ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • melt inclusions  (3)
  • Oxford University Press  (3)
  • American Chemical Society
  • American Institute of Physics (AIP)
  • 2020-2022  (3)
  • 1990-1994
  • 1970-1974
Collection
  • Articles  (3)
Publisher
  • Oxford University Press  (3)
  • American Chemical Society
  • American Institute of Physics (AIP)
Years
Year
  • 1
    Publication Date: 2021-02-10
    Description: The 2007 caldera-forming eruption of Piton de la Fournaise (PdF) erupted the largest volume of magma (210 Mm3)recorded at this volcano in at least three centuries. Major and trace element and Sr^Nd isotope data for bulk-rocks, groundmasses and olivine phenocrysts have been combined with melt inclusion data (major, trace and volatile elements) to track magma evolution over the whole eruptive sequence. We show that each eruptive phase had a distinctive geochemical and petrological signature and that caldera collapse on 5 April was preceded by a marked shift in bulk magma composition and crystal content and size. Aphyric basalt erupted at the beginning of the sequence (February 2007) had relatively high Sr isotope ratio (87Sr/86Sr ¼ 0·70420^0·704180) and low Nd isotopic ratio(143Nd/144Nd ¼ 0·51285^0·51286). Olivine-basalts extruded on2^5 April just before caldera collapse are less enriched in radiogenic Sr (87Sr/86Sr ¼ 0·70412^0·70416), but characterized by the same Nd isotopic composition. This magma is interpreted as a new deep input, which pressurized the shallow PdF plumbing system and triggered the 2007 activity. Post-collapse oceanite lavas represent the main volume of magma extruded in 2007. Their bulk-rocks and groundmasses have 87Sr/86Sr (0·70418) intermediate between those of February and 5 April, and similar to those of the March 2007 and 2001^2006 lavas.We show that the Steady State Basalts (SSB) commonly erupted at PdF are hybrid melts, which result from multistep mixing between ‘alkaline’and ‘transitional’end-members. Our results lead us to propose a new model of the PdF plumbing system to reconcile the petrological, geochemical and geophysical observations: (1) the shallow portion (above sea level) of the PdF plumbing system hosts several small sills, in which magma experiences variable degrees of degassing, cooling and crystallization; (2) oceanite lavas result from the withdrawal of shallow harrisitic mushes stored at low pressures (548 MPa; 51800^2400 m depth) below both the volcano summit and its eastern flank; (3) water degassing plays a major role in fast magma crystallization at shallow depths. Multistep ascent and periodic extrusion of the shallow magmas is promoted by injections of deeper and hotter basaltic magma, containing up to 1·3 wt % H2O and 1630 ppm S. In 2007, the new deep input was the ultimate source of the large excess in sulfur degassing detected by satellites. Lateral draining and intrusion of magma below the eastern flank of the volcano are the cause of major volcano deformation, flank sliding and summit caldera collapse.
    Description: Published
    Description: 1287-1315
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: 4V. Processi pre-eruttivi
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Piton de la Fournaise ; plumbing system ; magma reservoir ; caldera collapse ; melt inclusions ; volatile budget ; isotope geochemistry ; basalt
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-05-12
    Description: Ischia, a volcanic island located 18 miles SW of Naples (Southern Italy), is a densely populated active caldera that last erupted in AD 1302. Melt inclusions in phenocrysts of the Vateliero and Cava Nocelle shoshonite^latite eruptive products (6th to 4th centuries BC) constrain the structure and nature of the Ischia deep magmatic feeding system.Their geochemical characteristics make Ischia a natural borehole for probing the physico-chemical conditions of magma generation in mantle contaminated by slab-derived fluids or melts, largely dominated by CO2.Volatile concentrations in olivine-hosted melt inclusions require gas^melt equilibria at between 3 and 18 km depth. In agreement with what has already been demonstrated at the other neighboring Neapolitan volcanoes (Procida, Campi Flegrei caldera and Somma^Vesuvius volcanic complex), a major crystallization depth at 8^10 km has been identified.The analyzed melt inclusions provide clear evidence for CO2-dominated gas fluxing and consequent dehydration of magma batches stagnating at crustal discontinuities. Gas fluxing is further supported by selective enrichment in K owing to fluid-transfer during magma differentiation.This takes place under oxidized conditions (Fe3þ /Fe 0·3) that can be fixed by an equimolar proportion of divalent and trivalent iron in the melt if post-entrapment crystallization of the host olivine is discarded.The melt inclusion data, together with data from the literature for other Neapolitan volcanoes, show that magmatism and volcanism in the Neapolitan area, despite differences in composition and eruption dynamics, are closely linked to supercritical CO2-rich fluids. These fluids are produced by devolatilization of subducting terrigenous^pelagic metasediments and infiltrate the overlying mantle wedge, generate magmas and control their ascent up to eruption. Geochemical characteristics of Ischia and the other Neapolitan volcanoes reveal that the extent of fluid or melt contamination of the pre-subduction asthenospheric mantle wedge was similar among these volcanoes. However, differences in the isotopic compositions of the erupted magmas (more enriched in radiogenic Sr at Ischia, Campi Flegrei and Somma^Vesuvius with respect to Procida) and the amount of H2O in the plumbing system of these volcanoes (almost double at Ischia, Campi Flegrei and Somma^Vesuvius than at Procida) reflect the different flow-rates of deep slab-derived fluids or melts through the mantle wedge, which, in turn, control the amount of generated magma.The high bulk permeability of the lithosphere below Ischia, Campi Flegrei and Somma^Vesuvius, determined by the occurrence of intersecting NW^SE and NE^SW regional fault systems, favours fluid ascent and accumulation at crustal levels, with consequent larger magma production and storage than at Procida, located along the NE^SW system.
    Description: Published
    Description: 951-984
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: 4V. Processi pre-eruttivi
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: CO2-fluxing ; melt inclusions ; redox state ; trachybasalts
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-21
    Description: Sulphur behaviour and variations in redox conditions during magma differentiation and degassing in the Mt Etna (Italy) volcanic system have been explored by integrating the study of olivine-hosted melt inclusions (MIs) with an experimental survey of sulphur solubility in hydrous basaltic magmas. Sulphur solubility experiments were performed at conditions relevant to the Etnean plumbing system (1200 C, 200MPa and oxygen fugacity between NNOþ0 2 and NNOþ1 7, with NNO being the nickel–nickel oxide buffer), and their results confirm the important control of oxygen fugacity (fO2) on S abundance in mafic magmas and on S partitioning between fluid and melt phases (DSfluid/melt). The observed DSfluid/melt value increases from 5164 to 14666 when fO2 decreases from NNOþ1 760 5 to NNOþ0 3. Based on the calculated DSfluid/melt and a careful selection of previously published data, an empirical model is proposed for basaltic magmas to predict the variation of DSfluid/melt values with variations in P (25–300 MPa), T (1030–1200 C) and fO2 (between NNO– 0 8 and NNOþ2 4). Olivine-hosted melt inclusions (Fo89-91) from tephra of the prehistoric (4 ka BP) sub-plinian picritic eruption, named FS (‘Fall Stratified’), have been investigated for their major element compositions, volatile contents and iron speciation (expressed as Fe3þ/PFe ratio). These primitive MIs present S content from 235677 to 34456168 ppm, and oxygen fugacity values, estimated from Fe3þ/PFe ratios, range from NNOþ0 760 2 to NNOþ1 660 2. Iron speciation has also been investigated in more evolved and volatile-poorer Etnean MIs. The only primitive melt inclusion from the Mt Spagnolo eruption (4–15 ka BP) presents a S content of 1515649ppm and an estimated fO2 of NNOþ1 460 1. The more evolved MIs (from 2002–2003, 2006, 2008–2009 and 2013 eruptions) have S content lower than 500 ppm, and their Fe3þ/RFe ratios result in fO2 between NNO– 0 960 1 and NNOþ0 460 1. Redox conditions and S behaviour in Etnean magmas during degassing and fractional crystallization were modelled coupling MELTS code with our empirical DSfluid/melt model. Starting from an FS-type magma composition and upon decrease of T and P, fractional crystallization of olivine, clinopyroxene, spinel and plagioclase causes a significant fO2 decrease. The fO2 reduction, in turn, causes a decrease in sulphur solubility and an increase in DSfluid/melt, promoting S exsolution during magma ascent, which further enhances the reduction of fO2. For the evolved MIs of 2002–2013 eruptions, magma differentiation may therefore have played a crucial role in decreasing redox conditions and favouring efficient S degassing. Differently, during the unusual FS eruption, only limited melt evolution is observed and S exsolution seems to have been triggered by a major pressure decrease accompanied by H2O and CO2 exsolution during fast magmatic ascent.
    Description: Published
    Description: egaa095
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: melt inclusions ; sulphur solubility experiments ; XANES ; Mt. Etna ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...