ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (10)
  • Recovery  (10)
  • Springer  (10)
  • American Chemical Society
  • American Institute of Physics (AIP)
  • Cell Press
  • 2020-2022
  • 1990-1994  (10)
  • 1970-1974
  • Energy, Environment Protection, Nuclear Power Engineering  (10)
Collection
  • Articles  (10)
Publisher
  • Springer  (10)
  • American Chemical Society
  • American Institute of Physics (AIP)
  • Cell Press
Years
Year
Topic
  • 1
    ISSN: 1432-1009
    Keywords: Fish ; Recovery ; Disturbance ; Stream ; Communities
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract To evaluate the relative effect of autecologic factors, site-specific factors, disturbance characteristics, and community structure on the recovery of temperate-stream fish communities, we reviewed case histories for 49 sites and recorded data on 411 recovery end points. Most data were derived from studies of low-gradient third- or fourth-order temperate streams located in forested or agricultural watersheds. Species composition, species richness, and total density all recovered within one year for over 70% of systems studied. Lotic fish communities were not resilient to press disturbances (e.g., mining, logging, channelization) in the absence of mitigation efforts (recovery time 〉5 to 〉52 yr) and in these cases recovery was limited by habitat quality. Following pulse disturbances, autecological factors, site-specific factors, and disturbance-specific factors all affected rates of recovery. Centrarchids and minnows were most resilient to disturbance, while salmonid populations were least resilient of all families considered. Species within rock-substrate/nest-spawning guilds required significantly longer time periods to either recolonize or reestablish predisturbance population densities than did species within other reproductive guilds. Recovery was enhanced by the presence of refugia but was delayed by barriers to migration, especially when source populations for recolonization were relatively distant. Median population recovery times for systems in which disturbances occurred during or immediately prior to spawning were significantly less than median recovery times for systems in which disturbances occurred immediately after spawning. There was little evidence for the influence of biotic interactions on recovery rates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Environmental management 14 (1990), S. 547-569 
    ISSN: 1432-1009
    Keywords: Lotic ecosystems ; Streams ; Rivers ; Disturbance ; Recovery ; Case studies ; Review
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract We present a narrative account of case studies of the recovery of flowing water systems from disturbance, focusing on the investigators' conclusions about recovery time and the factors contributing to recovery. We restrict our attention to case studies in which the recovery of some biological property of the system has been examined, excluding those that deal only with physical or chemical properties. Although natural processes and rates of recovery are emphasized, studies of reclamation or restoration of damaged ecosystems are included where they contribute to an understanding of recovery processes. For the majority of studies examined, the systems recovered quite rapidly. The most commonly cited reasons for short recovery times were: (1) life history characteristics that allowed rapid recolonization and repopulation of the affected areas, (2) the availability and accessibility of unaffected up-stream and downstream areas and internal refugia to serve as sources of organisms for repopulation, (3) the high flushing rates of lotic systems that allowed them to quickly dilute or replace polluted waters, and (4) the fact that lotic systems are naturally subjected to a variety of disturbances and the biota have evolved life history characteristics that favor flexibility or adaptability. In general, longer recovery times were observed in disturbances, such as channelization, that resulted in alterations to physical conditions. This review also indicates that much of our knowledge of recovery in lotic ecosystems is fragmented and uncoordinated. In addition to establishing the bounds of recovery time, our review identifies some research gaps that need to be filled.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Environmental management 14 (1990), S. 737-753 
    ISSN: 1432-1009
    Keywords: Island biogeography ; Colonization ; Recovery ; Disturbance ; Equilibrium ; Predictive models
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Classic island biogeographic theory predicts that equilibrium will be reached when immigration and extinction rates are equal. These rates are modified by number of species in source area, number of intermediate islands, distance to recipient island, and size of intermediate islands. This general model has been variously modified and proposed to be a stochastic process with minimal competitive interaction or heavily deterministic. Predictive models of recovery (regardless of the end point chosen) have been based on the appropriateness of the MacArthur-Wilson models. Because disturbance frequency, severity, and intensity vary in their effect on community dynamics, we propose that disturbance levels should first be defined before evaluating the applicability of island biogeographical theory. Thus, we suggest a classification system of four disturbance levels based on recovery patterns by primary and secondary succession and faunal organization by primary (invasion of vacant areas) and secondary (remnant of previous community remains) processes. Level 1A disturbances completely destroy communities with no upstream or downstream sources of colonizers, while some component of near surface interstitial or hyporheic flora and fauna survive level 1B disturbances. Recovery has been reported to take from five years to longer than 25 years, when most invading colonists do not have an aerial form. Level 2 disturbances destroy the communities but leave upstream and downstream colonization sources (level 2A) and, sometimes, a hyporheic pool of colonizers (level 2B). Recovery studies have indicated primary succession and faunal structuring patterns (2A) with recovery times of 90–400 days or secondary succession and faunal structuring patterns (2B) with recovery times of 40–250 days. Level 3 disturbances result in reduction in species abundance and diversity along a stream reach; level 4 disturbances result in reduction of abundance and diversity in discrete patches. Both disturbance types lead to secondary succession and secondary faunal organization. Recovery rates can be quite rapid, varying from less than 10 days to 100 or more days. We suggest that island biogeographical models seem appropriate to recovery by secondary processes after level 3 and 4 disturbances, where competition may be an important organizing factor, while models of numerical abundance and resource tracking are probably of better use where community development is by primary succession (levels 1 and 2). Development of predictive recovery models requires research that addresses a number of fundamental questions. These include the role of hydrologic patterns on colonization dynamics, the role of nonaerial colonizers in recovery from level 1 disturbances, and assessment of the impact of changes in the order of invasion by colonizers of varying energetic efficiencies. Finally, we must be able to assemble these data and determine whether information that guides community organization at one level of disturbance can provide insights into colonization dynamics at other levels.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1009
    Keywords: Disturbance ; Recovery ; Prediction ; Lotic ecosystems ; Research needs
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract This article summarizes the views of aquatic scientists who gathered to assess the ability of stream ecosystem theory to predict recovery from disturbance. Two views of disturbance were evident: a discrete removal of organisms vs an unusual deviation from normal. These were perceived as applying to different scales and/or objectives. Long-term information is required from both points of view to define recovery. Recovery also may be defined in different ways, but it is clear that recovery has both spatial and temporal components, and includes both physical and biological processes. Consensus was very strong that a major role (and challenge) for theory lies in the understanding of spatial aspects, temporal scales, coupling of physics and biology, and the interaction of these features in recovery processes. Some progress is evident in the articles of this volume, but among the topics identified as critical for further theoretical contributions were: homogeneous vs heterogeneous distribution of disturbance, local extent of disturbance relative to a regional context, critical vs noncritical patches (size and location) of disturbance at different spatial scales and temporal frequencies, delineation of reversible and nonreversible processes, and physical and biological constraints on the time frame for recovery. Such concepts need attention across different types of lotic ecosystems. Thus, there was strong consensus that a national monitoring system of representative lotic ecosystems within ecological regions be established. The purpose of this monitoring system would be to acquire long-term data on natural variability, to establish viable indicators of spatial and temporal aspects of recovery, and to develop and test emerging theoretical developments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Environmental management 14 (1990), S. 527-545 
    ISSN: 1432-1009
    Keywords: Ecological indicators ; Stress ; Scale ; Recovery ; Ecosystem processes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Assessment of ecological changes relative to disturbance, either natural or human-induced, confronts a fundamental problem. Ecosystems are complex, variable, and diverse in nature; consequently, the need for simplification to essential features that would characterize ecosystems adequately is generally acknowledged. Yet there is no firm prescription for what to measure in order to describe the response and recovery of ecosystems to stress. Initial focus is provided by identifying relevant ecological endpoints, i.e., ecological changes of particular relevance to humans. Furthermore, we suggest generic purposes and criteria to be considered in making choices of ecological indicators that relate to those endpoints. Suites of indicators, with variety of purposes, are required to assess response and recovery of most ecosystems and most stresses. We suggest that measures of certain ecosystem processes may provide special insight on the early stages of recovery; the use of functional indicators as complimentary to other biotic indicators is highlighted in an extended example for lotic ecosystems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1009
    Keywords: Recovery ; Disturbance ; Aquatic ecosystems ; Macroinvertebrates ; Fish
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract An extensive review of the published literature identified more than 150 case studies in which some aspect of resilience in freshwater systems was reported. Approximately 79% of systems studied were lotic and the remainder lentic. Most of the stressor types were chemical with DDT (N=29) and rotenone (N=15) the most common. The most common nonchemical stressors were logging activity (N=16), flooding (N=8), dredging (N=3), and drought (N=7). The variety of endpoints to which recovery could be measured ranged from sparse data for phytoplankton (N=13), periphyton (N=6), and macrophytes (N=8) to relatively more data for fish (N=412) and macroinvertebrates (N=698). Unfortunately the same characteristics were rarely measured consistently among sites. For example, with respect to fish, more than 30 different species were studied and recovery was measured in many ways, most commonly on the basis of: (1) first reappearance of the species, (2) return time of predisturbance densities, and (3) return time of predisturbance average individual size. Based on these criteria, all systems in these studies seem to be resilient to most disturbances with most recovery times being less than three years. Exceptions included when (1) the disturbance resulted in physical alteration of the existing habitat, (2) residual pollutants remained in the system, or (3) the system was isolated and recolonization was suppressed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Environmental management 14 (1990), S. 647-659 
    ISSN: 1432-1009
    Keywords: Community ; Disturbance ; Ecosystem ; Historical effects ; Recovery ; Resilience ; River basin ; Scale ; Sediments ; Stream
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Disturbance regime is a critical organizing feature of stream communities and ecosystems. The position of a given reach in the river basin and the sediment type within that reach are two key determinants of the frequency and intensity of flow-induced disturbances. We distinguish between predictable and unpredictable events and suggest that predictable discharge events are not disturbances. We relate the dynamics of recovery from disturbance (i.e., resilience) to disturbance regime (i.e., the disturbance history of the site). The most frequently and predictably disturbed sites can be expected to demonstrate the highest resilience. Spatial scale is an important dimension of community structure, dynamics, and recovery from disturbance. We compare the effects on small patches (⩽1 m2) to the effects of large reaches at the river basin level. At small scales, sediment movements and scour are major factors affecting the distribution of populations of aquatic insects or algae. At larger scales, we must deal with channel formation, bank erosion, and interactions with the riparian zone that will affect all taxa and processes. Our understanding of stream ecosystem recovery rests on our grasp of the historical, spatial, and temporal background of contemporary disturbance events.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Environmental management 14 (1990), S. 605-620 
    ISSN: 1432-1009
    Keywords: Macroinvertebrates ; Communities ; Recovery ; Disturbance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Ecosystem disturbances produce changes in macrobenthic community structure (abundances, biomass, and production) that persist for a few weeks to many decades. Examples of disturbances with extremely long-term effects on benthic communities include contamination by persistent toxic agents, physical changes in habitats, and altered energy inputs. Stream size, retention, and local geomorphology may ameliorate the influence of disturbances on invertebrates. Disturbances can alter food webs and may select for favorable genotypes (e.g., insecticidal resistance). Introductions of pesticides into lotic ecosystems, which do not result in major physical changes within habitats, illustrate several factors that influence invertebrate recovery time from disturbance. These include: (1) magnitude of original contamination, toxicity, and extent of continued use; (2) spatial scale of the disturbance; (3) persistence of the pesticide; (4) timing of the contamination in relation to the life history stages of the organisms; (5) vagility of populations influenced by pesticides; and (6) position within the drainage network. The ability of macroinvertebrates to recolonize denuded stream habitats may vary greatly depending on regional life histories, dispersal abilities, and position within the stream network (e.g., headwaters vs larger rivers). Although downstream drift is the most frequently cited mechanism of invertebrate recolonization following disturbance in middle- and larger-order streams, evidence is presented that shows aerial recolonization to be potentially important in headwater streams. There is an apparent stochastic element operating for aerial recolonization, depending on the timing of disturbance and flight periods of various taxa. Available evidence indicates that recolonization of invertebrate taxa without an aerial adult stage requires longer periods of time than for those that possess winged, terrestrial adult stages (i.e., most insects). Innovative, manipulative experiments are needed in order to address recolonization mechanisms of animals inhabiting streams that differ in size, latitude, disturbance frequency and magnitude, as well as the potential influence of early colonists on successional sequences of species following disturbance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Environmental management 14 (1990), S. 629-645 
    ISSN: 1432-1009
    Keywords: Spatiotemporal heterogeneity ; Physical habitat template ; Streams ; Disturbance ; Recovery ; Community structure ; Natural selection
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Spatial and temporal environmental heterogeneity in lotic ecosystems can be quantitatively described and identified with characteristic levels of ecological organization. The long-term pattern of physicochemical variability in conjunction with the complexity and stability of the substratum establishes a physical habitat template that theoretically influences which combinations of behavioral, physiological and life history characteristics constitute appropriate “ecological strategies” for persistence in the habitat. The combination of strategies employed will constrain ecological response to and recovery from disturbance. Physical habitat templates and associated ecological attributes differ geographically because of biogeoclimatic processes that constrain lotic habitat structure and stability and that influence physicochemical variability and disturbance patterns (frequency, magnitude, and predictability). Theoretical considerations and empirical studies suggest that recovery from natural and anthropogenic disturbance also will vary among lotic systems, depending on historical temporal variability regime, degree of habitat heterogeneity, and spatial scale of the perturbation. Characterization of physical habitat templates and associated ecological dynamics along gradients of natural disturbance would provide a geographic framework for predicting recovery from anthropogenic disturbance for individual streams. Description of lotic environmental templates at the appropriate spatial and temporal scale is therefore desirable to test theoretical expectations of biotic recovery rate from disturbance and to guide selection of appropriate reference study sites for monitoring impacts of anthropogenic disturbance. Historical streamflow data, coupled with stream-specific thermal and substratum-geomorphologic characteristics, are suggested as minimum elements needed to characterize physical templates of lotic systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Environmental management 14 (1990), S. 699-709 
    ISSN: 1432-1009
    Keywords: Disturbance ; Recovery ; River ; Ecosystem ; Mississippi River ; Illinois River
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Disturbance in a river-floodplain system is defined as an unpredictable event that disrupts structure or function at the ecosystem, community, or population level. Disturbance can result in species replacements or losses, or shifts of ecosystems from one persistent condition to another. A disturbance can be a discrete event or a graded change in a controlling factor that eventually exceeds a critical threshold. The annual flood is the major driving variable that facilitates lateral exchanges of nutrients, organic matter, and organisms. The annual flood is not normally considered a disturbance unless its timing or magnitude is “atypical.” The record flood of 1973 had little effect on the biota at a long-term study site on the Mississippi River, but the absence of a flood during the 1976–1977 Midwestern drought caused short- and long-term changes. Body burdens of contaminants increased temporarily in key species, because of increased concentration resulting from reduced dilution. Reduced runoff and sediment input improved light penetration and increased the depth at which aquatic macrophytes could grow. Developing plant beds exerted a high degree of biotic control and were able to persist, despite the resumption of normal floods and turbidity in subsequent years. In contrast to the discrete event that disturbed the Mississippi River, a major confluent, the Illinois River, has been degraded by a gradual increase in sediment input and sediment resuspension. From 1958 to 1961 formerly productive backwaters and lakes along a 320-km reach of the Illinois River changed from clear, vegetated areas to turbid, barren basins. The change to a system largely controlled by abiotic factors was rapid and the degraded condition persists. Traditional approaches to experimental design are poorly suited for detecting control mechanisms and for determining the critical thresholds in large river-floodplains. Large river-floodplain systems cannot be manipulated or sampled as easily as small streams, and greater use should be made of man-made or natural disturbances and environmental restoration as opportunistic experiments to measure thresholds and monitor the recovery process.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...