ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Maps
  • Other Sources  (26)
  • Oxford Univ. Press  (16)
  • Public Library of Science  (10)
  • 2015-2019  (26)
  • 2015  (26)
  • 1
    Publication Date: 2019-09-23
    Description: Olivine major and trace element compositions from 12 basalts from the southern Payenia volcanic province in Argentina have been analyzed by electron microprobe and laser ablation inductively coupled plasma mass spectrometry. The olivines have high Fe/Mn and low Ca/Fe and many fall at the end of the global olivine array, indicating that they were formed from a pyroxene-rich source distinct from typical mantle peridotite. The olivines with the highest Fe/Mn have higher Zn/Fe, Zn and Co and lower Co/Fe than the olivines with lower Fe/Mn, also suggesting contributions from a pyroxene-rich source. Together with whole-rock radiogenic isotopes and elemental concentrations, the samples indicate mixing between two mantle sources: (1) a pyroxene-rich source with EM-1 ocean island basalt type trace element and isotope characteristics; (2) a peridotitic source with more radiogenic Pb that was metasomatized by subduction-zone fluids and/or melts. The increasing contributions from the pyroxene-rich source in the southern Payenia basalts are correlated with an increasing Fe-enrichment, which caused the olivines to have lower forsterite contents at a given Ni content. Al-in-olivine crystallization temperatures measured on olivine–spinel pairs are between 1155 and 1243°C and indicate that the magmas formed at normal upper mantle (asthenospheric) temperatures of ∼1350°C. The pyroxene-rich material is interpreted to have been brought up from the deeper parts of the upper mantle by vigorous asthenospheric upwelling caused by break-off of the Nazca slab south of Payenia during the Pliocene and roll-back of the subducting slab beneath Payenia. The pyroxene-rich mantle mixed with peridotitic metasomatized South Atlantic mantle in the mantle wedge beneath Payenia.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Oxford Univ. Press
    In:  Journal of Plankton Research, 37 (1). pp. 11-15.
    Publication Date: 2017-04-13
    Description: The comb jelly Mnemiopsis leidyi is considered to be a successful invasive species, partly due to its high reproduction potential. However, due to the absence of direct carbon measurements of eggs, specific reproduction rates remain uncertain. We show that egg carbon is 0.22 ± 0.02 µg C and up to 21 times higher than previously extrapolated. With maximum rates of 11 232 eggs ind−1 day−1, largest animals in northern Europe invest ∼10% day−1 of their body carbon into reproduction. The comb jelly M. leidyi has received wide public and scientific attention during the last decades due to its commonly observed formation of bloom abundances in native and invaded areas (e.g. Costello et al., 2012; Riisgård et al., 2012). One of the traits suggested to be responsible for M. leidyi's invasion success is its high fecundity. At the northern end of its distribution range in native areas, M. leidyi has been shown to produce up to 9380 and 14 233 eggs ind−1 day−1 (Kremer, 1976a; Graham et al., 2009), with similar rates of 9910 eggs ind−1 day−1 for the native southern population in Biscayne Bay, FL, USA (Baker and Reeve, 1974). Within invaded European waters, rates of up to 3000 and 12 000 eggs ind−1 day−1 have been recorded for northern and southern populations, respectively (Zaika and Revkov, 1994; Javidpour et al., 2009). Since M. leidyi is a simultaneous hermaphrodite and fertilized eggs are produced on a daily basis during favorable conditions (Jaspers, 2012), M. leidyi can circumvent the Allee effect and efficiently seed new populations even from few founding individuals. Although …
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-07-10
    Description: New marine geophysical data recorded across the Tonga-Kermadec subduction zone are used to image deformation and seismic velocity structures of the forearc and Pacific Plate where the Louisville Ridge seamount chain subducts. Due to the obliquity of the Louisville Ridge to the trench and the fast 128 mm yr−1 south–southwest migration of the ridge-trench collision zone, post-, current and pre-seamount subduction deformation can be investigated between 23°S and 28°S. We combine our interpretations from the collision zone with previous results from the post- and pre-collision zones to define the along-arc variation in deformation due to seamount subduction. In the pre-collision zone the lower-trench slope is steep, the mid-trench slope has ∼3-km-thick stratified sediments and gravitational collapse of the trench slope is associated with basal erosion by subducting horst and graben structures on the Pacific Plate. This collapse indicates that tectonic erosion is a normal process affecting this generally sediment starved subduction system. In the collision zone the trench-slope decreases compared to the north and south, and rotation of the forearc is manifest as a steep plate boundary fault and arcward dipping sediment in a 12-km-wide, ∼2-km-deep mid-slope basin. A ∼3 km step increase in depth of the middle and lower crustal isovelocity contours below the basin indicates the extent of crustal deformation on the trench slope. At the leading edge of the overriding plate, upper crustal P-wave velocities are ∼4.0 km s−1 and indicate the trench fill material is of seamount origin. Osbourn Seamount on the outer rise has extensional faulting on its western slope and mass wasting of the seamount provides the low Vp material to the trench. In the post-collision zone to the north, the trench slope is smooth, the trench is deep, and the crystalline crust thins at the leading edge of the overriding plate where Vp is low, ∼5.5 km s−1. These characteristics are attributed to a greater degree of extensional collapse of the forearc in the wake of seamount subduction. The northern end of a seismic gap lies at the transition from the smooth lower-trench slope of the post-collision zone, to the block faulted and elevated lower-trench slope in the collision zone, suggesting a causative link between the collapse of the forearc and seismogenesis. Along the forearc, the transient effects of a north-to-south progression of ridge subduction are preserved in the geomorphology, whereas longer-term effects may be recorded in the ∼80 km offset in trench strike at the collision zone itself.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Oxford Univ. Press
    In:  Geophysical Journal International, 202 (1). pp. 454-463.
    Publication Date: 2019-09-23
    Description: The Murray Ridge/Dalrymple Trough system forms the boundary between the Indian and Arabian plates in the northern Arabian Sea. Geodetic constraints from the surrounding con- tinents suggest that this plate boundary is undergoing oblique extension at a rate of a few millimetres per year. We present wide-angle seismic data that constrains the composition of the Ridge and of adjacent lithosphere beneath the Indus Fan. We infer that Murray Ridge, like the adjacent Dalrymple Trough, is underlain by continental crust, while a thin crustal section beneath the Indus Fan represents thinned continental crust or exhumed serpentinized mantle that forms part of a magma-poor rifted margin. Changes in crustal structure across the Murray Ridge and Dalrymple Trough can explain short-wavelength gravity anomalies, but a long-wavelength anomaly must be attributed to deeper density contrasts that may result from a large age contrast across the plate boundary. The origin of this fragment of continental crust remains enigmatic, but the presence of basement fabrics to the south that are roughly parallel to Murray Ridge suggests that it separated from the India/Seychelles/Madagascar block by extension during early breakup of Gondwana.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: We estimated the relative contribution of atmosphere (ic Nitrogen (N) input (wet and dry deposition and N fixation) to the epipelagic food web by measuring N isotopes of different functional groups of epipelagic zooplankton along 23°W (17°N-4°S) and 18°N (20-24°W) in the Eastern Tropical Atlantic. Results were related to water column observations of nutrient distribution and vertical diffusive flux as well as colony abundance of Trichodesmium obtained with an Underwater Vision Profiler (UVP5). The thickness and depth of the nitracline and phosphocline proved to be significant predictors of zooplankton stable N isotope values. Atmospheric N input was highest (61% of total N) in the strongly stratified and oligotrophic region between 3 and 7°N, which featured very high depth-integrated Trichodesmium abundance (up to 9.4×104 colonies m-2), strong thermohaline stratification and low zooplankton δ15N (~2‰). Relative atmospheric N input was lowest south of the equatorial upwelling between 3 and 5°S (27%). Values in the Guinea Dome region and north of Cape Verde ranged between 45 and 50%, respectively. The microstructure-derived estimate of the vertical diffusive N flux in the equatorial region was about one order of magnitude higher than in any other area (approximately 8 mmol m-2 d 1). At the same time, this region received considerable atmospheric N input (35% of total). In general, zooplankton δ15N and Trichodesmium abundance were closely correlated, indicating that N fixation is the major source of atmospheric N input. Although Trichodesmium is not the only N fixing organism, its abundance can be used with high confidence to estimate the relative atmospheric N input in the tropical Atlantic (r2 = 0.95). Estimates of absolute N fixation rates are two- to tenfold higher than incubation-derived rates reported for the same regions. Our approach integrates over large spatial and temporal scales and also quantifies fixed N released as dissolved inorganic and organic N. In a global analysis, it may thus help to close the gap in oceanic N budgets.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: Microfluidics, or lab-on-a-chip (LOC) is a promising technology that allows the development of miniaturized chemical sensors. In contrast to the surging interest in biomedical sciences, the utilization of LOC sensors in aquatic sciences is still in infancy but a wider use of such sensors could mitigate the undersampling problem of ocean biogeochemical processes. Here we describe the first underwater test of a novel LOC sensor to obtain in situ calibrated time-series (up to 40 h) of nitrate+nitrite (ΣNOx) and nitrite on the seafloor of the Mauritanian oxygen minimum zone, offshore Western Africa. Initial tests showed that the sensor successfully reproduced water column (160 m) nutrient profiles. Lander deployments at 50, 100 and 170 m depth indicated that the biogeochemical variability was high over the Mauritanian shelf: The 50 m site had the lowest ΣNOx concentration, with 15.2 to 23.4 μM (median=18.3 μM); while at the 100 site ΣNOx varied between 21.0 and 30.1 μM over 40 hours (median = 25.1μM). The 170 m site had the highest median ΣNOx level (25.8 μM) with less variability (22.8 to 27.7 μM). At the 50 m site, nitrite concentration decreased fivefold from 1 to 0.2 μM in just 30 hours accompanied by decreasing oxygen and increasing nitrate concentrations. Taken together with the time series of oxygen, temperature, pressure and current velocities, we propose that the episodic intrusion of deeper waters via cross-shelf transport leads to intrusion of nitrate-rich, but oxygen-poor waters to shallower locations, with consequences for benthic nitrogen cycling. This first validation of an LOC sensor at elevated water depths revealed that when deployed for longer periods and as a part of a sensor network, LOC technology has the potential to contribute to the understanding of the benthic biogeochemical dynamics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-10-26
    Description: Molecular diversity surveys have demonstrated that aquatic fungi are highly diverse, and that they play fundamental ecological roles in aquatic systems. Unfortunately, comparative studies of aquatic fungal communities are few and far between, due to the scarcity of adequate datasets. We combined all publicly available fungal 18S ribosomal RNA (rRNA) gene sequences with new sequence data from a marine fungi culture collection. We further enriched this dataset by adding validated contextual data. Specifically, we included data on the habitat type of the samples assigning fungal taxa to ten different habitat categories. This dataset has been created with the intention to serve as a valuable reference dataset for aquatic fungi including a phylogenetic reference tree. The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of sequences suggesting that environmental factors were the main drivers of fungal community structure, rather than species competition. Thus, the diversification process of aquatic fungi must be highly clade specific in some cases.The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of sequences suggesting that environmental factors were the main drivers of fungal community structure, rather than species competition. Thus, the diversification process of aquatic fungi must be highly clade specific in some cases.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-12-16
    Description: Benthic suspension feeding mussels are an important functional guild in coastal and estua-rine ecosystems. To date we lack information on how various environmental gradients and biotic interactions separately and interactively shape the distribution patterns of mussels in non-tidal environments. Opposing to tidal environments, mussels inhabit solely subtidal zone in non-tidal waterbodies and, thereby, driving factors for mussel populations are expected to differ from the tidal areas. In the present study, we used the boosted regression tree modelling (BRT), an ensemble method for statistical techniques and machine learning, in order to explain the distribution and biomass of the suspension feeding mussel Mytilus trossulus in the non-tidal Baltic Sea. BRT models suggested that (1) distribution patterns of M. trossulus are largely driven by separate effects of direct environmental gradients and partly by interactive effects of resource gradients with direct environmental gradients. (2) Within its suitable habitat range, however, resource gradients had an important role in shaping the biomass distribution of M. trossulus. (3) Contrary to tidal areas, mussels were not competitively superior over macrophytes with patterns indicating either facilitative interactions between mussels and macrophytes or co-variance due to common stressor. To conclude, direct environmental gradients seem to define the distribution pattern of M. trossulus, and within the favourable distribution range, resource gradients in interaction with direct environmental gradients are expected to set the biomass level of mussels.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-13
    Description: Marine sponge–associated actinomycetes are considered as promising sources for the discovery of novel biologically active compounds. In the present study, a total of 64 actinomycetes were isolated from 12 different marine sponge species that had been collected offshore the islands of Milos and Crete, Greece, eastern Mediterranean. The isolates were affiliated to 23 genera representing 8 different suborders based on nearly full length 16S rRNA gene sequencing. Four putatively novel species belonging to genera Geodermatophilus, Microlunatus, Rhodococcus and Actinomycetospora were identified based on a 16S rRNA gene sequence similarity of 〈 98.5% to currently described strains. Eight actinomycete isolates showed bioactivities against Trypanosma brucei brucei TC221 with half maximal inhibitory concentration (IC50) values 〈20 μg/mL. Thirty four isolates from the Milos collection and 12 isolates from the Crete collection were subjected to metabolomic analysis using high resolution LC-MS and NMR for dereplication purposes. Two isolates belonging to the genera Streptomyces (SBT348) and Micromonospora (SBT687) were prioritized based on their distinct chemistry profiles as well as their anti-trypanosomal activities. These findings demonstrated the feasibility and efficacy of utilizing metabolomics tools to prioritize chemically unique strains from microorganism collections and further highlight sponges as rich source for novel and bioactive actinomycetes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Oxford Univ. Press
    In:  Journal of Plankton Research, 37 (2). pp. 293-305.
    Publication Date: 2020-07-20
    Description: Aquatic ecosystems experience large natural variation in elemental composition of carbon (C), nitrogen (N) and phosphorus (P), which is further enhanced by human activities. Primary producers typically reflect the nutrient ratios of their resource, whose stoichiometric composition can vary widely in conformity to environmental conditions. In contrast, C to nutrient ratios in consumers are largely constrained within a narrow range, termed homeostasis. In comparison to crustacean zooplankton, less is known about the ability of protozoan grazers and rotifer species to maintain stoichiometric balance. In this study, we used laboratory experiments with a primary producer (Nannochloropsis sp.), three different species of protozoan grazers and one mesozooplankton species: two heterotrophic dinoflagellates (Gyrodinium dominans and Oxyrrhis marina), a ciliate (Euplotes sp.) and a rotifer (Brachionus plicatilis) to test the stoichiometric response to five nutrient treatments. We showed that the dependency of zooplankton C:N:P ratios on C: nutrient ratios of their food source varies among species. Similar to the photoautotroph, the two heterotrophic dinoflagellates weakly regulated their internal stoichiometry. In contrast, the strength of stoichiometric regulation increased to strict homeostasis in both the ciliate and the rotifer, similar to crustacean zooplankton. Our study further shows that ciliate and rotifer growth can be constrained by imbalanced resource supply. It also indicates that these key primary consumers have the potential to trophically upgrade poor stoichiometric autotrophic food quality for higher trophic levels.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-12-19
    Description: About 60 years ago, the critical depth hypothesis was proposed to describe the occurrence of spring phytoplankton blooms and emphasized the role of stratification for the timing of onset. Since then, several alternative hypotheses appeared focusing on the role of grazing and mixing processes such as turbulent convection or wind activity. Surprisingly, the role of community composition—and thus the distribution of phytoplankton traits—for bloom formation has not been addressed. Here, we discuss how trait variability between competing species might influence phytoplankton growth during the onset of the spring bloom. We hypothesize that the bloom will only occur if there are species with a combination of traits fitting to the environmental conditions at the respective location and time. The basic traits for formation of the typical spring bloom are high growth rates and photoadaptation to low light conditions, but other traits such as nutrient kinetics and grazing resistance might also be important. We present concise ideas on how to test our theoretical considerations experimentally. Furthermore, we suggest that future models of phytoplankton blooms should include both water column dynamics and variability of phytoplankton traits to make realistic projections instead of treating the phytoplankton bloom as an aggregate community phenomenon.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-09-23
    Description: The marine fungus Microascus brevicaulis strain LF580 is a non-model secondary metabolite producer with high yields of the two secondary metabolites scopularides A and B, which exhibit distinct activities against tumour cell lines. A mutant strain was obtained using UV mutagenesis, showing faster growth and differences in pellet formation besides higher production levels. Here, we show the first proteome study of a marine fungus. Comparative proteomics were applied to gain deeper understanding of the regulation of production and of the physiology of the wild type strain and its mutant. For this purpose, an optimised protein extraction protocol was established. In total, 4759 proteins were identified. The central metabolic pathway of strain LF580 was mapped using the KEGG pathway analysis and GO annotation. Employing iTRAQ labelling, 318 proteins were shown to be significantly regulated in the mutant strain: 189 were down- and 129 upregulated. Proteomics are a powerful tool for the understanding of regulatory aspects: The differences on proteome level could be attributed to limited nutrient availability in the wild type strain due to a strong pellet formation. This information can be applied for optimisation on strain and process level. The linkage between nutrient limitation and pellet formation in the non-model fungus M. brevicaulis is in consensus with the knowledge on model organisms like Aspergillus niger and Penicillium chrysogenum
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-13
    Description: The unabated rise in anthropogenic CO2 emissions is predicted to strongly influence the ocean's environment, increasing the mean sea-surface temperature by 4°C and causing a pH decline of 0.3 units by the year 2100. These changes are likely to affect the nutritional value of marine food sources since temperature and CO2 can influence the fatty (FA) and amino acid (AA) composition of marine primary producers. Here, essential amino (EA) and polyunsaturated fatty (PUFA) acids are of particular importance due to their nutritional value to higher trophic levels. In order to determine the interactive effects of CO2 and temperature on the nutritional quality of a primary producer, we analyzed the relative PUFA and EA composition of the diatom Cylindrotheca fusiformis cultured under a factorial matrix of 2 temperatures (14 and 19°C) and 3 partial pressures of CO2 (180, 380, 750 μatm) for 〉250 generations. Our results show a decay of ∼3% and ∼6% in PUFA and EA content in algae kept at a pCO2 of 750 μatm (high) compared to the 380 μatm (intermediate) CO2 treatments at 14°C. Cultures kept at 19°C displayed a ∼3% lower PUFA content under high compared to intermediate pCO2, while EA did not show differences between treatments. Algae grown at a pCO2 of 180 μatm (low) had a lower PUFA and AA content in relation to those at intermediate and high CO2 levels at 14°C, but there were no differences in EA at 19°C for any CO2 treatment. This study is the first to report adverse effects of warming and acidification on the EA of a primary producer, and corroborates previous observations of negative effects of these stressors on PUFA. Considering that only ∼20% of essential biomolecules such as PUFA (and possibly EA) are incorporated into new biomass at the next trophic level, thepotential impacts of adverse effects of ocean warming and acidification at the base of the food web may be amplified towards higher trophic levels, which rely on them as source of essential biomolecules.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-13
    Description: While the isolated responses of marine phytoplankton to climate warming and to ocean acidification have been studied intensively, studies on the combined effect of both aspects of Global Change are still scarce. Therefore, we performed a mesocosm experiment with a factorial combination of temperature (9 and 15°C) and pCO2 (means: 439 ppm and 1040 ppm) with a natural autumn plankton community from the western Baltic Sea. Temporal trajectories of total biomass and of the biomass of the most important higher taxa followed similar patterns in all treatments. When averaging over the entire time course, phytoplankton biomass decreased with warming and increased with CO2 under warm conditions. The contribution of the two dominant higher phytoplankton taxa (diatoms and cryptophytes) and of the 4 most important species (3 diatoms, 1 cryptophyte) did not respond to the experimental treatments. Taxonomic composition of phytoplankton showed only responses at the level of subdominant and rare species. Phytoplankton cell sizes increased with CO2 addition and decreased with warming. Both effects were stronger for larger species. Warming effects were stronger than CO2 effects and tended to counteract each other. Phytoplankton communities without calcifying species and exposed to short-term variation of CO2 seem to be rather resistant to ocean acidification.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2020-07-29
    Description: The eastern Baltic (EB) cod (Gadus morhua) stock was depleted and overexploited for decades until the mid-2000s, when fishing mortality rapidly declined and biomass started to increase, as shown by stock assessments. These positive developments were partly assigned to effective management measures, and the EB cod was considered one of the most successful stock recoveries in recent times. In contrast to this optimistic view, the analytical stock assessment failed in 2014, leaving the present stock status unclear. Deteriorated quality of some basic input data for stock assessment in combination with changes in environmental and ecological conditions has led to an unusual situation for cod in the Baltic Sea, which poses new challenges for stock assessment and management advice. A number of adverse developments such as low nutritional condition and disappearance of larger individuals indicate that the stock is in distress. In this study, we (i) summarize the knowledge of recent changes in cod biology and ecosystem conditions, (ii) describe the subsequent challenges for stock assessment, and (iii) highlight the key questions where answers are urgently needed to understand the present stock status and provide scientifically solid support for cod management in the Baltic Sea.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2020-07-29
    Description: Fecundity and reproductive potential are important factors to be considered in evaluating trajectories and demographic predictions of fish populations. Therefore, characterizing the nature and quantifying the extent of any reproductive failure should be considered in fisheries studies. Here, we describe morphological changes in developed ovaries of autumn-spawning herring (Clupea harengus membras) caught in the northern Baltic Sea and evaluate the magnitude of this phenomenon during 3 consecutive years. Visibly, abnormal ovaries were histologically characterized by irregular-shaped oocytes in a vitellogenic or final maturation stage with coagulative necrosis and liquefaction of the yolk sphere, degraded follicle membranes, and fibrinous adhesion among oocytes. Such degeneration is presumed to cause complete infertility in the fish. The frequency of fish with abnormal ovaries varied annually between 10 and 15% among all females sampled. However, specific sampling events showed up to 90% females with abnormal gonads. The specific cause of this abnormality remains unknown; however, prevalence was associated with unfavourable environmental conditions encountered before spawning. Thus, ovarian abnormality was positively related to water temperatures, with the highest level found at ≥15°C and negatively related to the frequency of strong winds. The frequency of occurrence of abnormal gonads decreased with the progression of spawning from August to October. The observed abnormality and associated spawning failure will negatively affect the realized fecundity of autumn herring in the Baltic Sea and may act as a limiting factor for recovery of the stock, which has experienced profound depression during the last three decades.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Oxford Univ. Press
    In:  Journal of Plankton Research, 37 (5). pp. 985-988.
    Publication Date: 2017-04-12
    Description: Gelatinous zooplankton (GZ) comprise a taxonomically and functionally diverse group of marine organisms which includes ctenophores, cnidarians and pelagic tunicates, sharing a soft, mostly transparent body texture, a high body water content and a lack of exoskeleton. They range in size from less than a millimetre to nearly 2 m for the cnidarian jellyfish Nemopilema nomurai, and comprise some of the fastest growing metazoans on Earth (Hopcroft et al., 1998), sometimes surpassing crustacean zooplankton in their contribution to secondary production (i.e. in subtropical waters; Jaspers et al., 2009). They feed on a wide range of prey sizes, with predator–prey ratios comparable in some cases to those of baleen whales and krill (Deibel and Lee, 1992), and with prey removal rates which are similar to those of their non-gelatinous competitors (Acuña et al., 2011). In spite of early work pointing to gelatinous zooplankton as a trophic dead end (Verity and Smetacek, 1996), evidence is rapidly accumulating which shows that they may potentially channel energy from the picoplankton-sized, microbial loop organisms up to the higher trophic levels, including fish (Llopiz et al., 2010). However, this pathway is still largely neglected in most food web investigations even though it is now becoming clear that GZ represent a major fraction of the diet of several commercially important fish species such as bluefin tuna (Thunnus thynnus) (Cardona et al., 2012).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-11
    Description: The ctenophore Mnemiopsis leidyi is characterized by high growth rates and a large reproductive capacity. However, reproductive dynamics are not yet well understood. Here, we present laboratory data on food-dependent egg production in M. leidyi and egg hatching time and success. Further, we report on the reproduction of laboratory-reared and field-caught animals during starvation. Our results show that the half-saturation zooplankton prey concentration for egg production is reached at food levels of 12–23 µgC L−1, which is below the average summer food concentration encountered in invaded areas of northern Europe. Furthermore, starved animals continue to produce eggs for up to 12 days after cessation of feeding with high overall hatching success of 65–90%. These life history traits allow M. leidyi to thrive and reproduce in environments with varying food conditions and give it a competitive advantage under unfavourable conditions. This may explain why recurrent population blooms are observed and sustained in localized areas in invaded northern Europe, where water exchange is limited and zooplankton food resources are quickly depleted by M. leidyi. We suggest that these reproductive life history traits are key to its invasion success.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-07-10
    Description: The pre- and current collision of the Juan Fernández Ridge with the central Chilean margin at 31°–33°S is characterized by large-scale crustal thinning and long-term subsidence of the submarine forearc caused by subduction erosion processes. Here, we study the structure of the central Chilean margin in the ridge–trench collision zone by using wide-angle and multichannel seismic data. The transition from the upper to middle continental slope is defined by a trenchward dipping normal scarp with variable offsets of 500–2000 m height. Beneath the scarp, the 2-D velocity–depth models show a prominent lateral velocity contrast of 〉1 s−1 that propagates deep into the continental crust defining a major lateral seismic discontinuity. The discontinuity is interpreted as the lithological contact between the subsided/collapsed outermost forearc (composed of eroded and highly fractured volcanic rocks) and the seaward part of the uplifted Coastal Cordillera (made of less fractured metamorphic/igneous rocks). Extensional faults are abundant in the collapsed outermost forearc, however, landward of the continental slope scarp, both extensional and compressional structures are observed along the uplifted continental shelf that forms part of the Coastal Cordillera. Particularly, at the landward flank of the Valparaíso Forearc Basin (32°–33.5°S), shallow crustal seismicity has been recorded in 2008–2009 forming a dense cluster of thrust events of Mw 4–5. The estimated hypocentres spatially correlate with the location of the fault scarp, and they highlight the upper part of the seismic crustal discontinuity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-05-02
    Description: The pelagic dynamics of the cosmopolitan scyphozoan Aurelia sp. was investigated in three French Mediterranean lagoons, Thau, Berre and Bages-Sigean, which harbour resident populations. The annual cycles showed a common univoltine pattern in all lagoons where the presence of pelagic stages in the water column lasted ∼8 months. Field observations showed a release of ephyrae in winter time followed by pronounced growth between April and July, when individuals reached the largest sizes, before disappearing from the water column. Maximum abundance of ephyrae and medusae were registered in Thau. Medusae abundance attained a maximum of 331 ind 100 m-3 in Thau, 18 ind 100 m-3 in Berre and 7 ind 100 m-3 in Bages-Sigean lagoons. Temperature and zooplankton abundance appeared as leading factors of growth, where Bages-Sigean showed the population with higher growth rates (2.66 mm day-1) and maximum size (32 cm), followed by Thau (0.57-2.56 mm day-1; 22.4 cm) and Berre (1.57-2.22 mm day-1; 17 cm). The quantification of environmental windows used by the species showed wider ranges than previously reported in the Mediterranean Sea, which suggests a wide ecological plasticity of Aurelia spp. populations in north-western Mediterranean lagoons.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-04-03
    Description: We investigated the relationships of the muricid subfamilies Haustrinae, Pagodulinae and the genus Poirieria using a molecular phylogenetic approach on a dataset of three mitochondrial genes (12S, 16S and COI). These taxa form a well-supported clade within Muricidae. The phylogenetic analysis suggests that Poirieria is the sister group of Pagodulinae and that Axymene, Comptella, Pagodula, Paratrophon, Trophonella, Trophonopsis, Xymene, Xymenella, Xymenopsis and Zeatrophon are all worthy of genus-level rank within this subfamily. We propose the use of Enixotrophon for a group of species currently classified in Pagodula. The results also support a new taxonomic arrangement in Haustrinae.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-11
    Description: During the last years DNA barcoding has become a popular method of choice for molecular specimen identification. Here we present a comprehensive DNA barcode library of various crustacean taxa found in the North Sea, one of the most extensively studied marine regions of the world. Our data set includes 1,332 barcodes covering 205 species, including taxa of the Amphipoda, Copepoda, Decapoda, Isopoda, Thecostraca, and others. This dataset represents the most extensive DNA barcode library of the Crustacea in terms of species number to date. By using the Barcode of Life Data Systems (BOLD), unique BINs were identified for 198 (96.6%) of the analyzed species. Six species were characterized by two BINs (2.9%), and three BINs were found for the amphipod species Gammarus salinus Spooner, 1947 (0.4%). Intraspecific distances with values higher than 2.2% were revealed for 13 species (6.3%). Exceptionally high distances of up to 14.87% between two distinct but monophyletic clusters were found for the parasitic copepod Caligus elongatus Nordmann, 1832, supporting the results of previous studies that indicated the existence of an overlooked sea louse species. In contrast to these high distances, haplotype-sharing was observed for two decapod spider crab species, Macropodia parva Van Noort & Adema, 1985 and Macropodia rostrata (Linnaeus, 1761), underlining the need for a taxonomic revision of both species. Summarizing the results, our study confirms the application of DNA barcodes as highly effective identification system for the analyzed marine crustaceans of the North Sea and represents an important milestone for modern biodiversity assessment studies using barcode sequences
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    Oxford Univ. Press
    In:  Integrative and Comparative Biology, 55 (6). pp. 1018-1027.
    Publication Date: 2020-07-28
    Description: The Porifera (sponges) is one of the earliest phyletic lineages to branch off the metazoan tree. Although the body-plan of sponges is among the simplest in the animal kingdom and sponges lack nervous systems that communicate environmental signals to other cells, their larvae have sensory systems that generate coordinated responses to environmental cues. In eumetazoans (Cnidaria and Bilateria), the nervous systems of larvae often regulate metamorphosis through Ca 2+ -dependent signal transduction. In sponges, neither the identity of the receptor system that detects an inductive environmental cue (hereafter “metamorphic cues”) nor the signaling system that mediates settlement and metamorphosis are known. Using a combination of behavioral assays and surgical manipulations, we show here that specialized epithelial cells—referred to as flask cells—enriched in the anterior third of the Amphimedon queenslandica larva are most likely to be the sensory cells that detect the metamorphic cues. Surgical removal of the region enriched in flask cells in a larva inhibits the initiation of metamorphosis. The flask cell has an apical sensory apparatus with a cilium surrounded by an apical F-actin-rich protrusion, and numerous vesicles, hallmarks of eumetazoan sensory-neurosecretory cells. We demonstrate that these flask cells respond to metamorphic cues by elevating intracellular Ca 2+ levels, and that this elevation is necessary for the initiation of metamorphosis. Taken together, these analyses suggest that sponge larvae have sensory-secretory epithelial cells capable of converting exogenous cues into internal signals via Ca 2+ -mediated signaling, which is necessary for the initiation of metamorphosis. Similarities in the morphology, physiology, and function of the sensory flask cells in sponge larvae with the sensory/neurosecretory cells in eumetazoan larvae suggest this sensory system predates the divergence of Porifera and Eumetazoa.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-09-23
    Description: Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-07-10
    Description: Submarine mud volcanos at the seafloor are surface expressions of fluid flow systems within the seafloor. Since the electrical resistivity of the seafloor is mainly determined by the amount and characteristics of fluids contained within the sediment's pore space, electromagnetic methods offer a promising approach to gain insight into a mud volcano's internal resistivity structure. To investigate this structure, we conducted a controlled source electromagnetic experiment, which was novel in the sense that the source was deployed and operated with a remotely operated vehicle, which allowed for a flexible placement of the transmitter dipole with two polarization directions at each transmitter location. For the interpretation of the experiment, we have adapted the concept of rotational invariants from land-based electromagnetics to the marine case by considering the source normalized tensor of horizontal electric field components. We analyse the sensitivity of these rotational invariants in terms of 1-D models and measurement geometries and associated measurement errors, which resemble the experiment at the mud volcano. The analysis shows that any combination of rotational invariants has an improved parameter resolution as compared to the sensitivity of the pure radial or azimuthal component alone. For the data set, which was acquired at the ‘North Alex’ mud volcano, we interpret rotational invariants in terms of 1-D inversions on a common midpoint grid. The resulting resistivity models show a general increase of resistivities with depth. The most prominent feature in the stitched 1-D sections is a lens-shaped interface, which can similarly be found in a section from seismic reflection data. Beneath this interface bulk resistivities frequently fall in a range between 2.0 and 2.5 Ωm towards the maximum penetration depths. We interpret the lens-shaped interface as the surface of a collapse structure, which was formed at the end of a phase of activity of an older mud volcano generation and subsequently refilled with new mud volcano sediments during a later stage of activity. Increased resistivities at depth cannot be explained by compaction alone, but instead require a combination of compaction and increased cementation of the older sediments, possibly in connection to trapped, cooled down mud volcano fluids, which have a depleted chlorinity. At shallow depths (≤50 m) bulk resistivities generally decrease and for locations around the mud volcano's centre 1-D models show bulk resistivities in a range between 0.5 and 0.7 Ωm, which we interpret in terms of gas saturation levels by means of Archie's Law. After a detailed analysis of the material parameters contained in Archie's Law we derive saturation levels between 0 and 25 per cent, which is in accordance with observations of active degassing and a reflector with negative polarity in the seismics section just beneath the seafloor, which is indicative of free gas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-02-18
    Description: Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...