ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk  (22)
  • American Geophysical Union  (17)
  • Elsevier B.V.  (4)
  • American Chemical Society (ACS)
  • American Institute of Physics (AIP)
  • American Society of Civil Engineers
  • Canadian Center of Science and Education
  • Copernicus
  • Wiley
  • 2015-2019  (3)
  • 2010-2014  (19)
  • 1995-1999
  • 1990-1994
  • 1980-1984
Sammlung
Verlag/Herausgeber
Erscheinungszeitraum
  • 2015-2019  (3)
  • 2010-2014  (19)
  • 1995-1999
  • 1990-1994
  • 1980-1984
  • +
Jahr
  • 1
    Publikationsdatum: 2021-03-01
    Beschreibung: A new period of eruptive activity started at Turrialba volcano, Costa Rica, in 2010 after almost 150 years of quiescence. This activity has been characterized by sporadic explosions whose frequency clearly increased since October 2014. This study aimed to identify the mechanisms that triggered the resumption of this eruptive activity and characterize the evolution of the phenomena over the past 2 years. We integrate 3He/4He data available on fumarole gases collected in the summit area of Turrialba between 1999 and 2011 with new measurements made on samples collected between September 2014 and February 2016. The results of a petrological investigation of the products that erupted between October 2014 and May 2015 are also presented. We infer that the resumption of eruptive activity in 2010 was triggered by a replenishment of the plumbing system of Turrialba by a new batch of magma. This is supported by the increase in 3He/4He values observed since 2005 at the crater fumaroles and by comparable high values in September 2014, just before the onset of the new eruptive phase. The presence of a number of fresh and juvenile glassy shards in the erupted products increased between October 2014 and May 2015, suggesting the involvement of new magma with a composition similar to that erupted in 1864–1866. We conclude that the increase in 3He/4He at the summit fumaroles since October 2015 represents strong evidence of a new phase of magma replenishment, which implies that the level of activity remains high at the volcano.
    Beschreibung: Published
    Beschreibung: 3V. Proprietà dei magmi e dei prodotti vulcanici
    Beschreibung: 4V. Dinamica dei processi pre-eruttivi
    Beschreibung: 5V. Dinamica dei processi eruttivi e post-eruttivi
    Beschreibung: JCR Journal
    Schlagwort(e): Turrialba volcano ; eruptive activity ; 3He/4He ; fumarole gases ; glassy shards ; juvenile component ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.08. Volcanic arcs ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2017-04-04
    Beschreibung: The fumarolic gas output has not been quantified for any of the currently deforming calderas worldwide, due to the lack of suitable gas flux sensing techniques. In view of resumption of ground uplift (since 2005) and the associated variations in gas chemistry, Campi Flegrei, in southern Italy, is one of the restless calderas where gas flux observations are especially necessary. Here we report the first ever obtained estimate of the Campi Flegrei fumarolic gas output, based on a set of MultiGAS surveys (performed in 2012 and 2013) with an ad-hoc-designed measurement setup. We estimate that the current Campi Flegrei fumarolic sulphur (S) flux is low, on the order of 1.5–2.2 tons/day, suggesting substantial scrubbing of magmatic S by the hydrothermal system. However, the fumarolic carbon dioxide (CO2) output is ∼460±160 tons/day (mean±SD), which is surprisingly high for a dormant volcano in the hydrothermal stage of activity, and results in a combined (fumaroles + soil) CO2 output of ∼1560 tons/day. Assuming magma to be the predominant source, we propose that the current CO2 output can be supplied by either (i) a large (0.6–4.6 km3), deeply stored (〉7 km) magmatic source with low CO2 contents (0.05–0.1 wt%) or (ii) by a small to medium-sized (∼0.01–0.1 km3) but CO2-rich (2 wt%) magma, possibly stored at pressures of ∼100 to 120 MPa. Independent geophysical evidence (e.g., inferred from geodetic and gravity data) is needed to distinguish between these two possibilities.
    Beschreibung: Published
    Beschreibung: 4153–4169
    Beschreibung: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Beschreibung: JCR Journal
    Beschreibung: restricted
    Schlagwort(e): Campi Flegrei ; calderas ; gas output ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2017-04-04
    Beschreibung: The results of three-dimensional discrete element modeling (DEM) presented in this paper confirm the grain size and flow volume effects on granular flow mobility that were observed in laboratory experiments where batches of granular material traveled down a curved chute. Our numerical simulations are able to predict the correct relative mobility of the granular flows because they take into account particle interactions and, thus, the energy dissipated by the flows. The results illustrated here are obtained without prior fine tuning of the parameter values to get the desired output. The grain size and flow volume effects can be expressed by a linear relationship between scaling parameters where the finer the grain size or the smaller the flow volume, the more mobile the centre of mass of the granular flows. The numerical simulations reveal also the effect of the initial compaction of the granular masses before release. The larger the initial compaction, the more mobile the centre of mass of the granular flows. Both grain size effect and compaction effect are explained by different particle agitations per unit of flow mass that cause different energy dissipations per unit of travel distance. The volume effect is explained by the backward accretion of the deposits that occurs wherever there is a change of slope (either gradual or abrupt). Our results are relevant for the understanding of the travel and deposition mechanisms of geophysical flows such as rock avalanches and pyroclastic flows.
    Beschreibung: Published
    Beschreibung: 2350–2366
    Beschreibung: 3V. Dinamiche e scenari eruttivi
    Beschreibung: JCR Journal
    Beschreibung: open
    Schlagwort(e): Pyroclastic Flows ; Mobility ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2017-04-04
    Beschreibung: Over the last four decades Etna has shown a high output rate through numerous eruptions. The volcano has displayed two eruptive behaviors. The first is characterized by effusive eruptions that efficiently drained the storage system and emitted large volumes of magma, the second behavior is related to lava fountains, erupting small magma batches, which are normally with high frequency and have been considered as precursors of major effusive eruptions. In this paper, we present an updated estimation of emitted volumes from Etna eruptions, which include the 38 lava fountain episodes that occurred from January 2011 to April 2013. These recent explosive episodes have been frequent, discharging significant magma volumes. Observing the steady trend of magma output over time, we present insights on expected erupted volumes. We highlight that the January 2011 –April 2013 lava fountains, efficiently drained the intermediate-shallow storage system and favored a balance between the incoming and outgoing magma.
    Beschreibung: Published
    Beschreibung: 6069–6073
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: JCR Journal
    Beschreibung: open
    Schlagwort(e): Eruption mechanisms and flow emplacement ; Volcanic hazards and risks ; volcano monitoring ; erupted volumes ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2017-04-04
    Beschreibung: Volcanic rift zones, characterized by repeated dike emplacements, are expected to delimit the upper portion of unstable flanks at basaltic edifices. We use nearly two decades of InSAR observations excluding wintertime acquisitions, to analyze the relationships between rift zones, dike emplacement and flank instability at Etna. The results highlight a general eastward shift of the volcano summit, including the northeast and south rifts. This steadystate eastward movement (1-2 cm/yr) is interrupted or even reversed during transient dike injections. Detailed analysis of the northeast rift shows that only during phases of dike injection, as in 2002, does the rift transiently becomes the upper border of the unstable flank. The flank's steady-state eastward movement is inferred to result from the interplay between magmatic activity, asymmetric topographic unbuttressing, and east-dipping detachment geometry at its base. This study documents the first evidence of steady-state volcano rift instability interrupted by transient dike injection at basaltic edifices.
    Beschreibung: Partially funded by INGV and the Italian DPC (DPC-INGV project V4 “Flank”). ERS and ENVISAT SAR data were provided by ESA through the Cat-1 project no. 4532 and the GEO Supersite initiative. The DEM was obtained from the SRTM archive. ERS-1/2 orbits are courtesy of the TU-Delft, The Netherlands. SAR data processing has been done at IREACNR, partially carried out under contract “Volcanic Risk System (SRV)” funded by the Italian Space Agency (ASI).
    Beschreibung: Published
    Beschreibung: L20311
    Beschreibung: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: 1.10. TTC - Telerilevamento
    Beschreibung: 3.2. Tettonica attiva
    Beschreibung: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Beschreibung: 3.6. Fisica del vulcanismo
    Beschreibung: 4.3. TTC - Scenari di pericolosità vulcanica
    Beschreibung: JCR Journal
    Beschreibung: restricted
    Schlagwort(e): flank instability ; rift zones ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    American Geophysical Union
    Publikationsdatum: 2017-04-04
    Beschreibung: Many accounts, anecdotal and statistical, have noted a causal effect on volcanic eruptions from large, not too distant, earthquakes. Physical mechanisms have been proposed that explain how small static stress changes, or larger transient dynamic stress changes, can have observable effects on a volcano. While only ∼0.4% of eruptions appear to be directly triggered within a few days of an earthquake, these physical mechanisms also imply the possibility of delayed triggering. In the few regional studies conducted, data issues (selection bias and scarcity, inhomogeneity, and cleaning of data) have tended to obscure any clear signal. Using a perturbation technique, we first show that the Indonesian volcanic region possesses no statistically significant coupling for the region as a whole. We then augment a number of point process models for eruption onsets by a time‐, distance‐, and earthquake magnitude–dependent triggering term and apply this to the individual volcanoes. This method weighs both positive and negative (i.e., absence of eruptions following an earthquake) evidence of triggering. Of 35 volcanoes with at least three eruptions in the study region, seven (Marapi, Talang, Krakatau, Slamet, Ebulobo, Lewotobi, and Ruang) show statistical evidence of triggering over varying temporal and spatial scales, but only after the internal state of the volcano is accounted for. This confirms that triggering is fundamentally a property of the internal magma plumbing of the volcano in question and that any earthquake can potentially “advance the clock” toward a future eruption. This is further supported by the absence of any dependence on triggering of the eruption size
    Beschreibung: Published
    Beschreibung: B05204
    Beschreibung: 3.6. Fisica del vulcanismo
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): earthquake eruption interaction ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2012-02-03
    Beschreibung: A simple linear relation can be used to link time averaged discharge rate (TADR) and lava flow area (A). The relation applies to given insulation conditions, as described by the characteristic flow surface temperature (Te), and will vary from case-to-case depending on rheological and topographic influences on flow spreading. Most flows have insulation conditions that change through time, modifying the relationship between TADR and area as insulation conditions evolve. Using lidar data we can define TADR, the flow area that the discharge feeds and Te, allowing generation of a case-specific relation to convert satellite-data-derived flow areas to TADR. For Etna's 2006 lava flow field we obtain a relation whereby TADR = 5.6 × 10−6 A for well insulated conditions (Te = 100°C) and TADR = 1.5 × 10−4 A for poorly insulated conditions (Te = 600°C).
    Beschreibung: Published
    Beschreibung: L20308
    Beschreibung: 1.10. TTC - Telerilevamento
    Beschreibung: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Beschreibung: 3.6. Fisica del vulcanismo
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): lava flow ; discharge rate ; area ; surface temperature ; lidar ; Etna. ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2017-04-04
    Beschreibung: Many volcanic edifices are subject to flank failure, usually produced by a combination of events, rather than any single process. From a dynamic point of view, the cause of collapse can be divided into factors that contribute to an increase in shear stress, and factors that contribute to the reduction in the friction coefficient μ of a potential basal failure plane. We study the potential for flank failure at Mount Etna considering a schematic section of the eastern flank, approximated by a wedge-like block. For such geometry, we perform a (steady state) limit equilibrium analysis: the resolution of the forces parallel to the possible basal failure plane allows us to determine the total force acting on the potentially unstable wedge. An estimate of the relative strength of these forces suggests that, in first approximation, the stability is controlled primarily by the balance between block weight, lithostatic load and magmatic forces. Any other force (sea load, hydrostatic uplift, and the uplift due to mechanical and thermal pore-fluid pressure) may be considered of second order. To study the model sensitivity, we let the inferred slope α of the basal surface failure vary between −10° and 10°, and consider three possible scenarios: no magma loading, magmastatic load, and magmastatic load with magma overpressure. We use error propagation to include in our analysis the uncertainties in the estimates of the mechanics and geometrical parameters controlling the block equilibrium. When there is no magma loading, the ratio between destabilizing and stabilizing forces is usually smaller than the coefficient of friction of the basal failure plane. In the absence of an initiating mechanism, and with the nominal values of the coefficient of friction μ = 0.7 ± 0.1 proposed, the representative wedge will remain stable or continue to move at constant speed. In presence of magmastatic forces, the influence of the lateral restraint decreases. If we consider the magmastatic load only, the block will remain stable (or continue to move at constant speed), unless the transient mechanical and thermal pressurization significantly decrease the friction coefficient, increasing the instability of the flank wedge for α 〉 5° (seaward dipping decollement). When the magma overpressure contribution is included in the equilibrium analysis, the ratio between destabilizing and stabilizing forces is of the same order or larger than the coefficient of friction of the basal failure plane, and the block will become unstable (or accelerate), especially in the case of the reduction in friction coefficient. Finally, our work suggests that the major challenge in studying flank instability at Mount Etna is not the lack of an appropriate physical model, but the limited knowledge of the mechanical and geometrical parameters describing the block equilibrium.
    Beschreibung: This work was funded by Istituto Nazionale di Geofisica e Vulcanologia (INGV) and the Italian Dipartimento per la Protezione Civile (DPC) (DPC-INGV project V4 “Flank”).
    Beschreibung: Published
    Beschreibung: 153-164
    Beschreibung: 3.2. Tettonica attiva
    Beschreibung: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Beschreibung: 3.6. Fisica del vulcanismo
    Beschreibung: 4.3. TTC - Scenari di pericolosità vulcanica
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Etna ; dike intrusion ; flank instability ; poro-elasticity ; analytical modelling ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2017-04-04
    Beschreibung: A new 2D/3D Lagrangian particle model (named LPAC) for the dynamics of clasts ejected during explosive eruptions is presented. The novelty of the model lies in the one-way coupling of the carrier flow field, given by a Eulerian multiphase flow code, and the particles. The model is based on a simplification of the Basset-Boussinesq-Oseen equation, expressing the Lagrangian equation of a particle as the sum of the forces exerted on it along its trajectory. It is assumed that particles are non-interacting and do not affect the background carrier flow and that the drag coefficient is constant. The model was applied to large clasts produced by Vulcanian explosions, in particular those occurring in August 1997 at Soufrière Hills Volcano, Montserrat (West Indies, UK). Simulation results allowed parametric studies as well as semi-quantitative comparisons between modeling results and field evidence. Major results include (1) the carrier flow was found to play a fundamental role even for meter-sized particles—a 1 m diameter block is predicted to reach a distance that is about 70% greater than that predicted without the effect of the carrier flow (assuming the same initial velocity), (2) assumption of the initial velocity of the particle was dropped thanks to the description of both the acceleration and deceleration phases along the particle trajectory, (3) by adopting experimentally based drag coefficients, large particles were able to reach greater distances with respect to smaller particles consistently with field observations and (4) the initial depth of the particle in the conduit was found to mainly influence the ejection velocity while the initial radial position with respect to the conduit axis was found to play a major role on the distance reached by the particle.
    Beschreibung: Published
    Beschreibung: B08206
    Beschreibung: 3.7. Dinamica del clima e dell'oceano
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): ballistic dynamics ; Lagrangian modeling ; explosive volcanism ; Montserrat ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2017-04-04
    Beschreibung: On 16 November 2006 a flank collapse affected the unstable eastern slope of the South-East Crater (SEC) of Mount Etna. The collapse occurred during one of the paroxysmal events with sustained strombolian activity that characterized the August–December 2006 eruption and was triggered by erosion of loose, hydrothermally altered material of the steep south-east sector of SEC from the outpour of lava. The collapse produced a debris avalanche that involved both lithic and juvenile material and resulted in a deposit emplaced on the eastern flank of the volcano up to 1.2 km away from the source. The total volume of the deposit was estimated to be in the order of 330,000–413,000 m3. The reconstruction of the collapse event was simulated using TITAN2D software designed to model granular avalanches and landslides. This approach can be used to estimate areas that may be affected by similar collapse events in the future. The area affected by the 16 November 2006 lateral collapse of SEC was a small portion of the Mount Etna summit area, but the fact that no one was killed or injured should be considered fortuitous. The summit and adjacent areas of the volcano, in fact, are usually visited by many tourists who are not prepared to face this type of danger. The 16 November 2006 collapse points to the need to be prepared for similar events through scientific investigation (analysis of flank instability, numerical simulation of flows) and development of specific civil protection plans.
    Beschreibung: Published
    Beschreibung: B02204
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Mount Etna ; flank instability ; volcaniclastic deposit ; granular flows ; numerical simulation ; volcanic hazard ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 11
    Publikationsdatum: 2017-04-04
    Beschreibung: We conducted geophysical–geochemical measurements on a ∼2 kmN–S profile cutting across the Pernicana Fault, one of the most active tectonic features on the NE flank of Mt. Etna. The profile passes from the unstable E flank of the volcano (to the south) to the stable N flank and significant fluctuations in electrical resistivity, self-potential, and soil gas emissions (CO2, Rn and Th) are found. The detailed multidisciplinary analysis reveals a complex interplay between the structural setting, uprising hydrothermal fluids, meteoric fluids percolating downwards, ground permeability, and surface topography. In particular, the recovered fluid circulation model highlights that the southern sector is heavily fractured and faulted, allowing the formation of convective hydrothermal cells. Although the existence of a hydrothermal system in a volcanic area does not surprise, these results have great implications in terms of flank dynamics at Mt. Etna. Indeed, the hydrothermal activity, interacting with the Pernicana Fault activity, could enhance the flank instability. Our approach should be further extended along the full extent of the boundary between the stable and unstable sectors of Etna for a better evaluation of the geohazard in this active tectonic area.
    Beschreibung: This work was partly financed by the DPC-INGV FLANK and LAVA Projects.
    Beschreibung: Published
    Beschreibung: 137–142
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: 3.2. Tettonica attiva
    Beschreibung: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Pernicana Fault ; fluid circulation ; structural geology ; Etna ; magnetic ; electrical methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    Publikationsdatum: 2017-04-04
    Beschreibung: Assessment of the hazard from lava flow inundation at the active volcano of Mount Etna, Italy, was performed by calculating the probability of lava flow inundation at each position on the volcano. A probability distribution for the formation of new vents was calculated using geological and volcanological data from past eruptions. The simulated lava flows from these vents were emplaced using a maximum expected flow length derived from geological data on previous lava flows. Simulations were run using DOWNFLOW, a digital-elevation-model-based model designed to predict lava flow paths. Different eruptive scenarios were simulated by varying the elevation and probability distribution of eruptive points. Inundation maps show that the city of Catania and the coastal zone may only be impacted by flows erupted from low-altitude vents (〈1500 m elevation) and that flank eruptions at elevations 〉2000 m preferentially inundate the northeast and southern sectors of the volcano as well as the Valle del Bove. Eruptions occurring in the summit area (〉3000 m elevation) pose no threat to the local population. Discrepancies between the results of simple, hydrological models and those of the DOWNFLOW model show that hydrological approaches are inappropriate when dealing with Etnean lava flows. Because hydrological approaches are not designed to reproduce the full complexity of lava flow spreading, they underestimate the catchment basins when the fluid has a complex rheology.
    Beschreibung: Published
    Beschreibung: F01019
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Beschreibung: 4.3. TTC - Scenari di pericolosità vulcanica
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): volcanic hazard ; lava flow ; Mount Etna ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    Publikationsdatum: 2017-04-04
    Beschreibung: Forecasting the time, nature, and impact of future eruptions is difficult at volcanoes such as Mount Etna, in Italy, where eruptions occur from the summit and on the flanks, affecting areas distant from each other. Nonetheless, the identification and quantification of areas at risk from new eruptions are fundamental for mitigating potential human casualties and material damage. Here, we present new results from the application of a methodology to define flexible high‐resolution lava invasion susceptibility maps based on a reliable computational model for simulating lava flows at Etna and on a validation procedure for assessing the correctness of susceptibility mapping in the study area. Furthermore, specific scenarios can be extracted at any time from the simulation database, for land use and civil defense planning in the long term, to quantify, in real time, the impact of an imminent eruption, and to assess the efficiency of protective measures.
    Beschreibung: This work was sponsored by the Italian Ministry for Education, University and Research, FIRB project RBAU01RMZ4 “Lava flow simulations by Cellular Automata,” and by the National Civil Defense Department and INGV (National Institute of Geophysics and Volcanology), project V3_6/09 “V3_6 – Etna.”
    Beschreibung: Published
    Beschreibung: B04203
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Beschreibung: 3.6. Fisica del vulcanismo
    Beschreibung: 4.3. TTC - Scenari di pericolosità vulcanica
    Beschreibung: 4.4. Scenari e mitigazione del rischio ambientale
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): lava flows ; volcanic hazard ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    Publikationsdatum: 2017-04-04
    Beschreibung: An edited version of this paper was published by AGU. Copyright (2009) American Geophysical Union.
    Beschreibung: Despite volcanic risk having been defined quantitatively more than 30 years ago, this risk has been managed without being effectively measured. The recent substantial progress in quantifying eruption probability paves the way for a new era of rational science-based volcano risk management, based on what may be termed ‘‘volcanic risk metrics’’ (VRM). In this paper, we propose the basic principles of VRM, based on coupling probabilistic volcanic hazard assessment and eruption forecasting with cost-benefit analysis. The VRM strategy has the potential to rationalize decision making across a broad spectrum of volcanological questions. When should the call for evacuation be made? What early preparations should be made for a volcano crisis? Is it worthwhile waiting longer? What areas should be covered by an emergency plan? During unrest, what areas of a large volcanic field or caldera should be evacuated, and when? The VRM strategy has the paramount advantage of providing a set of quantitative and transparent rules that can be established well in advance of a crisis, optimizing and clarifying decision-making procedures. It enables volcanologists to apply all their scientific knowledge and observational information to assist authorities in quantifying the positive and negative risk implications of any decision.
    Beschreibung: Published
    Beschreibung: B03213
    Beschreibung: 4.3. TTC - Scenari di pericolosità vulcanica
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): risk assessment ; decision making ; campi flegrei ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    Publikationsdatum: 2017-04-04
    Beschreibung: Stromboli is a 3000 m high island volcano, rising to 900 m above sea-level. It is the most active volcano of the Aeolian Archipelago in the Tyrrhenian Sea (Italy). Major, large volume (1 km3) sector collapses, four occurring in the last 13 kyr, have played an important role in shaping the north-western flank (Sciara del Fuoco) of the volcano, potentially generating a high-risk tsunami hazard for the Aeolian Islands and the Italian coast. However, smaller volume, partial collapses of the Sciara del Fuoco have been shown to be more frequent tsunami-generating events. One such event occurred on 30 December 2002, when a partial collapse of the north-western flank of the island took place. The resulting landslide generated 10 m high tsunami waves that impacted the island. Multibeam bathymetry, side-scan sonar imaging and visual observations reveal that the landslide deposited 25 to 30 × 106 m3 of sediment on the submerged slope offshore from the Sciara del Fuoco. Two contiguous main deposit facies are recognized: (i) a chaotic, coarse-grained (metre-sized to centimetre-sized clasts) deposit; and (ii) a sand deposit containing a lower, cross-bedded sand layer and an upper structureless pebbly sand bed capped by sea floor ripple bedforms. The sand facies develops adjacent to and partially overlying the coarse deposits. Characteristics of the deposits suggest that they were derived from cohesionless, sandy matrix density flows. Flow rheology and dynamics led to the segregation of the density flow into sand-rich and clast-rich regions. A range of density flow transitions, both in space and in time, caused principally by particle concentration and grain-size partitioning within cohesionless parent flows was identified in the deposits of this relatively small-scale submarine landslide event.
    Beschreibung: Published
    Beschreibung: 1488-1504
    Beschreibung: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Beschreibung: 4.3. TTC - Scenari di pericolosità vulcanica
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Flow transitions ; island volcano ; subaqueous cohesionless density flows ; submarine landslide deposits ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    Publikationsdatum: 2017-04-04
    Beschreibung: Long duration time-series of the chemical composition of fumaroles and of soil CO2 flux reveal that important variations in the activity of the Solfatara fumarolic field, the most important hydrothermal site of Campi Flegrei, occurred in the 2000-2008 period. A continuous increase of the CO2 concentrations, and a general decrease of the CH4 concentrations are interpreted as the consequence of the increment of the relative amount of magmatic fluids, rich in CO2 and poor in CH4, hosted by the hydrothermal system. Contemporaneously, the H2O-CO2-He-N2 gas system shows remarkable compositional variations in the samples collected after July 2000 with respect to the previous ones, indicating the progressive arrival at the surface of a magmatic component different from that involved in the 1983-84 episode of volcanic unrest (1983-1984 bradyseism). The change starts in 2000 concurrently with the occurrence of relatively deep, long-period seismic events which were the indicator of the opening of an easy-ascent pathway for the transfer of magmatic fluids towards the shallower, brittle domain hosting the hydrothermal system. Since 2000, this magmatic gas source is active and causes ground deformations, seismicity as well as the expansion of the area affected by soil degassing of deeply derived CO2. Even though the activity will most probably be limited to the expulsion of large amounts of gases and thermal energy, as observed in other volcanoes and in the past activity of Campi Flegrei, the behavior of the system in the future is, at the moment, unpredictable.
    Beschreibung: Published
    Beschreibung: B03205
    Beschreibung: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Beschreibung: 2.4. TTC - Laboratori di geochimica dei fluidi
    Beschreibung: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Campi Flegrei ; CO2 ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 17
    Publikationsdatum: 2012-02-03
    Beschreibung: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union.
    Beschreibung: Volcano deformation may occur under different conditions. To understand how a volcano deforms, as well as relations with magmatic activity, we studied Mt. Etna in detail using interferometric synthetic aperture radar (InSAR) data from 1994 to 2008. From 1994 to 2000, the volcano inflated with a linear behavior. The inflation was accompanied by eastward and westward slip on the eastern and western flanks, respectively. The portions proximal to the summit showed higher inflation rates, whereas the distal portions showed several sectors bounded by faults, in some cases behaving as rigid blocks. From 2000 to 2003, the deformation became nonlinear, especially on the proximal eastern and western flanks, showing marked eastward and westward displacements, respectively. This behavior resulted from the deformation induced by the emplacement of feeder dikes during the 2001 and 2002–2003 eruptions. From 2003 to 2008, the deformation approached linearity again, even though the overall pattern continued to be influenced by the emplacement of the dikes from 2001 to 2002. The eastward velocity on the eastern flank showed a marked asymmetry between the faster sectors to the north and those (largely inactive) to the south. In addition, from 1994 to 2008 part of the volcano base (south, west, and north lower slopes) experienced a consistent trend of uplift on the order of ∼0.5 cm/yr. This study reveals that the flanks of Etna have undergone a complex instability resulting from three main processes. In the long term (103–104 years), the load of the volcano is responsible for the development of a peripheral bulge. In the intermediate term (≤101 years, observed from 1994 to 2000), inflation due to the accumulation of magma induces a moderate and linear uplift and outward slip of the flanks. In the short term (≤1 year, observed from 2001 to 2002), the emplacement of feeder dikes along the NE and south rifts results in a nonlinear, focused, and asymmetric deformation on the eastern and western flanks. Deformation due to flank instability is widespread at Mt. Etna, regardless of volcanic activity, and remains by far the predominant type of deformation on the volcano.
    Beschreibung: ESA provided the SAR data (Cat‐1 no. 4532 and GEO Supersite initiative). The DEM was obtained from the SRTM archive, while the ERS‐1/2 orbits are courtesy of the TU‐Delft, The Netherlands. This work was partially funded by INGV and the Italian DPC (DPCINGV project V4 “Flank”), the Italian DPC (under special agreement with IREA‐CNR), and the Italian Space Agency under contract “sistema rischio vulcanico (SRV).” The authors thank Francesco Casu, Paolo Berardino, and Riccardo Lanari for their support and Geoff Wadge and Michael Poland for their helpful and constructive review of the manuscript.
    Beschreibung: Published
    Beschreibung: B10405
    Beschreibung: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: 1.10. TTC - Telerilevamento
    Beschreibung: 3.2. Tettonica attiva
    Beschreibung: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Beschreibung: 3.6. Fisica del vulcanismo
    Beschreibung: 4.3. TTC - Scenari di pericolosità vulcanica
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Flank instability ; InSAR ; volcanoes ; Etna ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 18
    Publikationsdatum: 2017-04-04
    Beschreibung: Forecasting the time, nature and impact of future eruptions is difficult at volcanoes such as Mount Etna, in Italy, where eruptions occur from the summit and on the flanks, affecting areas distant from each other. Nonetheless, the identification and quantification of areas at risk from new eruptions is fundamental for mitigating potential human casualties and material damage. Here, we present new results from the application of a methodology to define flexible high-resolution lava invasion susceptibility maps based on a reliable computational model for simulating lava flows at Etna and on a validation procedure for assessing the correctness of susceptibility mapping in the study area. Furthermore, specific scenarios can be extracted at any time from the simulation database, for land-use and civil defence planning in the long-term, to quantify, in real-time, the impact of an imminent eruption, and to assess the efficiency of protective measures.
    Beschreibung: This work was sponsored by the Italian Ministry for Education, University and Research, FIRB project n° RBAU01RMZ4 “Lava flow simulations by Cellular Automata”, and by the National Civil Defence Department and INGV (National Institute of Geophysics and Volcanology), project V3_6/09 “V3_6 – Etna”.
    Beschreibung: In press
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Beschreibung: 3.6. Fisica del vulcanismo
    Beschreibung: 4.3. TTC - Scenari di pericolosità vulcanica
    Beschreibung: 4.4. Scenari e mitigazione del rischio ambientale
    Beschreibung: JCR Journal
    Beschreibung: open
    Schlagwort(e): lava flows ; Etna ; hazard evaluation ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 19
    Publikationsdatum: 2017-04-04
    Beschreibung: This is a parametric study that was carried out to investigate the signals generated by a hydrothermal system fed by a pulsating source of magmatic fluids. This study focuses on the effects that selected properties of the source have on the evolution of hydrothermal activity at Campi Flegrei, Italy. Numerical simulations are carried out to describe a multiphase and multicomponent hydrothermal system. Each simulation describes a short unrest phase, followed by a prolonged quiet period. During the unrest, specific properties of the fluid source (flow rate, fluid composition, source size, and unrest duration) are modified with respect to selected baseline values. The evolution of the system is tracked by looking at two parameters that can be monitored in active volcanic areas: the composition of fumarolic gases and gravity changes. The results describe the temporal evolution of these two observables and allow comparisons of the effects of different source properties. All of the simulated unrest events cause measurable changes in gas composition and gravity. For the geometry and system properties considered, these changes always last beyond the end of the unrest period, and can often persist for decades. Fluid flow rate is the source property that mostly affects the observable evolution. Gravity is more sensitive to source properties than gas composition, and it undergoes the largest and quickest changes. The results also highlight the major role that rock properties and initial conditions have in the evolution of these observable signals.
    Beschreibung: Department of Civil Protection
    Beschreibung: Published
    Beschreibung: B05201
    Beschreibung: 3.6. Fisica del vulcanismo
    Beschreibung: 4.3. TTC - Scenari di pericolosità vulcanica
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): hydrothermal fluids ; modeling ; monitoring ; signals ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 20
    Publikationsdatum: 2017-04-04
    Beschreibung: Many volcanic edifices are subject to flank failure, usually produced by a combination of events, rather than any single process. From a dynamic point of view, the cause of collapse can be divided into factors that contribute to an increase in shear stress, and factors that contribute to the reduction in the friction coefficient μ of a potential basal failure plane. We study the potential for flank failure at Mount Etna considering a schematic section of the eastern flank, approximated by a wedge-like block. For such geometry, we perform a (steady state) limit equilibrium analysis: the resolution of the forces parallel to the possible basal failure plane allows us to determine the total force acting on the potentially unstable wedge. An estimate of the relative strength of these forces suggests that, in first approximation, the stability is controlled primarily by the balance between block weight, lithostatic load and magmatic forces. Any other force (sea load, hydrostatic uplift, and the uplift due to mechanical and thermal pore-fluid pressure) may be considered of second order. To study the model sensitivity, we let the inferred slope α of the basal surface failure vary between −10° and 10°, and consider three possible scenarios: no magma loading, magmastatic load, and magmastatic load with magma overpressure. We use error propagation to include in our analysis the uncertainties in the estimates of the mechanics and geometrical parameters controlling the block equilibrium. When there is no magma loading, the ratio between destabilizing and stabilizing forces is usually smaller than the coefficient of friction of the basal failure plane. In the absence of an initiating mechanism, and with the nominal values of the coefficient of friction μ=0.7±0.1 proposed, the representative wedge will remain stable or continue to move at constant speed. In presence of magmastatic forces, the influence of the lateral restraint decreases. If we consider the magmastatic load only, the block will remain stable (or continue to move at constant speed), unless the transient mechanical and thermal pressurization significantly decrease the friction coefficient, increasing the instability of the flank wedge for αN5° (seaward dipping decollement). When the magma overpressure contribution is included in the equilibrium analysis, the ratio between destabilizing and stabilizing forces is of the same order or larger than the coefficient of friction of the basal failure plane, and the block will become unstable (or accelerate), especially in the case of the reduction in friction coefficient. Finally, our work suggests that the major challenge in studying flank instability at Mount Etna is not the lack of an appropriate physical model, but the limited knowledge of the mechanical and geometrical parameters describing the block equilibrium.
    Beschreibung: This work was funded by Istituto Nazionale di Geofisica e Vulcanologia (INGV) and the Italian Dipartimento per la Protezione Civile (DPC) (DPC-INGV project V4 “Flank”).
    Beschreibung: In press
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: 3.2. Tettonica attiva
    Beschreibung: 3.6. Fisica del vulcanismo
    Beschreibung: 4.3. TTC - Scenari di pericolosità vulcanica
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Etna ; dike intrusion ; flank instability ; poro-elasticity ; analytical modelling ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 21
    Publikationsdatum: 2017-04-04
    Beschreibung: Morphologic data for 147 cinder cones in southernGuatemala andwestern El Salvador are comparedwith data from 21 the San Francisco volcanic field, Arizona (USA), Cima volcanic field, California (USA), Michoácan–Guanajuato 22 volcanic field, Mexico, and the Lamongan volcanic field, East Java. The Guatemala cones have an average height of 23 110+/−50m, an average basal diameter of 660+/−230m and an average top diameter of 180+/−150m. The 24 generalmorphology of these cones can be described by their average cone angle of slope (24+/−7), average height- 25 to-radius ratio (0.33+/−0.09) and their flatness (0.24+/−0.18). Although the mean values for the Guatemalan 26 cones are similar to those for other volcanic fields (e.g., San Francisco volcanic field, Arizona; Cima volcanic field, 27 California; Michoácan–Guanajuato volcanic field, Mexico; and Lamongan volcanic field, East Java), the range of 28 morphologies encompasses almost all of those observed worldwide for cinder cones. 29 Three new 40Ar/39Ar age dates are combined with 19 previously published dates for cones in Guatemala and El 30 Salvador. There is no indication that the morphologies of these cones have changed over the last 500–1000 ka. 31 Furthermore, a re-analysis of published data for other volcanic fields suggests that only in the Cima volcanic field (of 32 those studied) is there clear evidence of degradation with age. 33 Preliminary results of a numerical model of cinder cone growth are used to show that the range of morphologies 34 observed in the Guatemalan cinder cones could all be primary, that is, due to processes occurring at the time of 35 eruption.
    Beschreibung: Support for Walker was provided by NSF MARGINS grant OCE-0405666.
    Beschreibung: In press
    Beschreibung: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Beschreibung: 3.6. Fisica del vulcanismo
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): cinder cones ; morphology ; age dating ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 22
    Publikationsdatum: 2017-04-04
    Beschreibung: Flank instability is common at volcanoes, even though the subsurface structures, including the depth to a detachment fault, remain poorly constrained. Here, we use a multidisciplinary approach, applicable to most volcanoes, to evaluate the detachment depth of the unstable NE flank of Mt. Etna. InSAR observations of Mount Etna during 1995–2008 show a trapdoor subsidence of the upper NE flank, with a maximum deformation against the NE Rift. The trapdoor tilt was highest in magnitude in 2002–2004, contemporaneous with the maximum rates of eastward slip along the east flank. We explain this deformation as due to a general eastward displacement of the flank, activating a rotational detachment and forming a rollover anticline, the head of which is against the NE Rift. Established 2D rollover construction models, constrained by morphological and structural data, suggest that the east‐dipping detachment below the upper NE flank lies at around 4 km below the surface. This depth is consistent with seismicity that clusters above 2–3 km below sea level. Therefore, the episodically unstable NE flank lies above an east‐dipping rotational detachment confined by the NE Rift and Pernicana Fault. Our approach, which combines short‐term (InSAR) and long‐term (geological) observations, constrains the 3D geometry and kinematics of part of the unstable flank of Etna and may be applicable and effective to understand the deeper structure of volcanoes undergoing flank instability or unrest.
    Beschreibung: This work was partially funded by INGV and the DPC‐INGV project “Flank”, and partially by the ASI (SRV project).
    Beschreibung: Published
    Beschreibung: L16304
    Beschreibung: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: 1.10. TTC - Telerilevamento
    Beschreibung: 3.2. Tettonica attiva
    Beschreibung: 4.3. TTC - Scenari di pericolosità vulcanica
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): flank instability ; fault ; InSAR ; Etna ; rollover ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...