ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1009
    Keywords: Recovery ; Disturbance ; Aquatic ecosystems ; Macroinvertebrates ; Fish
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract An extensive review of the published literature identified more than 150 case studies in which some aspect of resilience in freshwater systems was reported. Approximately 79% of systems studied were lotic and the remainder lentic. Most of the stressor types were chemical with DDT (N=29) and rotenone (N=15) the most common. The most common nonchemical stressors were logging activity (N=16), flooding (N=8), dredging (N=3), and drought (N=7). The variety of endpoints to which recovery could be measured ranged from sparse data for phytoplankton (N=13), periphyton (N=6), and macrophytes (N=8) to relatively more data for fish (N=412) and macroinvertebrates (N=698). Unfortunately the same characteristics were rarely measured consistently among sites. For example, with respect to fish, more than 30 different species were studied and recovery was measured in many ways, most commonly on the basis of: (1) first reappearance of the species, (2) return time of predisturbance densities, and (3) return time of predisturbance average individual size. Based on these criteria, all systems in these studies seem to be resilient to most disturbances with most recovery times being less than three years. Exceptions included when (1) the disturbance resulted in physical alteration of the existing habitat, (2) residual pollutants remained in the system, or (3) the system was isolated and recolonization was suppressed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 431 (2004), S. 639-640 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Sabre-toothed tigers, mastodons, woolly mammoths — these and many other spectacular large mammals are generally thought to have become extinct about 10,000 years ago, at the end of the Pleistocene epoch, otherwise known as the last ice age. But it's becoming clear that some of these species ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    Global change biology 9 (2003), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Boreal peatlands may be particularly vulnerable to climate change, because temperature regimes that currently constrain biological activity in these regions are predicted to increase substantially within the next century. Changes in peatland plant community composition in response to climate change may alter nutrient availability, energy budgets, trace gas fluxes, and carbon storage. We investigated plant community response to warming and drying in a field mesocosm experiment in northern Minnesota, USA. Large intact soil monoliths removed from a bog and a fen received three infrared warming treatments crossed with three water-table treatments (n = 3) for five years. Foliar cover of each species was estimated annually.In the bog, increases in soil temperature and decreases in water-table elevation increased cover of shrubs by 50% and decreased cover of graminoids by 50%. The response of shrubs to warming was distinctly species-specific, and ranged from increases (for Andromeda glaucophylla) to decreases (for Kalmia polifolia). In the fens, changes in plant cover were driven primarily by changes in water-table elevation, and responses were species- and lifeform-specific: increases in water-table elevation increased cover of graminoids – in particular Carex lasiocarpa and Carex livida– as well as mosses. In contrast, decreases in water-table elevation increased cover of shrubs, in particular A. glaucophylla and Chamaedaphne calyculata. The differential and sometimes opposite response of species and lifeforms to the treatments suggest that the structure and function of both bog and fen plant communities will change – in different directions or at different magnitudes – in response to warming and/or changes in water-table elevation that may accompany regional or global climate change.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 10 (2004), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Climate change will directly affect carbon and nitrogen mineralization through changes in temperature and soil moisture, but it may also indirectly affect mineralization rates through changes in soil quality. We used an experimental mesocosm system to examine the effects of 6-year manipulations of infrared loading (warming) and water-table level on the potential anaerobic nitrogen and carbon (as carbon dioxide (CO2) and methane (CH4) production) mineralization potentials of bog and fen peat over 11 weeks under uniform anaerobic conditions. To investigate the response of the dominant methanogenic pathways, we also analyzed the stable isotope composition of CH4 produced in the samples. Bog peat from the highest water-table treatment produced more CO2 than bog peat from drier mesocosms. Fen peat from the highest water-table treatment produced the most CH4. Cumulative nitrogen mineralization was lowest in bog peat from the warmest treatment and lowest in the fen peat from the highest water-table treatment. As all samples were incubated under constant conditions, observed differences in mineralization patterns reflect changes in soil quality in response to climate treatments. The largest treatment effects on carbon mineralization as CO2 occurred early in the incubations and were ameliorated over time, suggesting that the climate treatments changed the size and/or quality of a small labile carbon pool. CH4 from the fen peat appeared to be predominately from the acetoclastic pathway, while in the bog peat a strong CH4 oxidation signal was present despite the anaerobic conditions of our incubations. There was no evidence that changes in soil quality have lead to differences in the dominant methanogenic pathways in these systems. Overall, our results suggest that even relatively short-term changes in climate can alter the quality of peat in bogs and fens, which could alter the response of peatland carbon and nitrogen mineralization to future climate change.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Ecosystems 1 (1998), S. 52-63 
    ISSN: 1435-0629
    Keywords: Key words:Alces alces; energetics; foraging strategy; landscape; metabolism; moose; simulation model.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: ABSTRACT Selective foraging by large mammals can change ecosystem properties such as plant species composition, nutrient cycling rates, and soil fertility. These changes, in turn, alter the availability of forage and could affect the relative efficiencies of foraging strategies used by these animals. We used a simulation model to predict how alternate foraging strategies affected the net annual energy balance of moose (Alces alces), moose density, and distribution of browse across the landscape. The model simulates the spatial distribution of vegetation in an 8-ha landscape of 1-m2 cells with seasonal changes in the energetic needs of free-ranging moose and plant phenology. The energetics model was integrated with a moose population model and a plant-growth model for long-term simulations. Changes in bite density in each feeding station are predicted with height and biomass logistic curves modified by a quadratic response to browsing. We tested foraging strategies using random, fractional, and marginal value theorem (MVT) algorithms on landscapes with a range of bite densities and differing spatial distributions. Small-scale disturbances (that is, tree-fall gaps) were required to maintain browse supply and prevent moose population extinction under all foraging strategies. Populations using a fractional stopping rule survived the 100-year simulations because moose browsed across much of the landscape and did not overbrowse patches with high bite density. Populations using random and MVT stopping rules became extinct in about 25 and about 50 years, respectively. Moose using a random stopping rule were in negative energy balance because travel time was high and the net energy intake rate was low on an annual basis. Moose using the MVT stopping rule were initially in positive energy balance, but as the high-density browse patches were overbrowsed and low-density unbrowsed patches grew out of reach, bite density decreased, and energy balance became negative in subsequent years. Thus, the foraging strategy used by individual moose resulted in creation of landscapes that strongly affected browse density, browse distribution, moose population density, and moose survival.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Ecosystems 2 (1999), S. 439-450 
    ISSN: 1435-0629
    Keywords: Key words: boreal forests; herbivores; nitrogen cycling; seed dispersal; spatial processes.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: ABSTRACT Boreal forests are composed of a few plant species with contrasting traits with respect to ecosystem functioning and spatial patterning. Early successional deciduous species, such as birch and aspen, disperse seeds widely, do not tolerate low light and nitrogen availabilities, have rapidly decaying litter, and are highly preferred by herbivores. These later succeed to conifers, such as spruce and fir, which disperse seeds locally, tolerate low light levels and low nitrogen availability, have litter that decays slowly, and are unpalatable to most mammalian herbivores. Although there are also early successional conifers, such as jack pine and Scots pine, the aspen-birch-spruce-fir successional sequence is the most common over much of North America, and (without fir) in Fennoscandia and Siberia. The course of succession in these forests is controlled partly by seed dispersal and selective foraging by mammalian herbivores. Both of these processes are spatially dynamic, but little is known about how their spatial dynamics may affect ecosystem processes, such as nitrogen cycling or productivity. We present spatially explicit models that demonstrate the following: (a) Spatially explicit seed dispersal results in more clumped distribution of tree species and persistence of greater paper birch biomass than uniform seed rain across the landscape. Such results are consistent with current spatially explicit population models of dispersal and coexistence. (b) With localized seed dispersal, the concentrations of available soil nitrogen are distributed in larger patches with sharp transitions from low to high nitrogen availability near patch edges. In contrast, with a uniform seed rain, the distribution of soil nitrogen availability was more uniform and “hotspots” were more localized. Thus, the spatial pattern of an ecosystem process (nitrogen cycling) is determined by seed dispersal and competition for light among competing populations. (c) A dispersing herbivore, such as moose, that selectively forages on early successional deciduous species with high quality litter, such as aspen or birch, and discriminates against late successional conifers, such as spruce or fir, imposes higher-order repeated patterns of plant species and biomass distribution on the landscape. Thus, seed dispersal and herbivore foraging correlate properties in adjacent patches but in different ways, and different spatial patterns emerge. Other processes, such as insect outbreaks, fire, and water flow, also may correlate properties between adjacent patches and result in additional patterns.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 317 (1985), S. 613-616 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The present analysis of global soil nitrogen pools is based on data from 3,100 soil profiles supporting natural vegetation (excluding wetlands), therefore the patterns discussed do not account for gains or losses caused by man's activities. The data were obtained from P.J.Z. and from soil survey ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 334 (1988), S. 55-58 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] General circulation models suggest a 2-4 °C mean rise in global temperature with CO2 doubling, with greater warming in higher latitudes than near the equator1"5. This doubling is expected to occur over the next one hundred years, although precise estimates of the doubling time vary according to ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 361 (1993), S. 208-209 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] How quickly can ecological communities change as the climate warms? Very quickly at the forest-tundra border, say MacDonald et al. in a study of vegeta-tion in Canada over the past 1,000 years, on page 243 of this issue1. With fine-scale resolution of pollen assemblages in ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 118 (1999), S. 50-58 
    ISSN: 1432-1939
    Keywords: Key words Nutrient use efficiency ; Nutrient response efficiency ; Nutrient availability ; Litterfall ; Production
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The validity of nutrient use efficiency as a central concept in ecosystem ecology has recently been subject to challenge based upon arguments over autocorrelation of data, interpretation of graphical approaches, and appropriate statistical analyses. Much of the confusion on the measurement and interpretation of nutrient use efficiency results from the lack of a sound theoretical basis with which to examine experimental results. In this paper, we develop a theory of nutrient use efficiency based upon fundamental mass balance, present a graphical approach to appropriate testing of alternative hypotheses to avoid problems of autocorrelation in data, and suggest critical areas where experiments must be performed to distinguish among hypotheses. We show that nutrient use efficiency (production per unit nutrient uptake) must be distinguished from nutrient response efficiency (production per unit nutrient available). In contrast to the monotonic increase of nutrient use efficiency with decreasing nutrient availability originally proposed in the 1982 model of P.M. Vitousek, nutrient response efficiency is unimodal with maximum efficiency at intermediate levels of nutrient availability. However, nutrient use efficiency dynamics at low nutrient availability cannot yet be theoretically defined. We also show theoretically which plant traits control responses of ecosystem nutrient use or nutrient response efficiency along gradients of nutrient availability. Finally, we show how our model naturally leads to species replacement along nutrient availability gradients.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...