge and the nearby Transkei Rise. Intrabasement reflections emerge from the extrusion centres and are interpreted to represent massive lava flow sequences. Such lava flow sequences are characteristic of eruptions leading to the formation of continental and oceanic flood basalt provinces, hence supporting a Large Igneous Province origin of the Mozambique Ridge. We observe evidence for widespread post-sedimentary magmatic activity that we correlate with a southward propagation of the East African Rift System. Based on our volumetric analysis of the southern Mozambique Ridge we infer a rapid sequential emplacement between ∼131 and ∼125 Ma, which is similar to the short formation periods of other Large Igneous Provinces like the Agulhas Plateau.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2020-02-06
    Description: Plant-derived protein sources are the most relevant substitutes for fishmeal in aquafeeds. Nevertheless, the effects of plant based diets on the intestinal microbiome especially of juvenile Rainbow trout (Oncorhynchus mykiss) are yet to be fully investigated. The present study demonstrates, based on 16S rDNA bacterial community profiling, that the intestinal microbiome of juvenile Rainbow trout is strongly affected by dietary plant protein inclusion levels. After first feeding of juveniles with either 0%, 50% or 97% of total dietary protein content derived from plants, statistically significant differences of the bacterial gut community for the three diet-types were detected, both at phylum and order level. The microbiome of juvenile fish consisted mainly of the phyla Proteobacteria, Firmicutes, Bacteroidetes, Fusobacteria and Actinobacteria, and thus fits the salmonid core microbiome suggested in previous studies. Dietary plant proteins significantly enhanced the relative abundance of the orders Lactobacillales, Bacillales and Pseudomonadales. Animal proteins in contrast significantly promoted Bacteroidales, Clostridiales, Vibrionales, Fusobacteriales and Alteromonadales. The overall alpha diversity significantly decreased with increasing plant protein inclusion levels and with age of experimental animals. In order to investigate permanent effects of the first feeding diet-type on the early development of the microbiome, a diet change was included in the study after 54 days, but no such effects could be detected. Instead, the microbiome of juvenile trout fry was highly dependent on the actual diet fed at the time of sampling.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2020-02-06
    Description: The Nifonea submarine volcano rises 1000 m above the seafloor of the Vate Trough back-arc basin behind the New Hebrides island arc. This large volcanic edifice has a caldera of ∼8 km diameter and is connected to two ∼20 km long volcanic rift zones in the back-arc basin. We present new chemical and isotope data for volcanic glasses and whole-rocks from both the volcano and its rift zones. Lavas from Nifonea volcano show an evolution towards more incompatible element enrichment, with the most enriched lavas being the youngest eruption products on the caldera floor. These are products of significant fractional crystallization, show minor contamination by hydrothermal fluids (〈0·3%) and reflect mixing of melts derived from depleted upper mantle and melts from an enriched source similar to those occurring in the North Fiji Basin. The enrichment in Nb of these lavas is comparable with that of some lavas from the New Hebrides island arc (e.g. Mota Lava island), where these coexist with typical island arc basalts. The lavas erupted along the rift zones in the Vate Trough back-arc basin are relatively depleted in incompatible elements, indicating melting of depleted upper mantle with a minor addition of a sediment-derived fluid. Our observations suggest that the mantle beneath Vate Trough is heterogeneous on a small scale (〈20 km) and that the occurrence of these enriched and fertile mantle portions has a stronger control on melting processes than the influx from the subducting slab, as all samples were recovered at a similar distance from the trench.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    Oxford Univ. Press
    In:  Journal of Plankton Research, 39 (5). pp. 772-780.
    Publication Date: 2020-02-06
    Description: The influence of winter on the selection of dominant taxa for the phytoplankton spring bloom was studied in batch culture experiments. Different natural phytoplankton assemblages from different phases of the temperate zone winter were exposed to varying periods of darkness (0, 6/7, 13 and 19 weeks) followed by a re-exposure to saturating light intensity for 14 days to experimentally simulate the onset of spring. The results showed that dark incubation has a strong effect on shaping the phytoplankton community composition. Many taxa disappeared in the absolute darkness. Dark survival ability might be an important contributing factor for the success of diatoms in spring. Different phytoplankton starting assemblages were dominated by the same bloom-forming diatoms, Skeletonema marinoi and Thalassosira spp., after dark incubation for only 6 weeks, irrespective of the high dissimilarities between phytoplankton communities. The growth capacity of surviving phytoplankton is almost unimpaired by darkness. Similar growth rates as that before darkness could be resumed for the surviving taxa with a potential lag time of 1–7 days dependent on taxon and the duration of darkness.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: image
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2020-02-06
    Description: Artificial reefs, in the Eastern Mediterranean (Cyprus,) became a popular and frequently used tool, in fisheries and biodiversity conservation management. Even though evaluation studies about the efficacy of artificial reefs are plentiful in the rest of the Mediterranean (Central and Western), in the Eastern Basin they are largely absent. As the Eastern part of the Mediterranean Sea is characterised by unique physical parameters, the necessity to study artificial reefs under these contrasting regimes increases. The epibenthic communities of two unintentional artificial reefs (modern shipwrecks) in Cyprus (Zenobia) and Lebanon (Alice-B) were evaluated in 2010. Both shipwrecks are at similar depth, type of sea bottom, made of the same material (steel) and were sunk approximately the same period of time. However, Alice-B shipwreck off the coast of Lebanon is constantly exposed to higher levels of nutrients than Zenobia in Cyprus. Significant dissimilarities were observed in the composition, percentage of benthic cover of predominant taxonomic groups and development of the epibenthic communities. Differences in physical and chemical parameters between sides lay mainly in the nutrient and thermal regimes affecting the shipwrecks and most likely bring about the differences in the observed community structure. The results of this study suggest that epibenthic communities could be highly impacted by eutrophication caused by anthropogenic activities, leading to less biodiverse
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2018-10-23
    Description: The current generation of marine biogeochemical modules in Earth system models (ESMs) considers mainly the effect of marine biota on the carbon cycle. We propose to also implement other biologically driven mechanisms in ESMs so that more climate-relevant feedbacks are captured. We classify these mechanisms in three categories according to their functional role in the Earth system: (1) "biogeochemical pumps", which affect the carbon cycling; (2) "biological gas and particle shuttles", which affect the atmospheric composition; and (3) "biogeophysical mechanisms", which affect the thermal, optical, and mechanical properties of the ocean. To resolve mechanisms from all three classes, we find it sufficient to include five functional groups: bulk phyto- and zooplankton, calcifiers, and coastal gas and surface mat producers. We strongly suggest to account for a larger mechanism diversity in ESMs in the future to improve the quality of climate projections.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    Oxford Univ. Press
    In:  ICES Journal of Marine Science, 74 (7). pp. 1855-1864.
    Publication Date: 2020-02-06
    Description: The general positive effect of warmer winters on the abundance of small-sized zooplankton in the following spring and early summer has been reported from different parts of the Baltic Sea, but the mechanism of this link is not clear. Although causal links cannot be deduced with confidence from observational data, sufficiently detailed analyses can nevertheless provide insights to the potential mechanisms. We present an example of such an analysis, scrutinizing the effects of winter and spring hydroclimate on the abundance of small-sized dominant calanoid copepods (Eurytemora affinis and Acartia spp.), using data from 2080 zooplankton samples collected over 55 years (1957–2012) from a shallow coastal habitat (Pärnu Bay, Gulf of Riga) in the Baltic Sea. Our results indicated that the milder winters brought about higher abundances, and reduced seasonality of small-sized copepods, whereas ambient sea surface temperature (SST) mostly affected the relative abundance of adult stages. The sliding window correlation tests revealed temporal shifts in the effects of controlling variables: with the continuous increase in SST, the effect of winter temperature on the abundance of Acartia spp. weakened. In contrast, E. affinis was consistently affected by SST, but the effect of winter temperature was more pronounced during the period of on average colder winters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2020-02-06
    Description: We studied the effect of ocean acidification (OA) on a coastal North Sea plankton community in a long-term mesocosm CO2-enrichment experiment (BIOACID II long-term mesocosm study). From March to July 2013, 10 mesocosms of 19 m length with a volume of 47.5 to 55.9 m3 were deployed in the Gullmar Fjord, Sweden. CO2 concentrations were enriched in five mesocosms to reach average CO2 partial pressures (pCO2) of 760 μatm. The remaining five mesocosms were used as control at ambient pCO2 of 380 μatm. Our paper is part of a PLOS collection on this long-term mesocosm experiment. Here, we here tested the effect of OA on total primary production (PPT) by performing 14C-based bottle incubations for 24 h. Furthermore, photoacclimation was assessed by conducting 14C-based photosynthesis-irradiance response (P/I) curves. Changes in chlorophyll a concentrations over time were reflected in the development of PPT, and showed higher phytoplankton biomass build-up under OA. We observed two subsequent phytoplankton blooms in all mesocosms, with peaks in PPT around day 33 and day 56. OA had no significant effect on PPT, except for a marginal increase during the second phytoplankton bloom when inorganic nutrients were already depleted. Maximum light use efficiencies and light saturation indices calculated from the P/I curves changed simultaneously in all mesocosms, and suggest that OA did not alter phytoplankton photoacclimation. Despite large variability in time-integrated productivity estimates among replicates, our overall results indicate that coastal phytoplankton communities can be affected by OA at certain times of the seasonal succession with potential consequences for ecosystem functioning.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2020-02-06
    Description: Marine sponges (phylum Porifera) are a diverse, phylogenetically deep-branching clade known for forming intimate partnerships with complex communities of microorganisms. To date, 16S rRNA gene sequencing studies have largely utilised different extraction and amplification methodologies to target the microbial communities of a limited number of sponge species, severely limiting comparative analyses of sponge microbial diversity and structure. Here, we provide an extensive and standardised dataset that will facilitate sponge microbiome comparisons across large spatial, temporal and environmental scales. Samples from marine sponges (n = 3569 specimens), seawater (n = 370), marine sediments (n = 65) and other environments (n = 29) were collected from different locations across the globe. This dataset incorporates at least 269 different sponge species, including several yet unidentified taxa. The V4 region of the 16S rRNA gene was amplified and sequenced from extracted DNA using standardised procedures. Raw sequences (total of 1.1 billion sequences) were processed and clustered with a) a standard protocol using QIIME closed-reference picking resulting in 39,543 Operational Taxonomic Units (OTU) at 97% sequence identity, b) a de novo protocol using Mothur resulting in 518,246 OTUs, and c) a new high-resolution Deblur protocol resulting in 83,908 unique bacterial sequences. Abundance tables, representative sequences, taxonomic classifications and metadata are provided. This dataset represents a comprehensive resource of sponge-associated microbial communities based on 16S rRNA gene sequences that can be used to address overarching hypotheses regarding host-associated prokaryotes, including host-specificity, convergent evolution, environmental drivers of microbiome structure and the sponge-associated rare biosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2021-04-23
    Description: The acidification of the oceans could potentially alter marine plankton communities with consequences for ecosystem functioning. While several studies have investigated effects of ocean acidification on communities using traditional methods, few have used genetic analyses. Here, we use community barcoding to assess the impact of ocean acidification on the composition of a coastal plankton community in a large scale, in situ, long-term mesocosm experiment. High-throughput sequencing resulted in the identification of a wide range of planktonic taxa (Alveolata, Cryptophyta, Haptophyceae, Fungi, Metazoa, Hydrozoa, Rhizaria, Straminipila, Chlorophyta). Analyses based on predicted operational taxonomical units as well as taxonomical compositions revealed no differences between communities in high CO2 mesocosms (~ 760 μatm) and those exposed to present-day CO2 conditions. Observed shifts in the planktonic community composition were mainly related to seasonal changes in temperature and nutrients. Furthermore, based on our investigations, the elevated CO2 did not affect the intraspecific diversity of the most common mesozooplankter, the calanoid copepod Pseudocalanus acuspes. Nevertheless, accompanying studies found temporary effects attributed to a raise in CO2. Differences in taxa composition between the CO2 treatments could, however, only be observed in a specific period of the experiment. Based on our genetic investigations, no compositional long-term shifts of the plankton communities exposed to elevated CO2 conditions were observed. Thus, we conclude that the compositions of planktonic communities, especially those in coastal areas, remain rather unaffected by increased CO2.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    Oxford Univ. Press
    In:  Journal of Plankton Research, 39 (3). pp. 494-508.
    Publication Date: 2020-02-06
    Description: Phytoplankton cell or colony sizes range from 〈1 µm to several cm, i.e. 4–5 orders of magnitude in linear dimensions, which is roughly equivalent to the log-size span within terrestrial vegetation. It is commonplace to assume that smaller phytoplankton have an advantage in growth related traits while larger ones are more resistant to losses. However, the current state of literature calls for a more differentiated view. It is still controversial, whether smaller phytoplankton have higher maximal growth rates (µmax) or if there is a peak of µmax at intermediate size (102 µm3 cell volume). Smaller phytoplankton have an advantage in nutrient acquisition at low concentrations while larger phytoplankton have an advantage in utilizing nutrient pulses and exploiting vertical gradients. At equal density, larger phytoplankton experience bigger sinking losses. Small phytoplankton (〈5–10 µm) are more affected mostly from grazing by protists and tunicates, while larger phytoplankton are more affected by copepod and krill grazing. Size spectra within the most important higher taxa show some conspicuous differences between marine and lake phytoplankton, e.g. the absence of very large diatoms (〉105 µm3) in lake phytoplankton and the absence of large (〉103 µm3) green algae in marine plankton. Overall, size is one of the most important traits for the performance of phytoplankton, but it is overly simplistic to equate small size with metabolic advantages
    Type: Article , PeerReviewed
    Format: text
    Format: image
    Format: image
    Format: image
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2020-10-26
    Description: Adaptive radiation is thought to be responsible for the evolution of a great portion of the past and present diversity of life. Instances of adaptive radiation, characterized by the rapid emergence of an array of species as a consequence to their adaptation to distinct ecological niches, are important study systems in evolutionary biology. However, because of the rapid lineage formation in these groups, and occasional gene flow between the participating species, it is often difficult to reconstruct the phylogenetic history of species that underwent an adaptive radiation. In this study, we present a novel approach for species-tree estimation in rapidly diversifying lineages, where introgression is known to occur, and apply it to a multimarker data set containing up to 16 specimens per species for a set of 45 species of East African cichlid fishes (522 individuals in total), with a main focus on the cichlid species flock of Lake Tanganyika. We first identified, using age distributions of most recent common ancestors in individual gene trees, those lineages in our data set that show strong signatures of past introgression. This led us to formulate three hypotheses of introgression between different lineages of Tanganyika cichlids: the ancestor of Boulengerochromini (or of Boulengerochromini and Bathybatini) received genomic material from the derived H-lineage; the common ancestor of Cyprichromini and Perissodini experienced, in turn, introgression from Boulengerochromini and/or Bathybatini; and the Lake Tanganyika Haplochromini and closely related riverine lineages received genetic material from Cyphotilapiini. We then applied the multispecies coalescent model to estimate the species tree of Lake Tanganyika cichlids, but excluded the lineages involved in these introgression events, as the multispecies coalescent model does not incorporate introgression. This resulted in a robust species tree, in which the Lamprologini were placed as sister lineage to the H-lineage (including the Eretmodini), and we identify a series of rapid splitting events at the base of the H-lineage. Divergence ages estimated with the multispecies coalescent model were substantially younger than age estimates based on concatenation, and agree with the geological history of the Great Lakes of East Africa. Finally, we formally tested the three hypotheses of introgression using a likelihood framework, and find strong support for introgression between some of the cichlid tribes of Lake Tanganyika. [Adaptive radiation; Cichlidae; introgression; Lake Tanganyika; species network.]
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2020-02-06
    Description: Micromonas is a unicellular marine green alga that thrives from tropical to polar ecosystems. We investigated the growth and cellular characteristics of acclimated mid-exponential phase Micromonas commoda RCC299 over multiple light levels and over the diel cycle (14:10 hour light:dark). We also exposed the light:dark acclimated M. commoda to experimental shifts from moderate to high light (HL), and to HL plus ultraviolet radiation (HL+UV), 4.5 hours into the light period. Cellular responses of this prasinophyte were quantified by flow cytometry and changes in gene expression by qPCR and RNA-seq. While proxies for chlorophyll a content and cell size exhibited similar diel variations in HL and controls, with progressive increases during day and decreases at night, both parameters sharply decreased after the HL+UV shift. Two distinct transcriptional responses were observed among chloroplast genes in the light shift experiments: i) expression of transcription and translation-related genes decreased over the time course, and this transition occurred earlier in treatments than controls; ii) expression of several photosystem I and II genes increased in HL relative to controls, as did the growth rate within the same diel period. However, expression of these genes decreased in HL+UV, likely as a photoprotective mechanism. RNA-seq also revealed two genes in the chloroplast genome, ycf2-like and ycf1-like, that had not previously been reported. The latter encodes the second largest chloroplast protein in Micromonas and has weak homology to plant Ycf1, an essential component of the plant protein translocon. Analysis of several nuclear genes showed that the expression of LHCSR2, which is involved in non-photochemical quenching, and five light-harvesting-like genes, increased 30 to >50-fold in HL+UV, but was largely unchanged in HL and controls. Under HL alone, a gene encoding a novel nitrite reductase fusion protein (NIRFU) increased, possibly reflecting enhanced N-assimilation under the 625 μmol photons m-2 s-1 supplied in the HL treatment. NIRFU's domain structure suggests it may have more efficient electron transfer than plant NIR proteins. Our analyses indicate that Micromonas can readily respond to abrupt environmental changes, such that strong photoinhibition was provoked by combined exposure to HL and UV, but a ca. 6-fold increase in light was stimulatory. © 2017 Cuvelier et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-02-01
    Description: Coral reefs in the central Red Sea are sparsely studied and in situ data on physico-chemical and key biotic variables that provide an important comparative baseline are missing. To address this gap, we simultaneously monitored three reefs along a cross-shelf gradient for an entire year over four seasons, collecting data on currents, temperature, salinity, dissolved oxygen (DO), chlorophyll-a, turbidity, inorganic nutrients, sedimentation, bacterial communities of reef water, and bacterial and algal composition of epilithic biofilms. Summer temperature (29–33°C) and salinity (39 PSU) exceeded average global maxima for coral reefs, whereas DO concentration was low (2–4 mg L-1). While temperature and salinity differences were most pronounced between seasons, DO, chlorophyll-a, turbidity, and sedimentation varied most between reefs. Similarly, biotic communities were highly dynamic between reefs and seasons. Differences in bacterial biofilms were driven by four abundant families: Rhodobacteraceae, Flavobacteriaceae, Flammeovirgaceae, and Pseudanabaenaceae. In algal biofilms, green crusts, brown crusts, and crustose coralline algae were most abundant and accounted for most of the variability of the communities. Higher bacterial diversity of biofilms coincided with increased algal cover during spring and summer. By employing multivariate matching, we identified temperature, salinity, DO, and chlorophyll-a as the main contributing physico-chemical drivers of biotic community structures. These parameters are forecast to change most with the progression of ocean warming and increased nutrient input, which suggests an effect on the recruitment of Red Sea benthic communities as a result of climate change and anthropogenic influence. In conclusion, our study provides insight into coral reef functioning in the Red Sea and a comparative baseline to support coral reef studies in the region.
    Type: Article , PeerReviewed
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-02-01
    Description: Perennial macroalgae within the genus Fucus are known to exude metabolites through their outer thallus surface. Some of these metabolites have pro- and/or antifouling properties. Seasonal fluctuations of natural fouling pressure and chemical fouling control strength against micro- and macrofoulers have previously been observed in Fucus, suggesting that control strength varies with threat. To date, a study on the seasonal composition of surface associated metabolites, responsible for much of the fouling control, has not been done. We sampled individuals of the two co-occurring species F. vesiculosus and F. serratus at monthly intervals (six per species and month) during a one-year field study. We analysed the chemical composition of surface associated metabolites of both Fucus species by means of gas chromatography-mass spectrometry (GC-MS) to describe temporal patterns in chemical surface composition. Additionally, we correlated abiotic and biotic parameters recorded monthly within the sampled habitat with the variation in the chemical surface landscape of Fucus. Our study revealed that the chemical surface composition of both Fucus species exhibits substantial seasonal differences between spring/summer and autumn/winter months. Light and temperature explained most of the seasonal variability in surface metabolite composition of both Fucus species. A strong summerly up-regulation of eighteen saccharides and two hydroxy acids in F. vesiculosus as well as of four fatty acids and two saccharides in F. serratus was observed. We discuss how these up-regulated molecules may have a complex effect on associated microfoulers, both promoting or decreasing fouling depending on metabolite and bacterial identity. These seasonal shifts in the surface metabolome seem to exert a compound control of density and composition of the Fucus associated biofilm.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-02-01
    Description: Coral reefs in the central Red Sea are sparsely studied and in situ data on physico-chemical and key biotic variables that provide an important comparative baseline are missing. To address this gap, we simultaneously monitored three reefs along a cross-shelf gradient for an entire year over four seasons, collecting data on currents, temperature, salinity, dissolved oxygen (DO), chlorophyll-a, turbidity, inorganic nutrients, sedimentation, bacterial communities of reef water, and bacterial and algal composition of epilithic biofilms. Summer temperature (29–33°C) and salinity (39 PSU) exceeded average global maxima for coral reefs, whereas DO concentration was low (2–4 mg L-1). While temperature and salinity differences were most pronounced between seasons, DO, chlorophyll-a, turbidity, and sedimentation varied most between reefs. Similarly, biotic communities were highly dynamic between reefs and seasons. Differences in bacterial biofilms were driven by four abundant families: Rhodobacteraceae, Flavobacteriaceae, Flammeovirgaceae, and Pseudanabaenaceae. In algal biofilms, green crusts, brown crusts, and crustose coralline algae were most abundant and accounted for most of the variability of the communities. Higher bacterial diversity of biofilms coincided with increased algal cover during spring and summer. By employing multivariate matching, we identified temperature, salinity, DO, and chlorophyll-a as the main contributing physico-chemical drivers of biotic community structures. These parameters are forecast to change most with the progression of ocean warming and increased nutrient input, which suggests an effect on the recruitment of Red Sea benthic communities as a result of climate change and anthropogenic influence. In conclusion, our study provides insight into coral reef functioning in the Red Sea and a comparative baseline to support coral reef studies in the region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-09-23
    Description: Ocean acidification is considered as a crucial stressor for marine communities. In this study, we tested the effects of the IPCC RPC6.0 end-of-century acidification scenario on a natural plankton community in the Gullmar Fjord, Sweden, during a long-term mesocosm experiment from a spring bloom to a mid-summer situation. The focus of this study was on microzooplankton and its interactions with phytoplankton and mesozooplankton. The microzooplankton community was dominated by ciliates, especially small Strombidium sp., with the exception of the last days when heterotrophic dinoflagellates increased in abundance. We did not observe any effects of high CO2 on the community composition and diversity of microzooplankton. While ciliate abundance, biomass and growth rate were not affected by elevated CO2, we observed a positive effect of elevated CO2 on dinoflagellate abundances. Additionally, growth rates of dinoflagellates were significantly higher in the high CO2 treatments. Given the higher Chlorophyll a content measured under high CO2, our results point at mainly indirect effects of CO2 on microzooplankton caused by changes in phytoplankton standing stocks, in this case most likely an increase in small-sized phytoplankton of 〈8 μm. Overall, the results from the present study covering the most important part of the growing season indicate that coastal microzooplankton communities are rather robust towards realistic acidification scenarios.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2020-01-23
    Description: The extent to which Marine Protected Areas (MPAs) benefit corals is contentious. On one hand, MPAs could enhance coral growth and survival through increases in herbivory within their borders; on the other, they are unlikely to prevent disturbances, such as terrestrial runoff, that originate outside their boundaries. We examined the effect of spatial protection and terrestrial sediment on the benthic composition of coral reefs in Saint Lucia. In 2011 (10 to 16 years after MPAs were created), we resurveyed 21 reefs that had been surveyed in 2001 and analyzed current benthic assemblages as well as changes in benthic cover over that decade in relation to protection status, terrestrial sediment influence (measured as the proportion of terrigenous material in reef-associated sediment) and depth. The cover of all benthic biotic components has changed significantly over the decade, including a decline in coral and increase in macroalgae. Protection status was not a significant predictor of either current benthic composition or changes in composition, but current cover and change in cover of several components were related to terrigenous content of sediment deposited recently. Sites with a higher proportion of terrigenous sediment had lower current coral cover, higher macroalgal cover and greater coral declines. Our results suggest that terrestrial sediment is an important factor in the recent degradation of coral reefs in Saint Lucia and that the current MPA network should be complemented by measures to reduce runoff from land.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-02-01
    Description: Ocean acidification is an escalating environmental issue and associated changes in the ocean carbonate system have implications for many calcifying organisms. The present study followed the growth of Sepia officinalis from early-stage embryos, through hatching, to 7-week-old juveniles. Responses of cuttlefish to elevated pCO(2) (hypercapnia) were investigated to test the impacts of near-future and extreme ocean acidification conditions on growth, developmental time, oxygen consumption, and yolk utilization as proxies for individual fitness. We further examined gross morphological characteristics of the internal calcareous cuttlebone to determine whether embryonically secreted shell lamellae are impacted by environmental hypercapnia. Embryonic growth was reduced and hatching delayed under elevated pCO(2), both at environmentally relevant levels (0.14 kPa pCO(2) similar to predicted ocean conditions in 2100) and extreme conditions (0.40 kPa pCO(2)). Comparing various metrics from control and intermediate treatments generally showed no significant difference in experimental measurements. Yet, results from the high pCO(2) treatment showed significant changes compared with controls and revealed a consistent general trend across the three treatment levels. The proportion of animal mass contributed by the cuttlebone increased in both elevated pCO(2) treatments. Gross cuttlebone morphology was affected under such conditions and cuttlebones of hypercapnic individuals were proportionally shorter. Embryonic shell morphology was maintained consistently in all treatments, despite compounding hypercapnia in the perivitelline fluid; however, post-hatching, hypercapnic animals developed denser cuttlebone laminae in shorter cuttlebones. Juvenile cuttlefish in acidified environments thus experience lower growth and yet increased calcification of their internal shell. The results of this study support recent findings that early cuttlefish life stages are more vulnerable towards hypercapnia than juveniles and adults, which may have negative repercussions on the biological fitness of cuttlefish hatchlings in future oceans.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-02-01
    Description: Ocean acidification and warming (OAW) are occurring globally. Additionally, at a more local scale the spreading of hypoxic conditions is promoted by eutrophication and warming. In the semi-enclosed brackish Baltic Sea, occasional upwelling in late summer and autumn may expose even shallow-water communities including the macroalga Fucus vesiculosus to particularly acidified, nutrient-rich and oxygen-poor water bodies. During summer 2014 (July–September) sibling groups of early life-stage F. vesiculosus were exposed to OAW in the presence and absence of enhanced nutrient levels and, subsequently to a single upwelling event in a near-natural scenario which included all environmental fluctuations in the Kiel Fjord, southwestern Baltic Sea, Germany (54°27 ´N, 10°11 ´W). We strove to elucidate the single and combined impacts of these potential stressors, and how stress sensitivity varies among genetically different sibling groups. Enhanced by a circumstantial natural heat wave, warming and acidification increased mortalities and reduced growth in F. vesiculosus germlings. This impact, however, was mitigated by enhanced nutrient conditions. Survival under OAW conditions strongly varied among sibling groups hinting at a substantial adaptive potential of the natural Fucus populations in the Western Baltic. A three-day experimental upwelling caused severe mortality of Fucus germlings, which was substantially more severe in those sibling groups which previously had been exposed to OAW. Our results show that global (OAW), regional (nutrient enrichment) and local pressures (upwelling), both alone and co-occurring may have synergistic and antagonistic effects on survival and/or growth of Fucus germlings. This result emphasizes the need to consider combined stress effects.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-02-01
    Description: Annual growth zones in cod otoliths from the eastern Baltic stock are less discrete than in other cod stocks leading to biased age reading, which recently led to a failure of age-based assessment in the eastern Baltic cod stock. In this study, we explored the applicability of minor and trace element patterns in cod otoliths for age determination. By first identifying elements of interest in a stock without ageing problems, western Baltic cod, we then tested their applicability on another stock without ageing problems, North Sea cod, and finally applied this knowledge to estimate age of eastern Baltic cod. In western Baltic cod, matching patterns with respect to occurrence of minima and maxima in both otolith opacity and element concentrations were found for Cu, Zn, and Rb, and inverse patterns with Mg and Mn. No match was found for Pb, Ba, and Sr. In the test stock, the North Sea cod, the same patterns in Cu, Zn, Rb, Mg, and Mn signals occurred. All eastern Baltic cod with low visual contrast between growth zones exhibited clearly defined synchronous cycles in Cu, Zn, Rb and Pb. Using a combined finite differencing method and structural break models approach, the statistical significance of the local profile minima were identified, based on which their age could be estimated. Despite extensive environmental differences between the three areas examined, the element concentrations of Cu, Zn, and Rb were strongly correlated in all individuals with similar correlations in all three areas, suggesting that the incorporation mechanisms are the same for these elements and independent of environmental concentrations.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-02-01
    Description: Global warming and ocean acidification are among the most important stressors for aquatic ecosystems in the future. To investigate their direct and indirect effects on a near-natural plankton community, a multiple-stressor approach is needed. Hence, we set up mesocosms in a full-factorial design to study the effects of both warming and high CO2 on a Baltic Sea autumn plankton community, concentrating on the impacts on microzooplankton (MZP). MZP abundance, biomass, and species composition were analysed over the course of the experiment. We observed that warming led to a reduced time-lag between the phytoplankton bloom and an MZP biomass maximum. MZP showed a significantly higher growth rate and an earlier biomass peak in the warm treatments while the biomass maximum was not affected. Increased pCO2 did not result in any significant effects on MZP biomass, growth rate, or species composition irrespective of the temperature, nor did we observe any significant interactions between CO2 and temperature. We attribute this to the high tolerance of this estuarine plankton community to fluctuations in pCO2, often resulting in CO2 concentrations higher than the predicted end-of-century concentration for open oceans. In contrast, warming can be expected to directly affect MZP and strengthen its coupling with phytoplankton by enhancing its grazing pressure.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-09-23
    Description: It is currently under debate whether organisms that regulate their acid–base status under environmental hypercapnia demand additional energy. This could impair animal fitness, but might be compensated for via increased ingestion rates when food is available. No data are yet available for dominant Calanus spp. from boreal and Arctic waters. To fill this gap, we incubated Calanus glacialis at 390, 1120, and 3000 µatm for 16 d with Thalassiosira weissflogii (diatom) as food source on-board RV Polarstern in Fram Strait in 2012. Every 4 d copepods were subsampled from all CO2 treatments and clearance and ingestion rates were determined. During the SOPRAN mesocosm experiment in Bergen, Norway, 2011, we weekly collected Calanus finmarchicus from mesocosms initially adjusted to 390 and 3000 µatm CO2 and measured grazing at low and high pCO2. In addition, copepods were deep frozen for body mass analyses. Elevated pCO2 did not directly affect grazing activities and body mass, suggesting that the copepods did not have additional energy demands for coping with acidification, neither during long-term exposure nor after immediate changes in pCO2. Shifts in seawater pH thus do not seem to challenge these copepod species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-02-01
    Description: In a recent publication (Froese et al., ICES Journal of Marine Science; doi:10.1093/icesjms/fsv122), we presented a critique of the balanced harvesting (BH) approach to fishing. A short section dealt with the size-spectrum models used to justify BH, wherein we pointed out the lack of realism of these models, which mostly represented ecosystems as consisting of a single cannibalistic species. Andersen et al. (ICES Journal of Marine Science; doi:10.1093/icesjms/fsv211) commented on our paper and suggested that we criticized size-spectrum models in general and that we supposedly made several erroneous statements. We stress that we only referred to the size-spectrum models that we cited, and we respond to each supposedly erroneous statement. We still believe that the size-spectrum models used to justify BH were highly unrealistic and not suitable for evaluating real-world fishing strategies. We agree with Andersen et al. that BH is unlikely to be a useful guiding principle for ecosystem-based fisheries management, for many reasons. The use of unrealistic models is one of them.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    Oxford Univ. Press
    In:  Nephrology Dialysis Transplantation, 31 (12). pp. 2003-2011.
    Publication Date: 2020-06-22
    Description: The quest for the ideal therapeutic target in chronic kidney disease (CKD) has been riddled with many obstacles stemming from the molecular complexity of the disease and its co-morbidities. Recent advances in omics technologies and the resulting amount of available data encompassing genomics, proteomics, peptidomics, transcriptomics and metabolomics has created an opportunity for integrating omics datasets to build a comprehensive and dynamic model of the molecular changes in CKD for the purpose of biomarker and drug discovery. This article reviews relevant concepts in omics data integration using systems biology, a mathematical modelling method that globally describes a biological system on the basis of its modules and the functional connections that govern their behaviour. The review describes key databases and bioinformatics tools, as well as the challenges and limitations of the current state of the art, along with practical application to CKD therapeutic target discovery. Moreover, it describes how systems biology and visualization tools can be used to generate clinically relevant molecular models with the capability to identify specific disease pathways, recognize key events in disease development and track disease progression.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-02-01
    Description: This paper applies nonlinear Bayesian inversion to marine controlled source electromagnetic (CSEM) data collected near two sites of the Integrated Ocean Drilling Program (IODP) Expedition 311 on the northern Cascadia Margin to investigate subseafloor resistivity structure related to gas hydrate deposits and cold vents. The Cascadia margin, off the west coast of Vancouver Island, Canada, has a large accretionary prism where sediments are under pressure due to convergent plate boundary tectonics. Gas hydrate deposits and cold vent structures have previously been investigated by various geophysical methods and seabed drilling. Here, we invert time-domain CSEM data collected at Sites U1328 and U1329 of IODP Expedition 311 using Bayesian methods to derive subsurface resistivity model parameters and uncertainties. The Bayesian information criterion is applied to determine the amount of structure (number of layers in a depth-dependent model) that can be resolved by the data. The parameter space is sampled with the Metropolis–Hastings algorithm in principal-component space, utilizing parallel tempering to ensure wider and efficient sampling and convergence. Nonlinear inversion allows analysis of uncertain acquisition parameters such as time delays between receiver and transmitter clocks as well as input electrical current amplitude. Marginalizing over these instrument parameters in the inversion accounts for their contribution to the geophysical model uncertainties. One-dimensional inversion of time-domain CSEM data collected at measurement sites along a survey line allows interpretation of the subsurface resistivity structure. The data sets can be generally explained by models with 1 to 3 layers. Inversion results at U1329, at the landward edge of the gas hydrate stability zone, indicate a sediment unconformity as well as potential cold vents which were previously unknown. The resistivities generally increase upslope due to sediment erosion along the slope. Inversion results at U1328 on the middle slope suggest several vent systems close to Bullseye vent in agreement with ongoing interdisciplinary observations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-02-01
    Description: Concerns about increasing atmospheric CO2 concentrations and global warming have initiated studies on the consequences of multiple-stressor interactions on marine organisms and ecosystems. We present a fully-crossed factorial mesocosm study and assess how warming and acidification affect the abundance, body size, and fatty acid composition of copepods as a measure of nutritional quality. The experimental set-up allowed us to determine whether the effects of warming and acidification act additively, synergistically, or antagonistically on the abundance, body size, and fatty acid content of copepods, a major group of lower level consumers in marine food webs. Copepodite (developmental stages 1–5) and nauplii abundance were antagonistically affected by warming and acidification. Higher temperature decreased copepodite and nauplii abundance, while acidification partially compensated for the temperature effect. The abundance of adult copepods was negatively affected by warming. The prosome length of copepods was significantly reduced by warming, and the interaction of warming and CO2 antagonistically affected prosome length. Fatty acid composition was also significantly affected by warming. The content of saturated fatty acids increased, and the ratios of the polyunsaturated essential fatty acids docosahexaenoic- (DHA) and arachidonic acid (ARA) to total fatty acid content increased with higher temperatures. Additionally, here was a significant additive interaction effect of both parameters on arachidonic acid. Our results indicate that in a future ocean scenario, acidification might partially counteract some observed effects of increased temperature on zooplankton, while adding to others. These may be results of a fertilizing effect on phytoplankton as a copepod food source. In summary, copepod populations will be more strongly affected by warming rather than by acidifying oceans, but ocean acidification effects can modify some temperature impacts
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-09-23
    Description: The TAMMAR segment of the Mid-Atlantic Ridge forms a classic propagating system centred about two degrees south of the Kane Fracture Zone. The segment is propagating to the south at a rate of 14 mm yr−1, 15 per cent faster than the half-spreading rate. Here, we use seismic refraction data across the propagating rift, sheared zone and failed rift to investigate the crustal structure of the system. Inversion of the seismic data agrees remarkably well with crustal thicknesses determined from gravity modelling. We show that the crust is thickened beneath the highly magmatic propagating rift, reaching a maximum thickness of almost 8 km along the seismic line and an inferred (from gravity) thickness of about 9 km at its centre. In contrast, the crust in the sheared zone is mostly 4.5–6.5 km thick, averaging over 1 km thinner than normal oceanic crust, and reaching a minimum thickness of only 3.5 km in its NW corner. Along the seismic line, it reaches a minimum thickness of under 5 km. The PmP reflection beneath the sheared zone and failed rift is very weak or absent, suggesting serpentinisation beneath the Moho, and thus effective transport of water through the sheared zone crust. We ascribe this increased porosity in the sheared zone to extensive fracturing and faulting during deformation. We show that a bookshelf-faulting kinematic model predicts significantly more crustal thinning than is observed, suggesting that an additional mechanism of deformation is required. We therefore propose that deformation is partitioned between bookshelf faulting and simple shear, with no more than 60 per cent taken up by bookshelf faulting.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2021-04-23
    Description: Every year, the oceans absorb about 30% of anthropogenic carbon dioxide (CO2) leading to a re-equilibration of the marine carbonate system and decreasing seawater pH. Today, there is increasing awareness that these changes–summarized by the term ocean acidification (OA)–could differentially affect the competitive ability of marine organisms, thereby provoking a restructuring of marine ecosystems and biogeochemical element cycles. In winter 2013, we deployed ten pelagic mesocosms in the Gullmar Fjord at the Swedish west coast in order to study the effect of OA on plankton ecology and biogeochemistry under close to natural conditions. Five of the ten mesocosms were left unperturbed and served as controls (~380 μatm pCO2), whereas the others were enriched with CO2-saturated water to simulate realistic end-of-the-century carbonate chemistry conditions (~760 μatm pCO2). We ran the experiment for 113 days which allowed us to study the influence of high CO2 on an entire winter-to-summer plankton succession and to investigate the potential of some plankton organisms for evolutionary adaptation to OA in their natural environment. This paper is the first in a PLOS collection and provides a detailed overview on the experimental design, important events, and the key complexities of such a “long-term mesocosm” approach. Furthermore, we analyzed whether simulated end-of-the-century carbonate chemistry conditions could lead to a significant restructuring of the plankton community in the course of the succession. At the level of detail analyzed in this overview paper we found that CO2-induced differences in plankton community composition were non-detectable during most of the succession except for a period where a phytoplankton bloom was fueled by remineralized nutrients. These results indicate: (1) Long-term studies with pelagic ecosystems are necessary to uncover OA-sensitive stages of succession. (2) Plankton communities fueled by regenerated nutrients may be more responsive to changing carbonate chemistry than those having access to high inorganic nutrient concentrations and may deserve particular attention in future studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-02-01
    Description: Aquatic invertebrate communities are influenced by interactions between the abiotic and biotic environment at multiple spatial and temporal scales. Studies of mesozooplankton community patterns in relation to spatial and temporal scales are rare. In this study, we examined scale-specific variability of mesozooplankton in the shallow coastal Baltic Sea and related this variability to key environmental proxies. Seasonality defined the majority of variability in taxonomic composition and abundance patterns, as well as in aggregated parameters of zooplankton. However, these properties also varied spatially at a large, 100-km scale. The variability in all properties except taxonomic composition was negligible at the smaller spatial scale. Taxonomic richness increased until moderate levels of total abundance, whereas peak blooms were always characterized by higher dark diversity. Shannon diversity was unrelated to total abundance. Observed spatio-temporal patterns were strongly related to abiotic forcing and uncoupled from phytoplankton standing stock and primary production. Results show the importance of seasonality over spatial variability and abiotic factors over phytoplankton variability for sub-boreal brackish coastal mesozooplankton at the spatial scales studied. Information loss from spatial generalization can be larger for taxonomic occurrences and rare species than for species abundances and aggregated community parameters such as total abundance or taxonomic richness.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-02-01
    Description: Coccolithophores are a vital part of oceanic phytoplankton assemblages that produce organic matter and calcium carbonate (CaCO3) containing traces of other elements (i.e. Sr and Mg). Their associated carbon export from the euphotic zone to the oceans' interior plays a crucial role in CO2 feedback mechanisms and biogeochemical cycles. The coccolithophore Emiliania huxleyi has been widely studied as a model organism to understand physiological, biogeochemical, and ecological processes in marine sciences. Here, we show the inter-strain variability in physiological and biogeochemical traits in 13 strains of E. huxleyi from various biogeographical provinces obtained from culture collections commonly used in the literature. Our results demonstrate that inter-strain genetic variability has greater potential to induce larger phenotypic differences than the phenotypic plasticity of single strains cultured under a broad range of variable environmental conditions. The range of variation found in physiological parameters and calcite Sr:Ca highlights the need to reconsider phenotypic variability in paleoproxy calibrations and model parameterizations to adequately translate findings from single strain laboratory experiments to the real ocean.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: other
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-02-01
    Description: How fisheries will be impacted by climate change is far from understood. While some fish populations may be able to escape global warming via range shifts, they cannot escape ocean acidification (OA), an inevitable consequence of the dissolution of anthropogenic carbon dioxide (CO2) emissions in marine waters. How ocean acidification affects population dynamics of commercially important fish species is critical for adapting management practices of exploited fish populations. Ocean acidification has been shown to impair fish larvae’s sensory abilities, affect the morphology of otoliths, cause tissue damage and cause behavioural changes. Here, we obtain first experimental mortality estimates for Atlantic cod larvae under OA and incorporate these effects into recruitment models. End-of-century levels of ocean acidification (~1100 μatm according to the IPCC RCP 8.5) resulted in a doubling of daily mortality rates compared to present-day CO2 concentrations during the first 25 days post hatching (dph), a critical phase for population recruitment. These results were consistent under different feeding regimes, stocking densities and in two cod populations (Western Baltic and Barents Sea stock). When mortality data were included into Ricker-type stock-recruitment models, recruitment was reduced to an average of 8 and 24% of current recruitment for the two populations, respectively. Our results highlight the importance of including vulnerable early life stages when addressing effects of climate change on fish stocks.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-02-01
    Description: Little is known about the effects that subducting an oceanic large igneous province (LIP) has on the petrogenesis of submarine arc volcanoes and their geochemical composition. The southern Kermadec arc represents a rare example where an LIP—the Hikurangi Plateau—is currently subducting and where its effect on mantle composition, element recycling and arc volcanism can be studied. We present mineral chemistry and whole-rock major and trace element, and Sr–Nd–Pb isotope data from samples recovered from the southern Kermadec arc volcanoes Rumble II East and Rumble II West, together with shipboard gravity and magnetic measurements. The Rumble II volcanoes (including a volcanic cone ∼10 km further west) form an ∼23 km long arc–backarc transect located ∼250 km north of New Zealand above the subducting Hikurangi Plateau. Although only a short distance apart, rocks from the two volcanoes have different mineral and whole-rock geochemical compositions. Lavas from Rumble II East are predominantly basaltic and contain primitive olivine phenocrysts (≤Fo91), high-Mg# clinopyroxene (≤96) and anorthitic plagioclase (≤An97). Geochemically these lavas are very diverse and cover a spectrum from low Th/Yb (〈0·15) at high Ba/Th (〉1014) to higher Th/Yb (〉0·15) at lower Ba/Th (〈844). This spectrum, together with 206Pb/204Pb and 143Nd/144Nd in the range of 18·74–18·83 and 0·51309–0·51298 respectively (at similar to slightly elevated 87Sr/86Sr), suggests a mantle wedge that has undergone previous melt extraction and significant fluid addition from the subducting Pacific Plate and that contains sediment and HIMU-type Hikurangi Plateau components. The geochemistry of the sediment–HIMU-type components is exemplified in an olivine pyroxenite (e.g. 206Pb/204Pb = 20·02; 87Sr/86Sr = 0·70516; 143Nd/144Nd = 0·5126). We propose that the olivine pyroxenite formed through melt or fluid–rock metasomatism and represents the first direct evidence of a near Moho arc mantle rock that shows the imprint from a subducting HIMU-type (Hikurangi) seamount. Conversely, lavas from Rumble II West and the cone ∼10 km to the west are generally more silica rich than Rumble II East lavas and mainly contain plagioclase with less ortho- and clinopyroxene + olivine phenocrysts. The low Ba/Th (〈470) and 206Pb/204Pb (〈18·74), a range of 143Nd/144Nd (0·51297–0·51307) and elevated Th/Yb (0·13–0·39) in these lavas can best be explained by minor sediment input into a less depleted mantle wedge. In addition, the geochemical composition of the Rumble II West lavas does not require involvement of a Hikurangi component, placing a spatial limit on Hikurangi material influencing regional melt generation beneath the backarc. Supported by a gravity model requiring two distinct magma chambers, the different geochemical compositions of Rumble II East and West lavas are inconsistent with a shared magma plumbing system. The different geochemical compositions of lavas from the two Rumble II volcanoes furthermore demonstrate that across-arc geochemical heterogeneities can occur within a few kilometres and may originate from both a geochemically heterogeneous mantle wedge and Moho transition layer, recording inherited geochemical heterogeneities beneath the volcanoes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-30
    Description: Recent studies have analysed valuable compilations of data for the size-scaling of phytoplankton traits, but these cannot be employed directly in most large-scale modelling studies, which typically do not explicitly resolve the relevant trait values. Although some recent large-scale modelling studies resolve species composition and sorting within communities, most do not account for the observed flexible response of phytoplankton communities, such as the dynamic acclimation often observed in laboratory experiments. In order to derive a simple yet flexible model of phytoplankton growth that can be useful for a wide variety of ocean modelling applications, we combine two trade-offs, one for growth and the other for nutrient uptake, under the optimality assumption, i.e. that intracellular resources are dynamically allocated to maximize growth rate. This yields an explicit equation for growth as a function of nutrient concentration and daily averaged irradiance. We furthermore show how with this model effective Monod parameter values depend on both the underlying trait values and environmental conditions. We apply this new model to two contrasting time-series observation sites, including idealized simulations of size diversity. The flexible model responds differently compared with an inflexible control, suggesting that acclimation by individual species could impact models of plankton diversity.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-02-01
    Description: Herring, Clupea harengus, is one of the ecologically and commercially most important species in European northern seas, where two distinct ecotypes have been described based on spawning time; spring and autumn. To date, it is unknown if these spring and autumn spawning herring constitute genetically distinct units. We assessed levels of genetic divergence between spring and autumn spawning herring in the Baltic Sea using two types of DNA markers, microsatellites and Single Nucleotide Polymorphisms, and compared the results with data for autumn spawning North Sea herring. Temporally replicated analyses reveal clear genetic differences between ecotypes and hence support reproductive isolation. Loci showing non-neutral behaviour, so-called outlier loci, show convergence between autumn spawning herring from demographically disjoint populations, potentially reflecting selective processes associated with autumn spawning ecotypes. The abundance and exploitation of the two ecotypes have varied strongly over space and time in the Baltic Sea, where autumn spawners have faced strong depression for decades. The results therefore have practical implications by highlighting the need for specific management of these co-occurring ecotypes to meet requirements for sustainable exploitation and ensure optimal livelihood for coastal communities
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-03-05
    Description: Micromonas is a unicellular motile alga within the Prasinophyceae, a green algal group that is related to land plants. This picoeukaryote (〈2 μm diameter) is widespread in the marine environment but is not well understood at the cellular level. Here, we examine shifts in mRNA and protein expression over the course of the day-night cycle using triplicated mid-exponential, nutrient replete cultures of Micromonas pusilla CCMP1545. Samples were collected at key transition points during the diel cycle for evaluation using high-throughput LC-MS proteomics. In conjunction, matched mRNA samples from the same time points were sequenced using pair-ended directional Illumina RNA-Seq to investigate the dynamics and relationship between the mRNA and protein expression programs of M. pusilla. Similar to a prior study of the marine cyanobacterium Prochlorococcus, we found significant divergence in the mRNA and proteomics expression dynamics in response to the light:dark cycle. Additionally, expressional responses of genes and the proteins they encoded could also be variable within the same metabolic pathway, such as we observed in the oxygenic photosynthesis pathway. A regression framework was used to predict protein levels from both mRNA expression and gene-specific sequence-based features. Several features in the genome sequence were found to influence protein abundance including codon usage as well as 3′ UTR length and structure. Collectively, our studies provide insights into the regulation of the proteome over a diel cycle as well as the relationships between transcriptional and translational programs in the widespread marine green alga Micromonas. © 2016, Public Library of Science. All rights reserved. This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2022-04-26
    Description: In the Baltic Sea, two genetically distinct cod populations occur, the eastern and the western Baltic cod. Since 2006, cod abundance has increased substantially in the Arkona Basin (SD 24), the potential mixing area between the two stocks management areas, presumably due to spill-over from the eastern stock. In this study, the spatio-temporal dynamics of stock mixing were analysed using shape analysis of archived otoliths. Further, the impact of eastern cod immigration on recruitment in the western Baltic Sea was investigated using hydrographic drift modelling. The percentage of eastern Baltic cod in the Arkona Basin increased from ca. 30% before 2005 to 〉80% in recent years. Geographic patterns in stock mixing with a pronounced east–west trend suggest that immigration occurs north of Bornholm, but propagates throughout the Arkona Basin. The immigration cannot be attributed to spawning migration, as no seasonal trend in stock mixing was observed. Based on environmental threshold levels for egg survival and time-series of hydrography data, the habitat suitable for successful spawning of eastern cod was estimated to range between 20 and 50% of the maximum possible habitat size, limited by primarily low salinity. Best conditions occurred irregularly in May–end June, interspersed with years where successful spawning was virtually impossible. Using a coupled hydrodynamic modelling and particle-tracking approach, the drift and survival of drifters representing eastern cod eggs was estimated. On average, 19% of the drifters in the Arkona Basin survive to the end of the yolk-sac stage, with mortality primarily after bottom contact due to low salinity. The general drift direction of the surviving larvae was towards the east. Therefore, it is the immigration of eastern cod, rather than larval transport, that contributes to cod recruitment in the western Baltic Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2023-08-01
    Description: A recent optimality-based model for phytoplankton growth and diazotrophy was applied at two stations located in the oligotrophic western and the ultra-oligotrophic eastern subtropical North Atlantic. Contrary to the common view that diazotrophy is favoured by nitrogen (N) depletion relative to the Redfield equivalent of phosphorus (P), we find that optimality-based diazotrophy could explain N fixation in both regions in spite of relatively high N:P supply ratios. This is possible because the availability of an additional source of N for diazotrophs makes them strong competitors for P under oligotrophic conditions. The best reproduction of observations, especially of net primary production, is only achieved with preferential remineralization of P relative to N and atmospheric deposition. In line with observations, a higher rate of nitrogen fixation is predicted for the eastern site, owing to a larger niche for diazotrophs resulting from stronger oligotrophy and lower N:P supply ratios due to weaker atmospheric N deposition. Because the competitive advantage of diazotrophs under nutrient starvation diminishes with increasing supply N:P ratio, the predicted increase of atmospheric N deposition due to anthropogenic activity could negatively affect N2 fixation in the Atlantic Ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-09-23
    Description: Olivine major and trace element compositions from 12 basalts from the southern Payenia volcanic province in Argentina have been analyzed by electron microprobe and laser ablation inductively coupled plasma mass spectrometry. The olivines have high Fe/Mn and low Ca/Fe and many fall at the end of the global olivine array, indicating that they were formed from a pyroxene-rich source distinct from typical mantle peridotite. The olivines with the highest Fe/Mn have higher Zn/Fe, Zn and Co and lower Co/Fe than the olivines with lower Fe/Mn, also suggesting contributions from a pyroxene-rich source. Together with whole-rock radiogenic isotopes and elemental concentrations, the samples indicate mixing between two mantle sources: (1) a pyroxene-rich source with EM-1 ocean island basalt type trace element and isotope characteristics; (2) a peridotitic source with more radiogenic Pb that was metasomatized by subduction-zone fluids and/or melts. The increasing contributions from the pyroxene-rich source in the southern Payenia basalts are correlated with an increasing Fe-enrichment, which caused the olivines to have lower forsterite contents at a given Ni content. Al-in-olivine crystallization temperatures measured on olivine–spinel pairs are between 1155 and 1243°C and indicate that the magmas formed at normal upper mantle (asthenospheric) temperatures of ∼1350°C. The pyroxene-rich material is interpreted to have been brought up from the deeper parts of the upper mantle by vigorous asthenospheric upwelling caused by break-off of the Nazca slab south of Payenia during the Pliocene and roll-back of the subducting slab beneath Payenia. The pyroxene-rich mantle mixed with peridotitic metasomatized South Atlantic mantle in the mantle wedge beneath Payenia.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    Oxford Univ. Press
    In:  Journal of Plankton Research, 37 (1). pp. 11-15.
    Publication Date: 2017-04-13
    Description: The comb jelly Mnemiopsis leidyi is considered to be a successful invasive species, partly due to its high reproduction potential. However, due to the absence of direct carbon measurements of eggs, specific reproduction rates remain uncertain. We show that egg carbon is 0.22 ± 0.02 µg C and up to 21 times higher than previously extrapolated. With maximum rates of 11 232 eggs ind−1 day−1, largest animals in northern Europe invest ∼10% day−1 of their body carbon into reproduction. The comb jelly M. leidyi has received wide public and scientific attention during the last decades due to its commonly observed formation of bloom abundances in native and invaded areas (e.g. Costello et al., 2012; Riisgård et al., 2012). One of the traits suggested to be responsible for M. leidyi's invasion success is its high fecundity. At the northern end of its distribution range in native areas, M. leidyi has been shown to produce up to 9380 and 14 233 eggs ind−1 day−1 (Kremer, 1976a; Graham et al., 2009), with similar rates of 9910 eggs ind−1 day−1 for the native southern population in Biscayne Bay, FL, USA (Baker and Reeve, 1974). Within invaded European waters, rates of up to 3000 and 12 000 eggs ind−1 day−1 have been recorded for northern and southern populations, respectively (Zaika and Revkov, 1994; Javidpour et al., 2009). Since M. leidyi is a simultaneous hermaphrodite and fertilized eggs are produced on a daily basis during favorable conditions (Jaspers, 2012), M. leidyi can circumvent the Allee effect and efficiently seed new populations even from few founding individuals. Although …
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...