ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Marine terraces  (4)
  • Archean atmosphere  (2)
  • Elsevier  (6)
  • Annual Reviews
  • De Gruyter
  • 2020-2023  (6)
  • 1935-1939
  • 1
    Publication Date: 2022-02-28
    Description: New analyses of marine terraces in the Tyrrhenian Sea margin of Basilicata - northern Calabria (southern Italy) have been carried out. In the study area, c. 25 km in length, an impressive flight of marine terraces occurs, with the highest terraces reaching ~160 m a.s.l. Detailed geomorphological-stratigraphical analyses on remnants of paleoshorelines located within 60 m a.s.l. have shown that the rocky coast of the investigated coastal stretch has been affected by multiple relative sea-level fluctuations, during which reworking of older shorelines has occurred. Dating of the coral Cladocora caespitosa and speleothems, either predating or postdating single paleoshorelines, has allowed the construction of a chronological framework for the identified relative sea-level markers, and their correlation with MIS 7, MIS 6e and distinct peaks of MIS 5. A mean uplift rate of c. 0.25 mm/y since the Last Interglacial has been quantified, one order of magnitude larger than previous estimates. The uplift rate value has been used to infer the elevations of MIS 5a, 5c and 6e sea level peaks, which are higher than those reported in most sea level curves worldwide, although consistent with several findings from the western Mediterranean. Our results demonstrate that a mere sequential correlation may be misleading in the interpretation of flights of marine terraces and indicates that multiple age controls are crucial to unravelling the complex interaction between uplift and sea-level fluctuations in uplifted coastal areas. The reconstructed MIS 5a, 5c and 6e sea level paleo-elevations, besides contributing to the assessment of late Quaternary sea-level fluctuations in the Mediterranean Sea, may contribute to constrain coeval ice sheets volume variations.
    Description: Published
    Description: 107978
    Description: 7SR AMBIENTE – Servizi e ricerca per la società
    Description: JCR Journal
    Keywords: Marine terraces ; morpho-stratigraphy ; Geochronological dating ; MIS 5 ; MIS 6e ; Tyrrhenian margin
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Broadley, M., Byrne, D., Ardoin, L., Almayrac, M., Bekaert, D., & Marty, B. High precision noble gas measurements of hydrothermal quartz reveal variable loss rate of Xe from the Archean atmosphere. Earth and Planetary Science Letters, 588, (2022): 117577, https://doi.org/10.1016/j.epsl.2022.117577.
    Description: Determining the composition of the Archean atmosphere and oceans is vital to understanding the environmental conditions that existed on the surface of the early Earth. The analysis of atmospheric remnants in fluid inclusions trapped in Archean-aged samples has shown that the Xe isotopic signature of the Archean atmosphere progressively evolved via mass-dependent fractionation, arriving at a modern atmospheric composition around the Archean-Proterozoic transition. The mechanisms driving this evolution are however not well constrained, and it is not yet clear whether the evolution proceeded continuously or via episodic bursts. Providing further constraints on the evolution of Xe in the Archean atmosphere is hampered by the limited amounts of atmospheric gas trapped within fluid inclusions during mineral formation, which impacts the precision at which the Archean atmosphere can be determined. Here, we develop a new crush-and-accumulate extraction technique that enables the heavy noble gases (Ar, Kr and Xe) released from crushing large quantities of hydrothermal quartz to be accumulated and analysed to a higher precision than was previously possible. Using this new technique, we re-evaluate the composition of atmospheric gases trapped within fluid inclusions of 3.3 Ga quartz samples from Barberton, South Africa. We find that the Xe isotopic signature is fractionated by +10.3 ± 1.0‰u−1 (2 SE) relative to modern atmosphere, which is within uncertainty of, but slightly lower than, the previous determination of 12.9 ± 2.4‰u−1 for this sample (Avice et al., 2017). We show for the first time that the Kr/Xe ratio measured within Archean quartz samples is enriched in Xe compared to the modern atmosphere, demonstrating that the atmosphere has lost Xe since the Archean. This further reinforces the proposal of atmospheric escape as the primary mechanism for Earth's Xe loss. We further show that the atmospheric Kr/Xe and Xe isotope fractionation recorded in the Barberton quartz at 3.3 Ga is incompatible with a model describing atmospheric loss at a continuous rate under a constant fractionation factor. This gives credence to numerical models of hydrodynamic escape, which suggest that Xe was lost from the Archean atmosphere in episodic bursts rather than at a constant rate. Refining the evolution curve of atmospheric Xe isotopes using the new technique presented here has the potential to shed light on discrete atmospheric events that punctuated the evolution of the Archean Earth and accompanied the evolution of life.
    Description: This study was supported by the European Research Council (PHOTONIS project, grant agreement No. 695618). This is CRPG contribution #2820.
    Keywords: Archean atmosphere ; Noble gases ; Xenon ; Atmospheric escape
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-12-14
    Description: New constraints were set on the age of marine deposits in the Pontine Plain and of the related sea level indicators on the Tyrrhenian Sea coast of central Italy by twelve new 40Ar/39Ar dates on detrital sanidine from these deposits. By combining a new geomorphologic analysis and previous morpho-pedostratigraphic studies with these geochronological constraints we reconstructed the geometry of four marine terraces and correlated these with the highstands during the marine isotopic stages (MIS) 9.3, 7.5, 5.5 and 5.3. Results point to a progressive tilting of the terraces, the elevation increasing from the SE to the NW due to differential tectonic uplift that occurred over the last 300 ka. We identified a MIS 9 sea level at 30 - 25 m asl in the northwestern sector, whereas the MIS 7.5 sea level reached a maximum of 24 m asl in the NWand descended to 18 m asl in the central sector. Moderate tilting affected the MIS 5.5 sea level, with an elevation of 12 to 9.5 m asl in between the Anzio and Circeo headlands. Finally, an undeformed MIS 5.3 sea level at ca. 3 m asl is indicated throughout this coastal reach, confirming previous data suggesting a much higher absolute sea level during this highstand with respect to the d18O-derived predicted level.
    Description: Published
    Description: 107866
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Marine terraces ; MIS 5 sea level ; Pontine Plain ; Tyrrhenian Sea ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-09-15
    Description: We have mapped and constrained the timing of tectonically deformed uplifted Late Quaternary palaeoshorelines in the Messina Strait, southern Italy, an area above a subduction zone containing active normal faults. The palaeoshorelines are preserved from up to thirteen Late Quaternary sea-level highstands, providing a record of the deformation over this timescale (~500 ka) for the Messina-Taormina Fault, the Reggio Calabria Fault and the Armo Fault. The palaeoshorelines reveal spatial patterns of uplift through time along the strike of these normal faults, and, given the across strike arrangement of the faults, also reveal how the contribution of each fault to the regional strain-rate progressed through time. The results reveal that the uplift rates mapped within the fault hangingwalls and footwalls were not constant through time, with a marked change in the location of strain accumulation at ~50 ka. The uplift rates, once converted into throw-rates, imply that the three faults comprised similar throw-rates prior to ~50 ka (in the range 0.77–0.96 mm/yr), with the Armo and Reggio Calabria faults then switching to lower rates (0.32 mm/yr and 0.33 mm/yr respectively), whilst the Messina-Taormina Fault accelerated to 2.34 mm/yr. The regional extension rate, gained by summing the implied heave rates across the three faults, was maintained through time despite this re-organisation of local strain accumulation at ~50 ka. We explain these out-of-phase fault throw-rate changes during the constant-rate regional extension conditions as due to interactions between these upper plate normal faults. We finally discuss how fault throw-rates changing through time may affect a long-term seismic hazard assessment within active normal fault systems.
    Description: Published
    Description: 105432
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Crustal Deformation ; Active Faults ; Marine terraces ; Uplift ; 04.04. Geology ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-11-22
    Description: To refine knowledge about terrace phases and uplift history for a tectonically poor deformed region, we apply the synchronous correlation method to reconstruct the chronology of a poorly constrained sequence of raised palaeoshorelines on the Apulian foreland, southern Italy. This work uses new chronological constraints obtained by amino acid racemisation (AAR) and isoleucine/alloisoleucine epimerisation (IE) on Patella spp., Thetystrombus latus (Gmelin), Glycymeris sp., and ostracods and U-series dating on corals Hoplangia durotrix Gosse and Cladocora caespitosa Linneo. This procedure provides a quantitative estimate of the vertical movements and associated rates within a region of the Apulian foreland. The synchronous correlation method uses sea-level highstands and uplift rate(s) as inputs; in particular, for sea-level highstands, the inputs are the age of the highstands and the sea-level elevation of the highstands relative to the present-day sea level. The output is a set of currently expected elevations of each sea-level highstand (the present elevations of palaeoshorelines). We then used regression analysis to assess the robustness between our observed palaeoshorelines and expected elevations of sea-level highstands. Our results show that the best fitting scenario is obtained using the sea-level curves of (i) Waelbroeck et al. (2002) from present to 410 ky BP and (ii) Rohling et al. (2014) from 410 to 590 ky BP as inputs for our synchronous correlation method, with uplift rates ranging from 0.09 mm/y to 0.07 mm/y with a mean value of 0.08 mm/y from 590 ky BP onwards. We recognised palaeoshorelines in the field belonging to the following highstands: 120 ky BP (MIS 5.5, second peak), 127 ky BP (MIS 5.5, first peak), 212 ky BP (MIS 7.3), 330 ky BP (MIS 9.3), 410 (MIS 11), 525 ky BP (MIS 13.3), and 590 ky BP (MIS 15). Our results show field observations of the reoccupation effect of younger palaeoshorelines over older ones due to the relatively slow uplift rates measured in the investigated area as predicted by our synchronous correlation method. In particular, we show a well-mapped and described reoccupation of the MIS 5.5 palaeoshoreline over the MIS 7.3 palaeoshoreline, constrained by new absolute dating. In addition, the data from the Apulian foreland suggest an MIS 7.3 highstand close to the present sea level.
    Description: Published
    Description: 108530
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Crustal Deformation ; Uplift ; Marine terraces ; Absolute dating ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Almayrac, M. G., Broadley, M. W., Bekaert, D. V., Hofmann, A., & Marty, B. Possible discontinuous evolution of atmospheric xenon suggested by Archean barites. Chemical Geology, 581, (2021): 120405, https://doi.org/10.1016/j.chemgeo.2021.120405.
    Description: The Earth's atmosphere has continually evolved since its formation through interactions with the mantle as well as through loss of volatile species to space. Atmospheric xenon isotopes show a unique and progressive evolution during the Archean that stopped around the Archean-Proterozoic transition. The Xe isotope composition of the early atmosphere has been previously documented through the analysis of fluid inclusions trapped within quartz and barite. Whether this evolution was continuous or not is unclear, requiring additional analyses of ancient samples, which may potentially retain remnants of the ancient atmosphere. Here we present new argon, krypton and xenon isotopic data from a suite of Archean and Proterozoic barites ranging in age from 3.5 to 1.8 Ga, with the goal of providing further insights in to the evolution of atmospheric Xe, whilst also outlining the potential complications that can arise when using barites as a record of past atmospheres. Xenon released by low temperature pyrolysis and crushing of two samples which presumably formed around 2.8 and 2.6 Ga show Xe isotope mass dependent fractionation (MDF) of 11‰.u−1 and 3.4‰.u−1, respectively, relative to modern atmosphere. If trapped Xe is contemporaneous with the respective formation age, the significant difference in the degree of fractionation between the two samples provides supporting evidence for a plateau in the MDF-Xe evolution between 3.3 Ga and 2.8 Ga, followed by a rapid evolution at 2.8–2.6 Ga. This sharp decrease in MDF-Xe degree suggests the potential for a discontinuous temporal evolution of atmospheric Xe isotopes, which could have far reaching implications regarding current physical models of the early evolution of the Earth's atmosphere.
    Description: This work was funded by the ERC grant No. 695618 to B.M. We thank the S.A.R.M for providing elemental bulk analyses of the barites. We thank Laurent Zimmerman for technical mentorship and assistance.
    Keywords: Archean barite ; Noble gases ; Xenon anomalies ; Archean atmosphere
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...