ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Fluid Mechanics and Thermodynamics  (22)
  • 2000-2004
  • 1955-1959  (22)
  • 1958  (11)
  • 1957  (11)
Collection
Years
  • 2000-2004
  • 1955-1959  (22)
Year
  • 1
    Publication Date: 2019-06-28
    Description: Charts have been prepared relating the thermodynamic properties of air in chemical equilibrium for temperatures to 15,000 degrees k and for pressures 10(-5) to 10 (plus 4) atmospheres. Also included are charts showing the composition of air, the isentropic exponent, and the speed of sound. These charts are based on thermodynamic data calculated by the National Bureau of Standards.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TN-4265
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-05-25
    Description: No abstract available
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-E58D11 , AD-162732
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-16
    Description: Convection is called free is the stresses (including the normal pressure) to which the fluid is subjected at its boundaries do not perform mechanical work, that is, if all the boundaries of the fluid are stationary. The case where this is not true is termed forced convection. It corresponds to the action on the fluid of some mechanical suction pumping the fluid.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TM-1407 , Rept-4281
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-17
    Description: The method of coordinate perturbation is applied to the unsteady flow of a compressible fluid in ducts of variable cross section. Solutions, in the form of perturbation series, are obtained for unsteady flows in ducts for which the logarithmic derivative of area variation with respect to the space coordinate is a function of the 'smallness' parameter of the perturbation series. This technique is applied to the problem of the interaction of a disturbance and a shock wave in a diffuser flow. It is found that, for a special choice of the function describing the disturbance, the path of the shock wave can be expressed in closed form to first order. The method is then applied to the determination of the flow field behind a shock wave moving on a prescribed path in the x,t-plane. Perturbation series solutions for quite general paths are developed. The perturbation series solutions are compared with the more exact solutions obtained by the application of the method of characteristics. The approximate solutions are shown to be in reasonably accurate agreement with the solutions obtained by the method of characteristics.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TM-1439
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-13
    Description: Upon impact of a solid body on the plane surface of a fluid, there occurs on the vetted surface of the body an abrupt pressure rise which propagates into both media with the speed of sound. Below, we assume the case where the speed of propagation of sound in the body which falls on the surface of the fluid may be regarded as infinitely large in comparison with the speed of propagation of sound in the fluid; that is, we shall assume that the falling body is absolutely rigid. IN this case, the entire relative speed of the motion which takes place at the beginning of the impact is absorbed by the fluid. The hydrodynamic pressures arising thereby are propagated from the contact surface within the fluid with the speed of sound in the form of compression and expansion waves and are gradually damped. After this, they are dispersed like impact pressures, reach ever larger regions of the fluid remote fran the body and became equal to zero; in the fluid there remain hydrodynamic pressures corresponding to the motion of the body after the impact. Neglecting the forces of viscosity and taking into account, furthermore, that the motion of the fluid begins from a state of rest, according to Thomson's theorem, we may consider the motion of an ideal compressible fluid in the process of impact to be potential. We examine the case of impact upon the surface of a ccmpressible fluid of a flat plate of infinite extent or of a body, the immersed part of the surface of which may be called approximately flat. In this report we discuss the first phase of the impact pressure on the surface of a fluid, prior to the appearance of a cavity, since at this stage the hydrodynamic pressures reach their maximum values. Observations, after the fall of the bodies on the surface of the fluid, show that the free surface of the fluid at this stage is almost completely at rest if one does not take into account the small rise in the neighborhood of the boundaries of the impact surface.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TM-1413 , Prikadnaia Matematika i Mekhanika; 20; 1; 67-72
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-15
    Description: Advantage of the elliptic functions and of the more general functions of Schwarz for fluid mechanics. Flows outside and inside polygons. Application to the calculation of an elbow diffuser for a wind tunnel. Properties of the elliptic integrals of the first kind and of the elliptic functions. Properties of the theta functions and decomposition of the elliptic functions into products of theta functions. Properties of the zeta functions. Decomposition of the elliptic functions into sums of zeta functions and calculations of the elliptic integrals. Applications to the calculation of wing profiles, of compressor profiles, and to the study of the vibrations of airplane wings and of compressor vanes. The manuscript of the present paper was checked by Mr. Eichelbrenner who corrected several imperfections and suggested numerous improvements to make reading of the paper easier. However, the limited subject does not permit filling in more than an incomplete knowledge of the properties of analytic functions.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TM-1435 , Les Fonctions et Integrales Elliptiques a Module Reel en Mecanique des Fluids; ONERA-P-71
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-15
    Description: The increasing importance of high-speed flow leads to similar problems in various fields of research which are summarized in what follows. Typical of all cases is the conversion of high kinetic energy into extreme thermodynamic states with temperatures of several thousand degrees, frequently connected with dissociation and ionization of the gas involved. There is also a characteristic small sensitivity to the processes discussed in the case of gases of low molecular weight (light gases). The penetration of meteors into the atmosphere of the earth at astronomical speeds results in temperatures higher than those of the surface of the sun. Such temperatures may be produced in shock tubes, with light gases used as the driving gas. For supersonic fighters the problem of propulsion is less difficult to solve than the problem of large heating, on the surface and in the combustion chamber. Finally, for the space-travel rocket, astronomical speeds have to be reached which require the lightest possible gases as propellants. Here again, dissociation processes in the combustion chamber are of considerable importance.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TM-1434 , Zeitschrift fuer Flugwissenschaften; 4; 4-Mar; 95-108
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-11
    Description: Ideally, the reflection of a shock from the closed end of a shock tube provides, for laboratory study, a quantity of stationary gas at extremely high temperature. Because of the action of viscosity, however, the flow in the real case is not one-dimensional, and a boundary layer grows in the fluid following the initial shock wave. In this paper simplifying assumptions are made to allow an analysis of the interaction of the shock reflected from the closed end with the boundary layer of the initial shock afterflow. The analysis predicts that interactions of several different types will exist in different ranges of initial shock Mach number. It is shown that the cooling effect of the wall on the afterflow boundary layer accounts for the change in interaction type. An experiment is carried out which verifies the existence of the several interaction regions and shows that they are satisfactorily predicted by the theory. Along with these results, sufficient information is obtained from the experiments to make possible a model for the interaction in the most complicated case. This model is further verified by measurements made during the experiment. The case of interaction with a turbulent boundary layer is also considered. Identifying the type of interaction with the state of turbulence of the interacting boundary layer allows for an estimate of the state of turbulence of the boundary layer based on an experimental investigation of the type of interaction. A method is proposed whereby the effect of the boundary-layer interaction on the strength of the reflected shock may be calculated. The calculation indicates that the reflected shock is rapidly attenuated for a short distance after reflection, and this result compares favorably with available experimental results.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TM-1418
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-15
    Description: In reading the publications on turbulence of different authors, one often runs the risk of confusing the various correlation coefficients and turbulence spectra. We have made a point of defining, by appropriate concepts, the differences which exist between these functions. Besides, we introduce in the symbols a few new characteristics of turbulence. In the first chapter, we study some relations between the correlation coefficients and the different turbulence spectra. Certain relations are given by means of demonstrations which could be called intuitive rather than mathematical. In this way we demonstrate that the correlation coefficients between the simultaneous turbulent velocities at two points are identical, whether studied in Lagrange's or in Euler's systems. We then consider new spectra of turbulence, obtained by study of the simultaneous velocities along a straight line of given direction. We determine some relations between these spectra and the correlation coefficients. Examining the relation between the spectrum of the turbulence measured at a fixed point and the longitudinal-correlation curve given by G. I. Taylor, we find that this equation is exact only when the coefficient is very small.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TM-1436 , ONERA; 34
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-15
    Description: A number of semiempirical approximate methods exist for determining the characteristics of the turbulent boundary layer on a curvilinear surface. At present, among these methods, the one proposed by L. G. Loitsianskii is given frequent practical application. This method is sufficiently effective and permits, in the case of wing profiles with technically smooth surfaces, calculating the basic characteristics of the boundary layer and the values of the overall drag with an accuracy which suffices for practical purposes. The idea of making use of the basic integral momentum equation ((d delta(sup xx))/dx) + ((V' delta(sup xx))/V) (2 + H) = (tau(sub 0))/(rho V(exp 2)) proves to be fruitful also for the solution of the problems in the determination of the characteristics of the turbulent boundary layer on a rough surface.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TM-1440 , Izvestiia Akademii Nauk SSR, Otdelenie Teknicheskikh Nauk; 8; 17-21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-08-15
    Description: The effect of the location of transition on the heat transfer to the turbulent incompressible boundary layer is analyzed. The analysis indicates that considerably higher heat-transfer rates may occur for some distance downstream if the transition is very late. The results of a limited experimental investigation are in substantial agreement with the results of the analysis. If the extent of the transition region is known, the analysis also allows adequate prediction of heat-transfer coefficients within the transition region. The nature of this analysis is such that it should predict local shear coefficients in the transition region equally well.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA-MEMO-12-4-58W
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-06-28
    Description: Some results of recent experimental investigations at supersonic and transonic speeds are presented to show the present status in the estimation of load distributions on controls and adjacent wing surfaces resulting from the deflection of flap controls and spoiler controls. The results indicate that the development of methods for predicting loads associated with controls has not kept pace with the acquisition of experimental data. At low supersonic speeds sweeping the hinge line induces strong three-dimensional-flow characteristics which cannot be treated by the simplified methods previously developed for controls without sweep. At transonic speeds the estimation of loads associated with controls must usually be dependent upon experimental information inasmuch as the latest attempts to predict chordwise and spanwise loadings have met with only limited success.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-L57D26a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-05-30
    Description: Boundary-layer-transition and heat-transfer measurements were obtained from flight tests of blunt and sharp cones having apex angles of 50 deg. The test Mach number range was from 1.7 to 4.7, corresponding to free-stream Reynolds numbers, based on cone base diameter, of 18. 3 x 10(exp 6) and 32.1 x 10(exp 6), respectively. Transition on both models occurred at a local Reynolds number of 1 x 10(exp 6) to 2 X 10(exp 6) based on distance from the stagnation point. Transition Reynolds numbers based on momentum thickness were between 320 and 380 for the blunt cone. The model surface roughness was 25 rms microinches or greater. Turbulent heat transfer to the conical surface of the blunt cone at a Mach number of 4 was 30 percent less than that to the surface of the sharp cone. Available theories predicted heat-transfer coefficients reasonably well for the fully laminar or turbulent flow conditions.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-L57D04
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-06-27
    Description: Skin temperatures and surface pressures have been measured on a slightly blunted cone-cylinder-flare configuration to a maximum Mach number of 9.89 with a rocket-propelled model. The cone had a t o t a l angle of 25 deg and the flare had a 10 deg half-angle. Temperature data were obtained at eight cone locations, four cylinder locations, and seven flare locations; pressures were measured at one cone location, one cylinder location, and three flare locations. Four stages of propulsion were utilized and a reentry type of trajectory was employed in which the high-speed portion of flight was obtained by firing the last two stages during the descent of the model from a peak altitude of 99,400 feet. The Reynolds number at peak Mach number was 1.2 x 10(exp 6) per foot of model length. The model length was 6.68 feet. During the higher speed portions of flight, temperature measurements along one element of the nose cone indicated that the boundary layer was probably laminar, whereas on the opposite side of the nose the measurements indicated transitional or turbulent flow. Temperature distributions along one meridian of the model showed the flare to have the highest temperatures and the cylinder generally to have the lowest. A maximum temperature of 970 F was measured on the cone element showing the transitional or turbulent flow; along the opposite side of the model, the maximum temperatures of the cone, cylinder, and flare were 545 F, 340 F, and 680 F, respectively, at the corresponding time.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-L57B18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-12
    Description: The heat transfer and pressures on the surfaces of several flat-plate models with various external crosswise stiffener arrangements are presented. The tests were made in a free jet at Mach numbers of 0.77, 1.39, and 1.98 for Reynolds numbers of 3 x 10(exp 6), 7 x 10(exp 6), and 14 x 10(exp 6), respectively, based on a length of 1 foot. The addition of external crosswise stiffeners to the flat-plate models caused large pressure and heat-transfer variations on the surfaces of the models.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-SL57E31a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-08-13
    Description: In the investigation of stability of a two-dimensional laminar flow with respect to small disturbances, a disturbance of the stream function moving downstream (in the direction of the x-axis) by the "partial wave formula" is described.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA/TM-1417 , Zeitschrift fuer Angewandte mathematik und Mechanik (Magazine for Applied Mathematics and Mechanics); 34; 9-Aug; 344-357
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-13
    Description: The literature on turbulent heat transfer has in the course of years attained a considerable volume. Since this very complicated problem has not as yet found a complete solution, further studies in this field may be expected. The heat engineer must therefore accomodate himself to a constantly increasing number of theories and formulas. Since the theories generally start from hypothetical assumptions, and since they contain true and false assertions, verified knowledge and pure suppositions often being intermingled in a manner difficult to tell them apart, the specialist had difficulty in forming a correct evaluation of the individual studies. The need therefore arises for a presentation of the problem of turbulent heat transfer which is not initially bound by hypothetical assumptions and in which uninvestigated can be clearly distinguished form each other. Such a presentation will be given in the present treatment. Brief remarks with regard to the development of the theory of local heat transfer are included.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TM-1408 , Archiv f. die Gesamte Waermetechnik; No. 6/7
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-11
    Description: Measurements of aerodynamic heat transfer have been made along the hemisphere and cylinder of a hemisphere-cylinder rocket-propelled model in free flight up to a Mach number of 3.88. The test Reynolds number based on free-stream condition and diameter of model covered a range from 2.69 x l0(exp 6) to 11.70 x 10(exp 6). Laminar, transitional, and turbulent heat-transfer coefficients were obtained. The laminar data along the body agreed with laminar theory for blunt bodies whereas the turbulent data along the cylinder were consistently lower than that predicted by the turbulent theory for a flat plate. Measurements of heat transfer at the stagnation point were, in general, lower than the theory for stagnation-point heat transfer. When the Reynolds number to the junction of the hemisphere-cylinder was greater than 6 x l0(exp 6), the transitional Reynolds number varied from 0.8 x l0(exp 6) to 3.0 x 10(exp 6); however, than 6 x l(exp 6) when the Reynolds number to the junction was less, than the transitional Reynolds number varied from 7.0 x l0(exp 6) to 24.7 x 10(exp 6).
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-L57D04a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-08-13
    Description: The unsteady aerodynamic forces, [based on two-dimensional incompressible flow considerations], are determined for an unstaggered cascade, the blades of which are vibrating in phase in an approach flow parallel to the blades.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA/TM-1412 , Zeitschrift fuer Angewandte Mathematik und Mechanik (Magazine for Applied Mathematics and Mechanics); 35; 3; 81-88
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-11
    Description: The net heat of combustion of the product formed by the reaction of diborane with a mixture of acetylene and ethylene was found to be 20,440 +/- 150 Btu per pound for the reaction of liquid fuel to gaseous carbon dioxide, gaseous water, and solid boric oxide. The measurements were made in a Parr oxygen-bomb calorimeter, and the combustion was believed to be 98 percent complete. The estimated net-heat of combustion for complete combustion would therefore be 20,850 +/- 150 Btu per pound.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-E53H18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-11
    Description: The heat of combustion of the product formed by the reaction acetylene and diborane was found to be 20,100 +/- 100 Btu per pound for the reaction of liquid fuel to gaseous carbon dioxide, gaseous water, and solid boric oxide. The measurements were made in a Parr oxygen-bomb calorimeter, and chemical analyses both of the sample and of the combustion products indicated combustion in the bomb calorimeter to have been 97 percent complete. The estimated net heat of combustion for complete combustion would therefore be 20,700 +/- 100 Btu per pound.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-E53K10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-13
    Description: In dusty air flows occurring in industrial practice in transport by air pressure of friable materials, in the drying, annealing, and so forth, of a pulverized solid mass in suspension, and in other processes, the concentration of solid particles usually has a magnitude of the order of 1 kg per 1 kg of air. At such a concentration, the ratio of the volume of the particles to the volume of the air is small (less than one-thousandth part). However, regardless of this, the presence of a solid admixture manifests itself in the rules for the velocity distribution of the air in a dusty air flow. As a result, the rules of velocity change are different for clean and for dusty air flows. The estimation of the influence of the admixture on the velocity of the motion of the flow presents a definitive interest. One of the attempts to estimate that influence on the axial velocity of a free axially symmetrical jet with admixtures was made by Abramovich. Abramovich assumed beforehand that the fine particles of the admixture in the jet are subject to the motion of the air (that is, that the velocity of the admixture is approximately equal to the local velocity of the air); he then took as the basis of his considerations, in solving the problem, the condition that the amount of motion of the two-phase jet must be constant.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TM-1430 , Zhurnal Tekhnicheskoi Fiziki; XXI; 5; 1060-1063
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...