ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-08-08
    Description: We investigate how the choice of injection mode impacts transport properties in kilometer-scale three-dimensional discrete fracture networks (DFN). The choice of injection mode, resident or flux-weighted, is designed to mimic different physical phenomena. It has been hypothesized that solute plumes injected under resident conditions evolve to behave similarly to solutes injected under flux-weighted conditions. Previously, computational limitations have prohibited the large scale simulations required to investigate this hypothesis. We investigate this hypothesis by using a high performance DFN suite, dfnWorks , to simulate flow in kilometer-scale three-dimensional DFNs based on fractured granite at the Forsmark site in Sweden, and adopt a Lagrangian approach to simulate transport therein. Results show that after traveling through a pre-equilibrium region both injection methods exhibit linear scaling of the first moment of travel time and power law scaling of the breakthrough curve with similar exponents, slightly larger than two. The physical mechanisms behind this evolution appear to be the combination of in-network channeling of mass into larger fractures, which offer reduced resistance to flow, and in-fracture channeling, which results from the topology of the DFN. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-08
    Description: Hydrologic ensemble forecasts driven by atmospheric ensemble prediction systems need statistical post-processing in order to account for systematic errors in terms of both location and spread. Runoff is an inherently multivariate process with typical events lasting from hours in case of floods to weeks or even months in case of droughts. This calls for multivariate post-processing techniques that yield well calibrated forecasts in univariate terms and ensure a realistic temporal dependence structure at the same time. To this end, the univariate ensemble model output statistics (EMOS) post-processing method is combined with two different copula approaches that ensure multivariate calibration throughout the entire forecast horizon. The domain of this study covers three sub-catchments of the river Rhine that represent different sizes and hydrological regimes: the Upper Rhine up to the gauge Maxau, the river Moselle up to the gauge Trier, and the river Lahn up to the gauge Kalkofen. In this study the two approaches to model the temporal dependence structure are ensemble copula coupling (ECC), which preserves the dependence structure of the raw ensemble, and a Gaussian copula approach (GCA), which estimates the temporal correlations from training observations. The results indicate that both methods are suitable for modelling the temporal dependencies of probabilistic hydrologic forecasts. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-08
    Description: A three-dimensional mathematical model that describes transport of contaminant in a horizontal aquifer with simultaneous diffusion into a fractured clay formation is proposed. A group of semi-analytical solutions is derived based on specific initial and boundary conditions as well as various source functions. The analytical model solutions are evaluated by numerical Laplace inverse transformation and analytical Fourier inverse transformation. The model solutions can be used to study the fate and transport in a three-dimensional spatial domain in which a non-aqueous phase liquid exists as a pool atop a fractured low permeability clay layer. The non-aqueous phase liquid gradually dissolves into the groundwater flowing past the pool, while simultaneously diffusing into the fractured clay formation below the aquifer. Mass transfer of the contaminant into the clay formation is demonstrated to be significantly enhanced by the existence of the fractures, even though the volume of fractures is relatively small compared to the volume of the clay matrix. The model solution is a useful tool in assessing contaminant attenuation processes in a confined aquifer underlain by a fractured clay formation. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-17
    Description: Parasite host range can be influenced by physiological, behavioral, and ecological factors. Combining data sets on host–parasite associations with phylogenetic information of the hosts and the parasites involved can generate evolutionary hypotheses about the selective forces shaping host range. Here, we analyzed associations between the nest-parasitic flies in the genus Philornis and their host birds on Trinidad. Four of ten Philornis species were only reared from one species of bird. Of the parasite species with more than one host bird species, P. falsificus was the least specific and P. deceptivus the most specific attacking only Passeriformes. Philornis flies in Trinidad thus include both specialists and generalists , with varying degrees of specificity within the generalists. We used three quantities to more formally compare the host range of Philornis flies: the number of bird species attacked by each species of Philornis , a phylogenetically informed host specificity index (Poulin and Mouillot's S TD ), and a branch length-based S TD . We then assessed the phylogenetic signal of these measures of host range for 29 bird species. None of these measures showed significant phylogenetic signal, suggesting that clades of Philornis did not differ significantly in their ability to exploit hosts. We also calculated two quantities of parasite species load for the birds – the parasite species richness, and a variant of the S TD index based on nodes rather than on taxonomic levels – and assessed the signal of these measures on the bird phylogeny. We did not find significant phylogenetic signal for the parasite species load or the node-based S TD index. Finally, we calculated the parasite associations for all bird pairs using the Jaccard index and regressed these similarity values against the number of nodes in the phylogeny separating bird pairs. This analysis showed that Philornis on Trinidad tend to feed on closely related bird species more often than expected by chance. Host range, parasite species load, and community similarity are important descriptors of host-parasite interactions. We used a phylogenetic approach to explore host-associations between birds and their Philornis parasites on the island of Trinidad.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-07-29
    Description: This work focuses on the implementation of a Shallow Water-Exner model for compound natural channels with complex geometry and movable bed within the finite volume framework. The model is devised for compound channels modeling: cross-section overbanks are treated with fixed bed conditions, while the main channel is left free to modify its morphology. A capacitive approach is used for bedload transport modeling, in which the solid flow rates are estimated with bedload transport formulas. The model equations pose some numerical issues in the case of natural channels, where bedload transport may occur for both subcritical and supercritical flows and geometry varies in space. An explicit path-conservative scheme, designed to overcome all these issues, is presented in the paper. The scheme solves liquid and solid phases dynamics in a coupled manner, in order to correctly model near critical currents/channel interactions and is well-balanced, that is able to properly reproduce steady states. The Roe and Osher Riemann solvers are implemented, so as to take into account the spatial geometry variations of natural channels. The scheme reaches up to 2 nd order accuracy. Validation is performed with fixed and movable bed test cases whose analytical solution is known, and with flume experimental data. An application of the model to a real case study is also shown. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-08-05
    Description: In this paper we use a physical modelling approach to explore the effect of lateral confinement on gravel bed river planform style, bed morphology, and sediment transport processes. A set of 27 runs was performed in a large flume (25 m long, 2.9 m wide), with constant longitudinal slope (0.01) and uniform grain size (1 mm), changing the water discharge (1.5 to 2.5 l/s) and the channel width (0.15 m to 1.5 m) to model a wide range of channel configurations, from narrow, straight, embanked channels to wide braided networks. The outcomes of each run were characterized by a detailed digital elevation model describing channel morphology, a map of dry areas and areas actively transporting sediment within the channel, and continuous monitoring of the amount of sediment transported through the flume outlet. Analysis reveals strong relationships between unit stream power and parameters describing the channel morphology. In particular, a smooth transition is observed between narrow channels with an almost rectangular cross section profile (with sediment transport occurring across the entire channel width) and complex braided networks where only a limited proportion (30%) of the bed is active. This transition is captured by descriptors of the bed elevation frequency distribution, e.g. standard deviation, skewness and kurtosis. These summary statistics represent potentially useful indicators of bed morphology that are compared with other commonly used summary indicators such as the braiding index and the type and number of bars. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-08-07
    Description: We analyzed individual variation in work load (nest visit rate) during chick-rearing, and the consequences of this variation in terms of breeding productivity, in a highly synchronous breeder, the European starling ( Sturnus vulgaris ) focusing on female birds. There was marked (10- to 16-fold) variation in total, female and male nest visit rates, among individuals, but individual variation in female nest visit rate was independent of environment (rainfall, temperature) and metrics of individual quality (laying date, clutch size, amount of male provisioning help), and was only weakly associated with chick demand (i.e., day 6 brood size). Female nest visit rate was independent of date and experimentally delayed birds provisioned at the same rate as peak-nesting birds; supporting a lack of effect of date per se. Brood size at fledging was positively but weakly related to total nest visit rate (male + female), with 〉fivefold variation in nest visit rate for any given brood size, and in females brood size at fledging and chick mass at fledging were independent of female nest visit rate, that is, individual variation in workload was not associated with higher productivity. Nevertheless, nest visit rate in females was repeatable among consecutive days (6–8 posthatching), and between peak (first) and second broods, but not among years. Our data suggest that individual females behave as if committed to a certain level of parental care at the outset of their annual breeding attempt, but this varies among years, that is, behavior is not fixed throughout an individual's life but represents an annually variable decision. We suggest females are making predictable decisions about their workload during provisioning that maximizes their overall fitness based on an integration of information on their current environment (although these cues currently remain unidentified). Traditional metrics of parental workload vary considerably and we elucidate an uncoupling of female provisioning effort and fitness benefits. We suggest females are making predictable decisions about their workload during provisioning that maximizes their overall fitness based on an integration of information on their current environment.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-08-19
    Description: We believe that there are too many models in hydrology and we should ask ourselves the question, if we are currently wasting time and effort in developing another model again instead of focusing on the development of a community hydrological model. In other fields this kind of models have been quite successful, but due to several reasons, no single community model has been developed in the field of hydrology yet. The concept, strength and weakness of a community model was discussed at the Chapman Conference on Catchment Spatial Behaviour and Complex Organisation held in Luxembourg in September 2014. This discussion as well as out own opinions about the potential of a community models, or at least the necessary discussion to establish one are debated in this commentary. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-08-20
    Description: The merger of formerly isolated lineages is hypothesized to occur in vertebrates under certain conditions. However, despite many demonstrated instances of introgression between taxa in secondary contact, examples of lineage mergers are rare. Preliminary mtDNA sequencing of a Malagasy passerine, Xanthomixis zosterops (Passeriformes: Bernieridae), indicated a possible instance of merging lineages. We tested the hypothesis that X . zosterops lineages are merging by comparing mtDNA sequence and microsatellite data, as well as mtDNA sequence data from host-specific feather lice in the genus Myrsidea (Phthiraptera: Menoponidae). Xanthomixis zosterops comprises four deeply divergent, broadly sympatric, cryptic mtDNA clades that likely began diverging approximately 3.6 million years ago. Despite this level of divergence, the microsatellite data indicate that the X . zosterops mtDNA clades are virtually panmictic. Three major phylogroups of Myrsidea were found, supporting previous allopatry of the X . zosterops clades. In combination, the datasets from X . zosterops and its Myrsidea document a potential merger of previously allopatric lineages that likely date to the Pliocene. This represents the first report of sympatric apparent hybridization among more than two terrestrial vertebrate lineages. Further, the mtDNA phylogeographic pattern of X . zosterops , namely the syntopy of more than two deeply divergent cryptic clades, appears to be a novel scenario among vertebrates. We highlight the value of gathering multiple types of data in phylogeographic studies to contribute to the study of vertebrate speciation. Xanthomixis zosterops comprises four deeply divergent, broadly sympatric, cryptic mtDNA clades that likely began diverging approximately 3.6 million years ago. Despite this level of divergence, microsatellite data indicate that the X . zosterops mtDNA clades are virtually panmictic. The presence of three distinct phylogroups of host-specific Myrsidea lice on X . zosterops support previous allopatry and potential lineage merger of the X . zosterops clades.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-08-20
    Description: Sexual signals are important in attracting and choosing mates; however, these signals and their associated preferences are often costly and frequently lost. Despite the prevalence of signaling system loss in many taxa, the factors leading to signal loss remain poorly understood. Here, we test the hypothesis that complexity in signal loss scenarios is due to the context-dependent nature of the many factors affecting signal loss itself. Using the Avida digital life platform, we evolved 50 replicates of ~250 lineages, each with a unique combination of parameters, including whether signaling is obligate or facultative; genetic linkage between signaling and receiving genes; population size; and strength of preference for signals. Each of these factors ostensibly plays a crucial role in signal loss, but was found to do so only under specific conditions. Under obligate signaling, genetic linkage, but not population size, influenced signal loss; under facultative signaling, genetic linkage does not have significant influence. Somewhat surprisingly, only a total loss of preference in the obligate signaling populations led to total signal loss, indicating that even a modest amount of preference is enough to maintain signaling systems. Strength of preference proved to be the strongest single force preventing signal loss, as it consistently overcame the potential effects of drift within our study. Our findings suggest that signaling loss is often dependent on not just preference for signals, population size, and genetic linkage, but also whether signals are required to initiate mating. These data provide an understanding of the factors (and their interactions) that may facilitate the maintenance of sexual signals. Sexual signals are important in attracting and choosing mates; however, these signals and their associated preferences are often costly and frequently lost. Here we used the Avida digital life platform to explore the conditions (population size, genetic linkage, strength of preference, and requirement of signal to initial mating) under which signal loss occurs. Our findings suggest that (1) signaling loss is often dependent on not just preference for signals, population size, and genetic linkage, but also whether signals are required to initiate mating, and (2) complete signal loss may be harder to obtain that previously thought.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2015-08-21
    Description: Soil surface sealing is a widespread natural process occurring frequently in bare soil areas between vegetation patches. The low hydraulic conductivity that characterizes the seal layer reduces both infiltration and evaporation fluxes from the soil, and thus has the potential to affect local vegetation water uptake (VWU). This effect is investigated here using experimental data, 2D physically based modelling and a long-term climatic dataset from three dry sites presenting a climatic gradient in the Negev Desert, Israel. The Feddes VWU parameters for the dominant shrub at the study site ( Sarcopoterium spinosum ) were acquired using lysimeter experiments. The results indicate that during the season surface sealing could either increase or decrease VWU depending on initial soil water content, rainfall intensity, and the duration of the subsequent drying intervals. These factors have a marked effect on inter-annual variability of the seal layer effect on VWU, which on average was found to be 26% higher under sealed conditions than in the case of unsealed soil surfaces. The seal layer was found to reduce the period where the vegetation was under water stress by 31% compared with unsealed conditions. This effect was more pronounced for seasons with total rainfall depth higher than 10 cm/y, and was affected by interseasonal climatic variability. These results shed light on the importance of surface sealing in dry environments and its contribution to the resilience of woody vegetation. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2015-08-23
    Description: Female salmonids bury and lay their eggs in streambeds by digging a pit, which is then covered with sediment from a second pit. The spawning process alters streambed topography, winnows fine sediment, and mixes sediment in the active layer. The resulting egg nests (redds) contain coarser and looser sediments than those of unspawned streambed areas, and display a dune-like shape with an amplitude and length that vary with fish size, substrate conditions, and flow conditions. Redds increase local bed surface roughness (〈10 −1 channel width, W ), but may reduce the size of macro-bedforms by eroding reach scale topography (10 ° -10 1 W ). Research has suggested that spawning may increase flow resistance due to redd form drag, resulting in lower grain shear stress and less particle mobility. Spawning however also prevents streambed armoring through surface and subsurface material mixing, potentially increasing particle mobility. Here, we use 2-dimensional hydraulic modeling with detailed pre- and post-spawning bathymetries and field observations to test the effect of small spawning salmonids on sediment transport. Our results show that topographical roughness added by small-bodied salmon redds has negligible effects on shear stress at the reach-unit scale, and limited effects at the local scale. Conversely, our results indicate sediment mixing reduces armoring and enhances sediment mobility, which increases potential bed load transport by subsequent floods. River restoration in fish-bearing streams should take into consideration the effects of redd excavation on channel stability. This is particularly important for streams that historically supported salmonids, and at present are the focus of habitat restoration actions. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2015-08-24
    Description: Species can adapt to new environmental conditions either through individual phenotypic plasticity, intraspecific genetic differentiation in adaptive traits, or both. Wild emmer wheat, Triticum dicoccoides , an annual grass with major distribution in Eastern Mediterranean region, is predicted to experience in the near future, as a result of global climate change, conditions more arid than in any part of the current species distribution. To understand the role of the above two means of adaptation, and the effect of population range position, we analyzed reaction norms, extent of plasticity, and phenotypic selection across two experimental environments of high and low water availability in two core and two peripheral populations of this species. We studied 12 quantitative traits, but focused primarily on the onset of reproduction and maternal investment, which are traits that are closely related to fitness and presumably involved in local adaptation in the studied species. We hypothesized that the population showing superior performance under novel environmental conditions will either be genetically differentiated in quantitative traits or exhibit higher phenotypic plasticity than the less successful populations. We found the core population K to be the most plastic in all three trait categories (phenology, reproductive traits, and fitness) and most successful among populations studied, in both experimental environments; at the same time, the core K population was clearly genetically differentiated from the two edge populations. Our results suggest that (1) two means of successful adaptation to new environmental conditions, phenotypic plasticity and adaptive genetic differentiation, are not mutually exclusive ways of achieving high adaptive ability; and (2) colonists from some core populations can be more successful in establishing beyond the current species range than colonists from the range extreme periphery with conditions seemingly closest to those in the new environment. Our results suggest that (1) two means of successful adaptation to new environmental conditions, phenotypic plasticity and adaptive genetic differentiation, are not mutually exclusive ways of achieving high adaptive ability; and (2) colonists from some core populations can be more successful in establishing beyond the current species range than colonists from the range extreme periphery with conditions seemingly closest to those in the new environment.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2015-08-19
    Description: Floods are a natural hazard that affect communities worldwide, but to date the vast majority of flood hazard research and mapping has been undertaken by wealthy developed nations. As populations and economies have grown across the developing world, so too has demand from governments, businesses and NGOs for modelled flood hazard data in these data-scarce regions. We identify six key challenges faced when developing a flood hazard model that can be applied globally, and present a framework methodology that leverages recent cross-disciplinary advances to tackle each challenge. The model produces return period flood hazard maps at ∼90 m resolution for the whole terrestrial land surface between 56˚S and 60˚N, and results are validated against high resolution government flood hazard datasets from the UK and Canada. The global model is shown to capture between two thirds and three quarters of the area determined to be at risk in the benchmark data without generating excessive false positive predictions. When aggregated to ∼1 km, mean absolute error in flooded fraction falls to ∼5%. The full complexity global model contains an automatically parameterised subgrid channel network, and comparison to both a simplified 2D only variant and an independently developed pan-European model shows the explicit inclusion of channels to be a critical contributor to improved model performance. Whilst careful processing of existing global terrain datasets enables reasonable model performance in urban areas, adoption of forthcoming next-generation global terrain datasets will offer the best prospect for a step-change improvement in model performance. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2015-08-20
    Description: This study asks whether the spatial scale of sampling alters structural properties of food webs and whether any differences are attributable to changes in species richness and connectance with scale. Understanding how different aspects of sampling effort affect ecological network structure is important for both fundamental ecological knowledge and the application of network analysis in conservation and management. Using a highly resolved food web for the marine intertidal ecosystem of the Sanak Archipelago in the Eastern Aleutian Islands, Alaska, we assess how commonly studied properties of network structure differ for 281 versions of the food web sampled at five levels of spatial scale representing six orders of magnitude in area spread across the archipelago. Species (S) and link (L) richness both increased by approximately one order of magnitude across the five spatial scales. Links per species (L/S) more than doubled, while connectance (C) decreased by approximately two-thirds. Fourteen commonly studied properties of network structure varied systematically with spatial scale of sampling, some increasing and others decreasing. While ecological network properties varied systematically with sampling extent, analyses using the niche model and a power-law scaling relationship indicate that for many properties, this apparent sensitivity is attributable to the increasing S and decreasing C of webs with increasing spatial scale. As long as effects of S and C are accounted for, areal sampling bias does not have a special impact on our understanding of many aspects of network structure. However, attention does need be paid to some properties such as the fraction of species in loops, which increases more than expected with greater spatial scales of sampling. This study investigates whether commonly studied properties of network structure vary with spatial scale, using highly resolved empirical food webs for the marine intertidal of the Sanak Archipelago in the Eastern Aleutian Islands. We find through analyses using niche and power-law scaling models that although raw structural properties of networks vary systematically with sampling extent, across six orders of magnitude, many of these apparent sensitivities are attributable to the increasing richness and decreasing connectance of larger-scale food webs.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2015-08-20
    Description: Aboveground plant performance is strongly influenced by belowground microorganisms, some of which are pathogenic and have negative effects, while others, such as nitrogen-fixing bacteria and arbuscular mycorrhizal fungi, usually have positive effects. Recent research revealed that belowground interactions between plants and functionally distinct groups of microorganisms cascade up to aboveground plant associates such as herbivores and their natural enemies. However, while functionally distinct belowground microorganisms commonly co-occur in the rhizosphere, their combined effects, and relative contributions, respectively, on performance of aboveground plant-associated organisms are virtually unexplored. Here, we scrutinized and disentangled the effects of free-living nitrogen-fixing (diazotrophic) bacteria Azotobacter chroococcum (DB) and arbuscular mycorrhizal fungi Glomus mosseae (AMF) on host plant choice and reproduction of the herbivorous two-spotted spider mite Tetranychus urticae on common bean plants Phaseolus vulgaris . Additionally, we assessed plant growth, and AMF and DB occurrence and density as affected by each other. Both AMF alone and DB alone increased spider mite reproduction to similar levels, as compared to the control, and exerted additive effects under co-occurrence. These effects were similarly apparent in host plant choice, that is, the mites preferred leaves from plants with both AMF and DB to plants with AMF or DB to plants grown without AMF and DB. DB, which also act as AMF helper bacteria, enhanced root colonization by AMF, whereas AMF did not affect DB abundance. AMF but not DB increased growth of reproductive plant tissue and seed production, respectively. Both AMF and DB increased the biomass of vegetative aboveground plant tissue. Our study breaks new ground in multitrophic belowground–aboveground research by providing first insights into the fitness implications of plant-mediated interactions between interrelated belowground fungi–bacteria and aboveground herbivores. Our study provides a key example of the interrelated effects of two primarily plant-mutualistic microorganisms, mycorrhizal fungi and free-living nitrogen-fixing bacteria, on herbivorous spider mites feeding on aboveground plant parts. It breaks new ground in multi-trophic below-aboveground research by providing first insights into the implications of plant-mediated belowground fungi-bacteria interactions on fitness of aboveground herbivores.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-08-20
    Description: Whether or not baiting influences stickleback catch per unit effort (CPUE) remains a matter of debate among stickleback researchers: While the opinions about the impact of baiting on CPUE differ, supporting quantitative data are scarce. The effect of baiting and trap type on nine-spined stickleback ( Pungitius pungitius ) CPUE was studied in a field experiment conducted over four consecutive days in a small pond in northeastern Finland. The results show that baited traps yielded better (mean CPUE = 1.24 fish/trap/d) catches than unbaited traps (mean CPUE = 0.66); however, there were also differences in CPUE depending on the type of collapsible trap that was used. The trap type effect on CPUE seemed to differ among age classes – the finer meshed trap caught more young-of-the-year fish than the coarse-meshed one, whereas the opposite was true for the older and larger individuals. The results agree with those of an earlier more restricted study conducted in the same locality: Together, these results provide strong evidence for the positive impact of baiting on nine-spined stickleback CPUE. Whether or not baiting influences catch per unit effort (CPUE) in stickleback fisheries remains a matter of debate among researchers in lack of quantitative data. A field experiment conducted with nine-spined stickleback ( Pungitius pungitius ) shows that bating improves CPUE. CPUE is also influenced by trap type, and CPUE of different size and age classes of fish differ depending on the trap type.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2015-08-21
    Description: Phylogenetic relationships are hotspots for orchid studies with controversial standpoints. Traditionally, the phylogenies of orchids are based on morphology and subjective factors. Although more reliable than classic phylogenic analyses, the current methods are based on a few gene markers and PCR amplification, which are labor intensive and cannot identify the placement of some species with degenerated plastid genomes. Therefore, a more efficient, labor-saving and reliable method is needed for phylogenic analysis. Here, we present a method of orchid phylogeny construction using transcriptomes. Ten representative species covering five subfamilies of Orchidaceae were selected, and 315 single-copy orthologous genes extracted from the transcriptomes of these organisms were applied to reconstruct a more robust phylogeny of orchids. This approach provided a rapid and reliable method of phylogeny construction for Orchidaceae, one of the most diversified family of angiosperms. We also showed the rigorous systematic position of holomycotrophic species, which has previously been difficult to determine because of the degenerated plastid genome. We concluded that the method presented in this study is more efficient and reliable than methods based on a few gene markers for phylogenic analyses, especially for the holomycotrophic species or those whose DNA sequences have been difficult to amplify. Meanwhile, a total of 315 single-copy orthologous genes of orchids are offered and more informative loci could be used in the future orchid phylogenetic studies. We offered an efficient and reliable method for orchid phylogenic analyses, especially for the holomycotrophic species or those whose DNA sequences have been difficult to amplify. Meanwhile, a total of 315 single-copy orthologous genes of orchids are offered for orchid phylogenetic studies.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    Wiley
    Publication Date: 2015-08-21
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-08-21
    Description: The seasonal availability of food resources is an important factor shaping the life-history strategies of organisms. During times of nutritional restriction, physiological trade-offs can induce periods of immune suppression, thereby increasing susceptibility to infectious disease. Our goal was to provide a conceptual framework describing how the endemic level bovine brucellosis ( Brucella abortus ) may be maintained in Yellowstone bison based on the seasonality of food resources and the life-history strategies of the host and pathogen. Our analysis was based on active B. abortus infection (measured via bacterial culture), nutritional indicators (measured as metabolites and hormones in plasma), and carcass measurements of 402 slaughtered bison. Data from Yellowstone bison were used to investigate (1) whether seasonal changes in diet quality affect nutritional condition and coincide with the reproductive needs of female bison; (2) whether active B. abortus infection and infection intensities vary with host nutrition and nutritional condition; and (3) the evidence for seasonal changes in immune responses, which may offer protection against B. abortus , in relation to nutritional condition. Female bison experienced a decline in nutritional condition during winter as reproductive demands of late gestation increased while forage quality and availability declined. Active B. abortus infection was negatively associated with bison age and nutritional condition, with the intensity of infection negatively associated with indicators of nutrition (e.g., dietary protein and energy) and body weight. Data suggest that protective cell-mediated immune responses may be reduced during the B. abortus transmission period, which coincides with nutritional insufficiencies and elevated reproductive demands during spring. Our results illustrate how seasonal food restriction can drive physiological trade-offs that suppress immune function and create infection and transmission opportunities for pathogens. Susceptibility to infectious disease may be influenced by the seasonal availability of food resources. In Yellowstone bison, active brucellosis infection was negatively associated with bison age and nutritional condition, with infection intensities most pronounced in young animals. Our results illustrate how seasonal food restriction might drive physiological trade-offs, which suppress immune function and create infection and transmission opportunities for pathogens.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2015-08-23
    Description: Understanding how channel bed morphology affects flow conditions (and vice versa) is important for a wide range of fluvial processes and practical applications. We investigated interactions between bed roughness and flow velocity in a steep, glacier-fed mountain stream (Riedbach, Ct. Valais, Switzerland) with almost flume-like boundary conditions. Bed gradient increases along the 1-km study reach by roughly one order of magnitude ( S =3-41%), with a corresponding increase in streambed roughness, while flow discharge and width remain approximately constant due to the glacial runoff regime. Streambed roughness was characterized by semi-variograms and standard deviations of point clouds derived from terrestrial laser scanning. Reach-averaged flow velocity was derived from dye tracer breakthrough curves measured by 10 fluorometers installed along the channel. Commonly used flow resistance approaches (Darcy-Weisbach equation and dimensionless hydraulic geometry) were used to relate the measured bulk velocity to bed characteristics. As a roughness measure, D 84 yielded comparable results to more laborious measures derived from point clouds. Flow resistance behavior across this large range of steep slopes agreed with patterns established in previous studies for both lower-gradient and steep reaches, regardless of which roughness measures were used. We linked empirical critical shear stress approaches to the variable power equation for flow resistance to investigate the change of bed roughness with channel slope. The predicted increase in D 84 with increasing channel slope was in good agreement with field observations. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2015-08-23
    Description: Large wood governs channel morphology, as well as the availability of in-stream habitat, in many forested streams. In this paper we use a stochastic, physically based model to simulate wood recruitment and in-stream geomorphic processes, in order to explore the influence of disturbance history on the availability of aquatic habitat. Specifically, we consider the effects of fire on a range of stream sizes by varying the rate of tree toppling over time in a simulated forest characterized by a tree height of 30 m. We also consider the effects of forest harvesting with various riparian buffer sizes, by limiting the lateral extent of the riparian stand. Our results show that pulsed inputs of wood increase the availability and variability of physical habitat in the post-fire period; reach-averaged pool area and deposit area double in small streams, while side-channels increase by over 50% in intermediate-sized channels. By contrast, forest harvesting reduces the availability of habitat within the reach, though the effects diminish with increasing buffer size or stream width; in laterally stable streams the effects are minimal so long as buffer width is large enough for key pieces to be recruited to the reach. This research emphasizes the importance of natural disturbance in creating and maintaining habitat heterogeneity and shows that scenario-based numerical modeling provides a useful tool for assessing the historical range of variability associated with natural disturbance, as well as changes in habitat relevant to fish. It can be also used to inform forest harvesting and management. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2015-08-23
    Description: Spreading of conservative solutes in groundwater due to aquifer heterogeneity is quantified by the macrodispersivity, which was found to be scale dependent. It increases with travel distance, stabilizing eventually at a constant value. However, the question of its asymptotic behaviour at very large scale is still a matter of debate. It was surmised in the literature that macrodispersivity scales up following a unique scaling law. Attempts to define such a law were made by fitting a regression line in the log-log representation of an ensemble of macrodispersivities from multiple experiments. The functional relationships differ among the authors, based on the choice of data. Our study revisits the data basis, used for inferring unique scaling, through a detailed analysis of literature marcodispersivities. In addition, values were collected from the most recent tracer tests reported in the literature. We specified a system of criteria for reliability and re-evaluated the reliability of the reported values. The final collection of reliable estimates of macrodispersivity does not support a unique scaling law relationship. On the contrary, our results indicate, that the field data can be explained as a collection of macrodispersivities of aquifers with varying degree of heterogeneity where each exhibits its own constant asymptotic value. Our investigation concludes that transport, and particularly the macrodispersivity, is formation-specific, and that modeling of transport cannot be relegated to a unique scaling law. Instead, transport requires characterization of aquifer properties, e.g. spatial distribution of hydraulic conductivity, and the use of adequate models. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2015-08-23
    Description: For the past few decades, heat has been used to estimate river-aquifer exchange flux at discrete locations by comparison of river and groundwater temperature. In recent years, heat has also been employed to estimate reach-scale river-aquifer exchange flux based only on river temperature. However, there are many more parameters that govern heat exchange and transport in surface water than in groundwater. In this study, we analyzed the sensitivities of surface water temperature to various parameters and assessed the accuracy of temperature-based estimates of exchange flux in two synthetic rivers and in a field setting. For the large synthetic river with a flow rate of 63 m 3 s −1 (i.e., 5.44 × 10 6 m 3 d −1 ), the upper and lower bounds of the groundwater inflow rate can be determined when the actual groundwater inflow is around 100 m 2 d −1 . For higher and lower fluxes, only minimum and maximum bounds respectively can be determined. For the small synthetic river with the flow rate of 0.63 m 3 s −1 (i.e., 5.44 × 10 4 m 3 d −1 ), the bounds of the groundwater inflow rate can only be estimated when the actual groundwater inflow rate is near 10 m 2 d −1 . In the field setting, results show that the inflow rate must be less than 100 m 2 d −1 , but a lower bound for groundwater inflow cannot be determined. The large ranges of estimated groundwater inflow rates in both theoretical and field settings indicate the need to reduce parameter errors and combine heat measurements with other isotopic and/or chemical methods. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2015-08-23
    Description: Climate state can be an important predictor of future hydrologic conditions. In ensemble streamflow forecasting, where historical weather inputs or streamflow observations are used to generate the ensemble, climate index weighting is one way to represent the influence of climate state. Using a climate index, each forecast variable member of the ensemble is selectively weighted to reflect the climate state at the time of the forecast. A new approach to climate index weighting of ensemble forecasts is presented. The method is based on a sampling-resampling approach for Bayesian updating. The original hydrologic ensemble members define a sample drawn from the prior distribution; the relationship between the climate index and the ensemble member forecast variable is used to estimate a likelihood function. Given an observation of the climate index at the time of the forecast, the estimated likelihood function is then used to assign weights to each ensemble member. The weights define the probability of each ensemble member outcome given the observed climate index. The weighted ensemble forecast is then used to estimate the posterior distribution of the forecast variable conditioned on the climate index. The Bayesian climate index weighting approach is easy to apply to hydrologic ensemble forecasts; its parameters do not require calibration with hindcasts, and it adapts to the strength of the relation between climate and the forecast variable, defaulting to equal weighting of ensemble members when no relationship exists. A hydrologic forecasting application illustrates the approach and contrasts it with traditional climate index weighting approaches. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2015-08-15
    Description: Field hydrology is on the decline. Meanwhile, the need for new field-derived insight into the age, origin and pathway of water in the headwaters, where most runoff is generated, is more needed than ever. Water Resources Research (WRR) has included some of the most influential papers in field-based runoff process understanding, particularly in the formative years when the knowledge base was developing rapidly. Here, we take advantage of this 50 th anniversary of the journal to highlight a few of these important field-based papers and show how field scientists have posed strong and sometimes outrageous hypotheses—approaches so needed in an era of largely model-only research. We chronicle the decline in field work and note that it is not only the quantity of field work that is diminishing but its character is changing too: from discovery science to data collection for model parameterisation. While the latter is a necessary activity, the loss of the former is a major concern if we are to advance the science of watershed hydrology. We outline a vision for field research to seek new fundamental understanding, new mechanistic explanations of how watershed systems work, particularly outside the regions of traditional focus. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2015-08-03
    Description: Wild bees provide a free and potentially diverse ecosystem service to farmers growing pollination-dependent crops. While many crops benefit from insect pollination, soft fruit crops, including strawberries are highly dependent on this ecosystem service to produce viable fruit. However, as a result of intensive farming practices and declining pollinator populations, farmers are increasingly turning to commercially reared bees to ensure that crops are adequately pollinated throughout the season. Wildflower strips are a commonly used measure aimed at the conservation of wild pollinators. It has been suggested that commercial crops may also benefit from the presence of noncrop flowers; however, the efficacy and economic benefits of sowing flower strips for crops remain relatively unstudied. In a study system that utilizes both wild and commercial pollinators, we test whether wildflower strips increase the number of visits to adjacent commercial strawberry crops by pollinating insects. We quantified this by experimentally sowing wildflower strips approximately 20 meters away from the crop and recording the number of pollinator visits to crops with, and without, flower strips. Between June and August 2013, we walked 292 crop transects at six farms in Scotland, recording a total of 2826 pollinators. On average, the frequency of pollinator visits was 25% higher for crops with adjacent flower strips compared to those without, with a combination of wild and commercial bumblebees ( Bombus spp.) accounting for 67% of all pollinators observed. This effect was independent of other confounding effects, such as the number of flowers on the crop, date, and temperature. Synthesis and applications . This study provides evidence that soft fruit farmers can increase the number of pollinators that visit their crops by sowing inexpensive flower seed mixes nearby. By investing in this management option, farmers have the potential to increase and sustain pollinator populations over time. This study found increased pollinator visitation to crops can be achieved by sowing relatively small and inexpensive flower strips in the crop vicinity. The frequency of pollinator visits was 25% higher for crops with adjacent flower strips compared to those without, an effect independent of other confounding effects such as number of flowers on the crop, date and temperature.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2015-08-08
    Description: Phenotypic selection is widely accepted as the primary cause of adaptive evolution in natural populations, but selection on complex functional properties linking physiology, behavior, and morphology has been rarely quantified. In ectotherms, correlational selection on thermal physiology, thermoregulatory behavior, and energy metabolism is of special interest because of their potential coadaptation. We quantified phenotypic selection on thermal sensitivity of locomotor performance (sprint speed), thermal preferences, and resting metabolic rate in captive populations of an ectothermic vertebrate, the common lizard, Zootoca vivipara . No correlational selection between thermal sensitivity of performance, thermoregulatory behavior, and energy metabolism was found. A combination of high body mass and resting metabolic rate was positively correlated with survival and negatively correlated with fecundity. Thus, different mechanisms underlie selection on metabolism in lizards with small body mass than in lizards with high body mass. In addition, lizards that selected the near average preferred body temperature grew faster that their congeners. This is one of the few studies that quantifies significant correlational selection on a proxy of energy expenditure and stabilizing selection on thermoregulatory behavior. The annual survival and total fecundity of common lizards were significantly influenced by correlational selection acting on body mass and resting metabolic rate, but with opposite directions for the two life history traits.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2015-06-04
    Description: We present a novel inverse modeling strategy to estimate spatially distributed parameters of nonlinear models. The maximum a posteriori (MAP) estimators of these parameters are based on a likelihood functional, which contains spatially discrete measurements of the system parameters and spatio-temporally discrete measurements of the transient system states. The piecewise continuity prior for the parameters is expressed via Total Variation (TV) regularization. The MAP estimator is computed by minimizing a non-quadratic objective equipped with the TV operator. We apply this inversion algorithm to estimate hydraulic conductivity of a synthetic confined aquifer from measurements of conductivity and hydraulic head. The synthetic conductivity field is composed of a low-conductivity heterogeneous intrusion into a high-conductivity heterogeneous medium. Our algorithm accurately reconstructs the location, orientation and extent of the intrusion from the steady-state data only. Addition of transient measurements of hydraulic head improves the parameter estimation, accurately reconstructing the conductivity field in the vicinity of observation locations. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2015-06-04
    Description: Human societies are increasingly altering the water and biogeochemical cycles to both improve ecosystem productivity and reduce risks associated with the unpredictable variability of climatic drivers. These alterations, however, often cause large negative environmental consequences, raising the question as to how societies can ensure a sustainable use of natural resources for the future. Here we discuss how ecohydrological modeling may address these broad questions with special attention to agroecosystems. The challenges related to modeling the two-way interaction between society and environment are illustrated by means of a dynamical model in which soil and water quality supports the growth of human society but is also degraded by excessive pressure, leading to critical transitions and sustained societal growth-collapse cycles. We then focus on the coupled dynamics of soil water and solutes (nutrients or contaminants), emphasizing the modeling challenges, presented by the strong nonlinearities in the soil and plant system and the unpredictable hydro-climatic forcing, that need to be overcome to quantitatively analyze problems of soil water sustainability in both natural and agricultural ecosystems. We discuss applications of this framework to problems of irrigation, soil salinization, and fertilization and emphasize how optimal solutions for large-scale, long-term planning of soil and water resources in agroecosystems under uncertainty could be provided by methods from stochastic control, informed by physically and mathematically sound descriptions of ecohydrological and biogeochemical interactions. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2015-06-04
    Description: Water resource management (WRM) through dams or reservoirs is worldwide necessary to support key human-related activities, ranging from hydropower production to water allocation and flood risk mitigation. Designing of reservoir operations aims primarily to fulfil the main purpose (or purposes) for which the structure has been built. However, it is well known that reservoirs strongly influence river geomorphic processes, causing sediment deficits downstream, altering water and sediment fluxes, leading to river bed incision and causing infrastructure instability and ecological degradation. We propose a framework that, by combining physically based modelling, surrogate modelling techniques and Multi-Objective (MO) optimization, allows to include fluvial geomorphology into MO optimization whose main objectives is the maximization of hydropower revenue and the minimization of river bed degradation. The case study is a run-of-the-river power plant on the River Po (Italy). A 1D mobile-bed hydro-morphological model simulated the river bed evolution over a ten year horizon for alternatives operation rules of the power plant. The knowledge provided by such a physically based model is integrated into a MO optimization routine via surrogate modelling using the response surface methodology. Hence, this framework overcomes the high computational costs that so far hindered the integration of river geomorphology into WRM. We provided numerical proof that river morphologic processes and hydropower production are indeed in conflict, but that the conflict may be mitigated with appropriate control strategies. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2015-06-04
    Description: This paper addresses how much flood water can be conserved for use after the flood season through the operation of reservoir by taking into account the residual flood control capacity (the difference between flood conveyance capacity and the expected inflow in a lead time). A two-stage model for dynamic control of the flood limited water level (the maximum allowed water level during the flood season, DC-FLWL) is established considering forecast uncertainty and acceptable flood risk. It is found that DC-FLWL is applicable when the reservoir inflow ranges from small to medium levels of the historical records, while both forecast uncertainty and acceptable risk in the downstream affect the feasible space of DC-FLWL. As forecast uncertainty increases (under a given risk level) or as acceptable risk level decreases (under a given forecast uncertainty level), the minimum required safety margin for flood control increases, and the chance for DC-FLWL decreases. The derived hedging rules from the modeling framework illustrate either the dominant role of water conservation or flood control or the tradeoff between the two objectives under different levels of forecast uncertainty and acceptable risk. These rules may provide useful guidelines for conserving water from flood, especially in the area with heavy water stress. The analysis is illustrated via a case study with a real-world reservoir in northeastern China. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2015-06-05
    Description: Studies on elevation diversity gradients have covered a large number of taxa and regions throughout the world; however, studies of freshwater fish are scarce and restricted to examining their changes along a specific gradient. These studies have reported a monotonic decrease in species richness with increasing elevation, but ignore the high taxonomic differentiation of each headwater assemblage that may generate high β -diversity among them. Here, we analyzed how fish assemblages vary with elevation among regional elevation bands, and how these changes are related to four environmental clines and to changes in the distribution, habitat use, and the morphology of fish species. Using a standardized field sampling technique, we assessed three different diversity and two structural assemblage measures across six regional elevation bands located in the northern Andes (Colombia). Each species was assigned to a functional group based on its body shape, habitat use, morphological, and/or behavioral adaptations. Additionally, at each sampling site, we measured four environmental variables. Our analyses showed: (1) After a monotonic decrease in species richness, we detected an increase in richness in the upper part of the gradient; (2) diversity patterns vary depending on the diversity measure used; (3) diversity patterns can be attributed to changes in species distribution and in the richness and proportions of functional groups along the regional elevation gradient; and (4) diversity patterns and changes in functional groups are highly correlated with variations in environmental variables, which also vary with elevation. These results suggest a novel pattern of variation in species richness with elevation: Species richness increases at the headwaters of the northern Andes owing to the cumulative number of endemic species there. This highlights the need for large-scale studies and has important implications for the aquatic conservation of the region. We perform the first regional analysis of elevation diversity gradients in freshwater fish. For this we used 141 localities between 250 and 2533 m a.s.l. from seven sub-regions in the Northern Andes, Colombia. The results of our study suggest a novel pattern of variation in species richness with elevation: species richness increases at the headwaters of the Northern Andes owing to the cumulative number of endemic species there.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2015-06-05
    Description: Microbes are critical components of ecosystems and provide vital services (e.g., photosynthesis, decomposition, nutrient recycling). From the diverse roles microbes play in natural ecosystems, high levels of functional diversity result. Quantifying this diversity is challenging, because it is weakly associated with morphological differentiation. In addition, the small size of microbes hinders morphological and behavioral measurements at the individual level, as well as interactions between individuals. Advances in microbial community genetics and genomics, flow cytometry and digital analysis of still images are promising approaches. They miss out, however, on a very important aspect of populations and communities: the behavior of individuals. Video analysis complements these methods by providing in addition to abundance and trait measurements, detailed behavioral information, capturing dynamic processes such as movement, and hence has the potential to describe the interactions between individuals. We introduce BEMOVI, a package using the R and ImageJ software, to extract abundance, morphology, and movement data for tens to thousands of individuals in a video. Through a set of functions BEMOVI identifies individuals present in a video, reconstructs their movement trajectories through space and time, and merges this information into a single database. BEMOVI is a modular set of functions, which can be customized to allow for peculiarities of the videos to be analyzed, in terms of organisms features (e.g., morphology or movement) and how they can be distinguished from the background. We illustrate the validity and accuracy of the method with an example on experimental multispecies communities of aquatic protists. We show high correspondence between manual and automatic counts and illustrate how simultaneous time series of abundance, morphology, and behavior are obtained from BEMOVI. We further demonstrate how the trait data can be used with machine learning to automatically classify individuals into species and that information on movement behavior improves the predictive ability. Video analysis is a promising approach to quantify traits and abundances of species in an automated fashion. In addition, it provides detailed behavioral information, capturing dynamic processes such as movement, and hence has the potential to describe the interactions between individuals. We introduce BEMOVI, an R package to automatically extract such information from sets of videos and show the general validity and accuracy of the method using microcosms of aquatic microbes.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2015-08-05
    Description: We present a co-evolutionary view of hydrologic systems, revolving around feedbacks between environmental and social processes operating across different time scales. This brings to the fore an emphasis on emergent phenomena in changing water systems, such as the levee effect, adaptation to change, system lock-in, and system collapse due to resource depletion. Changing human values play a key role in the emergence of these phenomena and should therefore be considered as internal to the system. Guidance is provided for the framing and modeling of these phenomena to test alternative hypotheses about how they arose. A plurality of co-evolutionary models, from stylized to comprehensive system-of-system models, may assist strategic water management for long time scales through facilitating stakeholder participation, exploring the possibility space of alternative futures, and helping to synthesize the observed dynamics in a wide range of case studies. Future research opportunities lie in exploring emergent phenomena arising from time scale interactions through historical, comparative and process studies of human-water feedbacks. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2015-08-05
    Description: ABSTRACT Multiphase-fluid distribution and flow is inherent in numerous areas of hydrology. Yet, pore-scale characterization of transitions between two and three immiscible-fluids is limited. The objective of this study was to examine the impact of such transitions on the pore-scale configuration of organic liquid in a multi-fluid system comprising natural porous media. Three-dimensional images of an organic liquid (trichloroethene) in two-phase (organic-liquid/water) and three-phase (air/organic-liquid/water) systems were obtained using X-ray microtomography before and after drainage and imbibition. Upon transition from a two-phase to a three-phase system, a significant portion of the organic liquid (intermediate wetting fluid) was observed to exist as lenses and films in contact with air (nonwetting fluid). In these cases, the air was either encased by or contiguous to the organic liquid. The presence of air resulted in an increase in the surface-area-to-volume ratios for the organic-liquid blobs. Upon imbibition, the air was displaced downgradient, and concomitantly, the morphology of the organic-liquid blobs no longer in contact with air reverted to that characteristic of a two-phase distribution (i.e., more spherical blobs and ganglia). This change in morphology resulted in a reduction in the surface-area-to-volume ratio. These results illustrate the impact of transitions between two-phase and three-phase conditions on fluid configuration, and they demonstrate the malleable nature of fluid configuration under dynamic, multiphase-flow conditions. The results have implications for characterizing and modeling pore-scale flow and mass-transfer processes. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2015-08-05
    Description: We performed power-spectral analyses on 133 globally distributed lake-level time series after removing annual variability. Lake-level power spectra are found to be power-law functions of frequency over the range of 20 days -1 to 27 years -1 , suggesting that lake levels are globally a f -β -type noise. The spectral exponent (β), i.e. the best-fit slope of the logarithm of the power spectrum to the logarithm of frequency, is a nonlinear function of lake surface area, indicating that lake size is an important control on the magnitude of water-level variability over the range of time scales we considered. A simple cellular model for lake-level fluctuations that reproduces the observed spectral-scaling properties is presented. The model (an adaptation of a surface-growth model with random deposition and relaxation) is based on the equations governing flow in an unconfined aquifer with stochastic inputs and outputs of water (e.g. random storms). The agreement between observation and simulation suggests that lake surface area, spatio-temporal stochastic forcing, and diffusion of the groundwater table are the primary factors controlling lake water-level variability in natural (unmanaged) lakes. Water-level variability is generally considered to be a manifestation of climate trends or climate change, yet our work shows that an input with short or no memory (i.e. weather) gives rise to a long-memory non-stationary output (lake water-level). This work forms the basis for a null hypothesis of lake water-level variability that should be disproven before water-level trends are to be attributed to climate. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2015-07-29
    Description: Describing convective nonwetting phase flow in unsaturated porous media requires knowledge of the nonwetting phase relative permeability. This study was conducted to formulate and derive a generalized expression for the nonwetting phase relative permeability via combining with the Kosugi water retention function. This generalized formulation is then used to flexibly investigate the Burdine, Mualem and Alexander and Skaggs models' prediction accuracy for relative nonwetting phase permeability. The model and data comparison results show that these three permeability models, if used in their original form, but applied to the nonwetting phase, could not predict the experimental data well. The optimum pore tortuosity and connectivity value is thus obtained for the improved prediction of relative nonwetting phase permeability. As a result, the effective parametrization of (α,β,η) parameters in the modified Burdine, modified Mualem and modified Alexander and Skaggs permeability models were found to be (2.5, 2, 1), (2, 1, 2) and (2.5, 1, 1), respectively. These three suggested models display the highest accuracy among the nine relative permeability models investigated in this study. However, the corresponding discontinuous nonwetting phase and the liquid film flow should be accounted for in future for the improved prediction of nonwetting phase relative permeability at very high and very low water saturation range, respectively. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2015-07-29
    Description: A new optical remote sensing technique for estimating water depth from an oblique camera view is described. The water surface and the bed were imaged simultaneously to create time-dependent maps of the water surface velocities and the bed elevations that can be used to validate numerical models at high spatial and temporal resolution. The technique was applied in a sandy meander bend at the University of Minnesota Saint Anthony Falls Laboratory Outdoor StreamLab. The root mean square differences between optical estimates of the bed and in situ observations ranged between 0.01 and 0.03 m. Mean bedform wavelength was 0.73 m and mean crest height was 0.07 m, but both varied with distance around the meander bend. Bedform classification varied with distance downstream, and sinuosity of bedforms varied with local radius of curvature. Bedform roughness scaled similarly to other natural riverine environments although wavelength and height magnitude and variability were larger than predicted by empirical formulations for straight reaches. Bedform translation rate varied between 1 and 5 mm s −1 . Estimates of velocity from particle image velocimetry (PIV) on the water surface were ∼10% higher than in situ observations collected ∼0.05 m below the water surface. Using the PIV observations to drive simple equations for bedload sediment flux, we explained up to 72% of the observed variance in downstream sediment flux. The new methodology described here provides non-intrusive, high spatial and temporal resolution measurements of both the bed and the flow. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2015-07-29
    Description: We study the influence of topography on groundwater fluxes and water table depths across the Contiguous United States (CONUS). Groundwater tables are often conceptualized as subdued replicas of topography. While it is well known that groundwater configuration is also controlled by geology and climate, nonlinear interactions between these drivers within large real world systems are not well understood and are difficult to characterize given sparse groundwater observations. We address this limitation using the fully integrated physical hydrology model ParFlow to directly simulate groundwater fluxes and water table depths within a complex heterogeneous domain that incorporates all three primary groundwater drivers. Analysis is based on a first of its kind, continental scale, high-resolution (1km), groundwater-surface water simulation spanning more than 6.3 million km 2 . Results show that groundwater fluxes are most strongly driven by topographic gradients (as opposed to gradients in pressure head) in humid regions with small topographic gradients or low conductivity. These regions are generally consistent with the topographically controlled groundwater regions identified in previous studies. However, we also show that areas where topographic slopes drive groundwater flux do not generally have strong correlations between water table depth and elevation. Nonlinear relationships between topography and water table depth are consistent with groundwater flow systems that are dominated by local convergence and could also be influenced by local variability in geology and climate. One of the strengths of the numerical modeling approach is its ability to evaluate continental scale groundwater behavior at a high resolution not possible with other techniques. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    Wiley
    Publication Date: 2015-08-07
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2015-08-07
    Description: Nighttime transpiration is a substantial portion of ecosystem water budgets, but few studies compare water use of closely related co-occurring species in a phylogenetic context. Nighttime transpiration can range up to 69% of daytime rates and vary between species, ecosystem, and functional type. We examined leaf-level daytime and nighttime gas exchange of five species of the genus Rubus co-occurring in the Pacific Northwest of western North America in a greenhouse common garden. Contrary to expectations, nighttime transpiration was not correlated to daytime water use. Nighttime transpiration showed pronounced phylogenetic signals, but the proportion of variation explained by different phylogenetic groupings varied across datasets. Leaf osmotic water potential, water potential at turgor loss point, stomatal size, and specific leaf area were correlated with phylogeny but did not readily explain variation in nighttime transpiration. Patterns in interspecific variation as well as a disconnect between rates of daytime and nighttime transpiration suggest that variation in nighttime water use may be at least partly driven by genetic factors independent of those that control daytime water use. Future work with co-occurring congeneric systems is needed to establish the generality of these results and may help determine the mechanism driving interspecific variation in nighttime water use. Nighttime transpiration was measured in a greenhouse common garden in five species of Rubus . A phylogenetic signal was detected in the data, while nighttime and daytime transpiration were not correlated across the genus. This suggests that interspecific differences may contribute to differences in nighttime water use.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2015-08-07
    Description: Here we used both microsatellites and mtCR (mitochondrial DNA control region) sequences as genetic markers to examine the genetic diversity and population structure of Penaeus monodon shrimp from six Indonesian regions. The microsatellite data showed that shrimp from the Indian and the Pacific Ocean were genetically distinct from each other. It has been reported previously that P. monodon mtCR sequences from the Indo-Pacific group into two major paralogous clades of unclear origin. Here we show that the population structure inferred from mtCR sequences matches the microsatellite-based population structure for one of these clades. This is consistent with the notion that this mtCR clade shares evolutionary history with nuclear DNA and may thus represent nuclear mitochondrial pseudogenes (Numts). While examining genetic diversity and population structure of Penaeus monodon shrimp in Indonesian waters. Similarities between mtCR sequences and microsatellite data for one mtCR clade are discovered. Evidence points towards nuclear DNA as source of this mtCR clade.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2015-08-07
    Description: Bees are important pollinators of agricultural crops, and bee diversity has been shown to be closely associated with pollination, a valuable ecosystem service. Higher functional diversity and species richness of bees have been shown to lead to higher crop yield. Bees simultaneously represent a mega-diverse taxon that is extremely challenging to sample thoroughly and an important group to understand because of pollination services. We sampled bees visiting apple blossoms in 28 orchards over 6 years. We used species rarefaction analyses to test for the completeness of sampling and the relationship between species richness and sampling effort, orchard size, and percent agriculture in the surrounding landscape. We performed more than 190 h of sampling, collecting 11,219 specimens representing 104 species. Despite the sampling intensity, we captured 〈75% of expected species richness at more than half of the sites. For most of these, the variation in bee community composition between years was greater than among sites. Species richness was influenced by percent agriculture, orchard size, and sampling effort, but we found no factors explaining the difference between observed and expected species richness. Competition between honeybees and wild bees did not appear to be a factor, as we found no correlation between honeybee and wild bee abundance. Our study shows that the pollinator fauna of agroecosystems can be diverse and challenging to thoroughly sample. We demonstrate that there is high temporal variation in community composition and that sites vary widely in the sampling effort required to fully describe their diversity. In order to maximize pollination services provided by wild bee species, we must first accurately estimate species richness. For researchers interested in providing this estimate, we recommend multiyear studies and rarefaction analyses to quantify the gap between observed and expected species richness. Extensive sampling in New York apple orchards demonstrates that the bee fauna of this crop is incredibly diverse, but also very difficult to fully characterize. We recommend multi-year sampling in order to fully describe the bee fauna of agricultural crops.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2015-08-08
    Description: The endangered plant species Dianthus gratianopolitanus exhibits a highly fragmented distribution range comprising many isolated populations. Based upon this pattern of distribution, we selected a study region in Switzerland with a lower magnitude of isolation (Swiss Jura) and another study region in Germany with a higher degree of isolation (Franconian Jura). In each region, we chose ten populations to analyze population structure, reproduction, and genetic variation in a comparative approach. Therefore, we determined population density, cushion size, and cushion density to analyze population structure, investigated reproductive traits, including number of flowers, capsules, and germination rate, and analyzed amplified fragment length polymorphisms to study genetic variation. Population and cushion density were credibly higher in German than in Swiss populations, whereas reproductive traits and genetic variation within populations were similar in both study regions. However, genetic variation among populations and isolation by distance were stronger in Germany than in Switzerland. Generally, cushion size and density as well as flower and capsule production increased with population size and density, whereas genetic variation decreased with population density. In contrast to our assumptions, we observed denser populations and cushions in the region with the higher magnitude of isolation, whereas reproductive traits and genetic variation within populations were comparable in both regions. This corroborates the assumption that stronger isolation must not necessarily result in the loss of fitness and genetic variation. Furthermore, it supports our conclusion that the protection of strongly isolated populations contributes essentially to the conservation of a species' full evolutionary potential. We analysed the population structure, reproduction and genetic variation of the endangered plant species Dianthus gratianopolitanus from two geographic regions with a different magnitude of isolation. We observed differences in population structure but similar reproduction and genetic variation. We concluded that the isolation of populations of naturally rare species must not necessarily result in the loss of fitness and genetic variation.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2015-08-08
    Description: Hydrology is an integrative discipline linking the broad array of water-related research with physical, ecological, and social sciences. The increasing breadth of hydrological research, often where subdisciplines of hydrology partner with related sciences, reflects the central importance of water to environmental science, while highlighting the fractured nature of the discipline itself. This lack of coordination among hydrologic subdisciplines has hindered the development of hydrologic theory and integrated models capable of predicting hydrologic partitioning across time and space. The recent development of the concept of the critical zone (CZ), an open system extending from the top of the canopy to the base of groundwater, brings together multiple hydrological subdisciplines with related physical and ecological sciences. Observations obtained by CZ researchers provide a diverse range of complementary process and structural data to evaluate both conceptual and numerical models. Consequently, a cross-site focus on “critical zone hydrology” has potential to advance the discipline of hydrology and to facilitate the transition of CZ observatories into a research network with immediate societal relevance. Here we review recent work in catchment hydrology and hydrochemistry, hydrogeology, and ecohydrology that highlights a common knowledge gap in how precipitation is partitioned in the critical zone: “ how is the amount, routing, and residence time of water in the subsurface related to the biogeophysical structure of the CZ? ” Addressing this question will require coordination among hydrologic subdisciplines and interfacing sciences, and catalyze rapid progress in understanding current CZ structure and predicting how climate and land cover changes will affect hydrologic partitioning. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2015-08-09
    Description: Because parental care is costly, a sexual conflict between parents over parental investment is expected to arise. Parental care behavior is an adaptive decision, involving trade-offs between remating, and consequently desertion of the brood, and continuing parental effort. If the main advantage of desertion is remating, then this will be a time constraint, because the deserting individual will require a certain minimum period of time to breed again in the same breeding season. So, a short breeding season should force certain individuals to desert the first brood to have enough time to successfully complete their second breeding attempt. The rock sparrow, Petronia petronia , is an unusual species in which brood desertion can occur in both sexes and the breeding season is quite short so it is a good species to investigate the role of time constraint on brood desertion. For 3 years, I investigated the brood desertion modality of the rock sparrow. Then, for 2 years, I removed a group of experimental nest boxes during the autumn. Later, I re-installed the experimental nest boxes after the start of the breeding season (2 weeks after the first egg was laid), mimicking a shortening of the breeding season for the (experimental) pairs that used experimental nest boxes. I found that in the experimental pairs, the percentage of deserting individuals was significantly higher than in the control groups, and the deserting individuals were older females. This experiment adds to our knowledge of timing of reproduction effects on individual decisions to desert by showing that a short and delayed breeding season may have different effects on males and females. To my knowledge, this is the first experimental study that demonstrates a direct link between time constraint and brood desertion. If the main advantage of brood desertion is remating, then this will be a time constraint, because the deserting individual will require a certain minimum period of time to breed again in the same breeding season. I experimentally created two groups of pairs: the control pairs that started to breed as soon as they were ready and the experimental pairs that were forced to postpone their breeding phase because the breeding sites were available later. As predicted, I found that in the experimental pairs the percentage of deserting individuals was significantly higher than in the control groups. To my knowledge, this is the first experimental study that demonstrates a direct link between time constraint and brood desertion.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2015-08-12
    Description: In the last decades significant technological advances together with improved modeling capabilities fostered a rapid development of geophysical monitoring techniques in support of hydrological modeling. Geophysical monitoring offers the attractive possibility to acquire spatially distributed information on state variables. These provide complementary information about the functioning of the hydrological system to that provided by standard hydrological measurements, which are either intrinsically local or the result of a complex spatial averaging process. Soil water content is an example of state variable, which is relatively simple to measure pointwise (locally) but with a vanishing constraining effect on catchment-scale modeling, while streamflow data, the typical hydrological measurement, offer limited possibility to disentangle the controlling processes. The objective of this work is to analyze the advantages offered by coupling traditional hydrological data with unconventional geophysical information in inverse modeling of hydrological systems. In particular, we explored how the use of time-lapse, spatially distributed microgravity measurements may improve the conceptual model identification of a topographically complex Alpine catchment (the Vermigliana catchment, South-Eastern Alps, Italy). The inclusion of microgravity data resulted in a better constraint of the inversion procedure and an improved capability to identify limitations of concurring conceptual models to a level that would be impossible relying only on streamflow data. This allowed for a better identification of model parameters and a more reliable description of the controlling hydrological processes, with a significant reduction of uncertainty in water storage dynamics with respect to the case when only streamflow data are used. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2015-08-15
    Description: The island rule refers to the tendency of small vertebrates to become larger when isolated on islands and the frequent dwarfing of large forms. It implies genetic control, and a necessary linkage, of size and body-mass differences between insular and mainland populations. To examine the island rule, we compared body size and mass of gray jays ( Perisoreus canadensis ) on Anticosti Island, Québec, located in the Gulf of St. Lawrence, with three mainland populations (2 in Québec and 1 in Ontario). Although gray jays on Anticosti Island were ca 10% heavier, they were not structurally larger, than the three mainland populations. This suggests that Anticosti jays are not necessarily genetically distinct from mainland gray jays and that they may have achieved their greater body masses solely through packing more mass onto mainland-sized body frames. As such, they may be the first-known example of a proposed, purely phenotypic initial step in the adherence to the island rule by an insular population. Greater jay body mass is probably advantageous in Anticosti's high-density, intensely competitive social environment that may have resulted from the island's lack of mammalian nest predators. The island-rule proposes that small animals become larger when isolated on islands whereas large animals tend towards dwarfism. We found that gray jays ( Perisoreus canadensis ) on Anticosti Island, Québec were ca 10% heavier but not structurally larger, than three mainland populations, suggesting suggests that Anticosti jays are not necessarily genetically distinct from mainland gray jays and that they may achieve their greater body masses solely through packing more mass onto mainland-sized body frames. This is the first known example of a proposed, purely phenotypic initial step in the adherence to the island-rule by an insular population.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2015-08-15
    Description: While the mechanisms by which adult terrestrial plants deploy constitutive and induced responses to grazing pressure are well known, the means by which young aquatic plants defend themselves from herbivory are little studied. This study addresses nitrogen transport in the aquatic angiosperm Myriophyllum spicatum in response to herbivore exposure. Nitrogen tracers were used to monitor nitrogen uptake and reallocation in young plants in response to grazing by the generalist insect herbivore Acentria ephemerella . Total nitrogen content (N%) and patterns of nitrogen uptake and allocation (δ 15 N) were assessed in various plant tissues after 24 and 48 h. Following 24 h exposure to herbivore damage (Experiment 1), nitrogen content of plant apices was significantly elevated. This rapid early reaction may be an adaptation allowing the grazer to be sated as fast as possible, or indicate the accumulation of nitrogenous defense chemicals. After 48 h (Experiment 2), plants' tips showed depletion in nitrogen levels of ca. 60‰ in stem sections vulnerable to grazing. In addition, nitrogen uptake by grazed and grazing-prone upper plant parts was reduced and nutrient allocation into the relatively secure lower parts increased. The results point to three conclusions: (1) exposure to an insect herbivore induces a similar response in immature M. spicatum as previously observed in mature terrestrial species, namely a rapid (within 48 h) reduction in the nutritional value (N%) of vulnerable tissues, (2) high grazing intensity (100% of growing tips affected) did not limit the ability of young plants to induce resistance; and (3) young plants exposed to herbivory exhibit different patterns of nutrient allocation in vulnerable and secure tissues. These results provide evidence of induced defense and resource reallocation in immature aquatic macrophytes which is in line with the responses shown for mature aquatic macrophytes and terrestrial plants. The means by which young aquatic plants defend themselves from herbivory are little studied. This study addresses this gap in knowledge. Nitrogen tracers were used in two mesocosm experiments investigating the response of young Myriophyllum spicatum plants to grazing by the generalist insect herbivore Acentria ephemerella. Results indicate (1) exposure to an insect herbivore induces a rapid (within 48 h) reduction in the nutritional value of vulnerable tissues, (2) high level grazing intensity did not limit the ability of young plants to induce resistance; (3) young plants exposed to herbivory exhibit differential patterns of nutrient allocation in vulnerable and secure tissues.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2015-08-12
    Description: Monitoring and predicting evolutionary changes underlying current environmental modifications are complex challenges. Recent approaches to achieve these objectives include assessing the genetic variation and effects of candidate genes on traits indicating adaptive potential. In birds, for example, short tandem repeat polymorphism at four candidate genes (CLOCK, NPAS2, ADCYAP1, and CREB1) has been linked to variation in phenological traits such as laying date and timing of migration. However, our understanding of their importance as evolutionary predictors is still limited, mainly because the extent of genotype–environment interactions (GxE) related to these genes has yet to be assessed. Here, we studied a population of Tree swallow ( Tachycineta bicolor ) over 4 years in southern Québec (Canada) to assess the relationships between those four candidate genes and two phenological traits related to reproduction (laying date and incubation duration) and also determine the importance of GxE in this system. Our results showed that NPAS2 female genotypes were nonrandomly distributed across the study system and formed a longitudinal cline with longer genotypes located to the east. We observed relationships between length polymorphism at all candidate genes and laying date and/or incubation duration, and most of these relationships were affected by environmental variables (breeding density, latitude, or temperature). In particular, the positive relationships detected between laying date and both CLOCK and NPAS2 female genotypes were variable depending on breeding density. Our results suggest that all four candidate genes potentially affect timing of breeding in birds and that GxE are more prevalent and important than previously reported in this context. Monitoring and predicting evolutionary changes underlying current environmental modifications are complex challenges and these objectives can be achieved by assessing the genetic variation and effects of candidate genes on traits indicating adaptive potential. Here, we studied a population of Tree swallow ( Tachycineta bicolor ) to assess the relationships between four candidate genes (CLOCK, NPAS2, ADCYAP1, CREB1) and two phenological traits related to reproduction (laying date and incubation duration), and also determine the importance of GxE in this system. Our results suggest that all four candidate genes potentially affect timing of breeding in birds and that gene-environment interactions (GxE) are more prevalent and important than previously reported in this context.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2015-08-14
    Description: In 2010, the American pika ( Ochotona princeps fenisex ) was denied federal protection based on limited evidence of persistence in low-elevation environments. Studies in nonalpine areas have been limited to relatively few environments, and it is unclear whether patterns observed elsewhere (e.g., Bodie, CA) represent other nonalpine habitats. This study was designed to establish pika presence in a new location, determine distribution within the surveyed area, and evaluate influences of elevation, vegetation, lava complexity, and distance to habitat edge on pika site occupancy. In 2011 and 2012, we conducted surveys for American pika on four distinct subalpine lava flows of Newberry National Volcanic Monument, Oregon, USA. Field surveys were conducted at predetermined locations within lava flows via silent observation and active searching for pika sign. Site habitat characteristics were included as predictors of occupancy in multinomial regression models. Above and belowground temperatures were recorded at a subsample of pika detection sites. Pika were detected in 26% (2011) and 19% (2012) of survey plots. Seventy-four pika were detected outside survey plot boundaries. Lava complexity was the strongest predictor of pika occurrence, where pika were up to seven times more likely to occur in the most complicated lava formations. Pika were two times more likely to occur with increasing elevation, although they were found at all elevations in the study area. This study expands the known distribution of the species and provides additional evidence for persistence in nonalpine habitats. Results partially support the predictive occupancy model developed for pika at Craters of the Moon National Monument, another lava environment. Characteristics of the lava environment clearly influence pika site occupancy, but habitat variables reported as important in other studies were inconclusive here. Further work is needed to gain a better understanding of the species’ current distribution and ability to persist under future climate conditions. This study documents persistence of a newly discovered population of American pika at elevations below those predicted as optimal for the species. Like other lava environments where pika have been recently documented, lava flows at NNVM appear to be serving as thermal refugia for pika, despite summer temperatures which regularly exceed thermal maxima for the species. It is likely that pika inhabit other low-elevation lava flows in areas that have never been surveyed.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2015-08-14
    Description: Many plants are grown outside their natural ranges. Plantings adjacent to native ranges provide an opportunity to monitor community assembly among associated insects and their parasitoids in novel environments, to determine whether gradients in species richness emerge and to examine their consequences for host plant reproductive success. We recorded the fig wasps (Chalcidoidea) associated with a single plant resource (ovules of Ficus microcarpa ) along a 1200 km transect in southwest China that extended for 1000 km beyond the tree's natural northern range margin. The fig wasps included the tree's agaonid pollinator and other species that feed on the ovules or are their parasitoids. Phytophagous fig wasps (12 species) were more numerous than parasitoids (nine species). The proportion of figs occupied by fig wasps declined with increasing latitude, as did the proportion of utilized ovules in occupied figs. Species richness, diversity, and abundance of fig wasps also significantly changed along both latitudinal and altitudinal gradients. Parasitoids declined more steeply with latitude than phytophages. Seed production declined beyond the natural northern range margin, and at high elevation, because pollinator fig wasps became rare or absent. This suggests that pollinator climatic tolerances helped limit the tree's natural distribution, although competition with another species may have excluded pollinators at the highest altitude site. Isolation by distance may prevent colonization of northern sites by some fig wasps and act in combination with direct and host-mediated climatic effects to generate gradients in community composition, with parasitoids inherently more sensitive because of declines in the abundance of potential hosts. The fig wasps associated with a single plant resource (ovules of Ficus microcarpa) along a 1200 km transect in SW China that extended for 1000 km beyond the tree's natural northern range margin were recorded. The proportion of figs utilized by any fig wasps declined with increasing latitude, as did the proportion of ovules that were occupied and the species richness, diversity and abundance of fig wasps. Parasitoids declined more steeply with latitude than phytophages.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2015-08-15
    Description: Evaluating trade-offs in life-history traits of plant pathogens is essential to understand the evolution and epidemiology of diseases. In particular, virulence costs when the corresponding host resistance gene is lacking play a major role in the adaptive biology of pathogens and contribute to the maintenance of their genetic diversity. Here, we investigated whether life-history traits directly linked to the establishment of plant–nematode interactions, that is, ability to locate and move toward the roots of the host plant, and to invade roots and develop into mature females, are affected in Meloidogyne incognita lines virulent against the tomato Mi-1.2 resistance gene. Virulent and avirulent near-isogenic lines only differing in their capacity to reproduce or not on resistant tomatoes were compared in single inoculation or pairwise competition experiments. Data highlighted (1) a global lack of trade-off in traits associated with unnecessary virulence with respect to the nematode ability to successfully infest plant roots and (2) variability in these traits when the genetic background of the nematode is considered irrespective of its (a)virulence status. These data suggest that the variation detected here is independent from the adaptation of M. incognita to host resistance, but rather reflects some genetic polymorphism in this asexual organism. Evaluating trade-offs in life-history traits of plant pathogens is essential to understand the evolution and epidemiology of diseases. Here, we designed experiments to investigate whether traits directly linked to the establishment of host–parasite interactions, that is, ability to locate and move toward the roots of the host plant, and to invade roots and develop into mature females, are affected in an asexual nematode adapted to plant resistance.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2015-08-15
    Description: We present new measurements of bedload tracer transport in a mountain stream over several snowmelt seasons. Cumulative displacements were measured using passive tracers, which consisted of gravel and cobbles embedded with radio frequency identification tags. The timing of bedload motion during eleven transporting events was quantified with active tracers, i.e., accelerometer-embedded cobbles. Probabilities of cobble transport increased with discharge above a threshold, and exhibited slight to moderate hysteresis during snowmelt hydrographs. Dividing cumulative displacements by the number of movements recorded by each active tracer constrained average step lengths. Average step lengths increased with discharge, and distributions of average step lengths and cumulative displacements were thin-tailed. Distributions of rest times followed heavy-tailed power law scaling. Rest time scaling varied somewhat with discharge and with the degree to which tracers were incorporated into the stream bed. The combination of thin-tailed displacement distributions and heavy-tailed rest time distributions predict superdiffusive dispersion. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2015-08-15
    Description: Gas transfer processes are fundamental to the biogeochemical and water quality functions of wetlands, yet there is limited knowledge of the rates and pathways of soil - atmosphere exchange for gases other than oxygen and methane (CH 4 ). In this study we use a novel push-pull technique with sulfur hexafluoride (SF 6 ) and helium (He) as dissolved gas tracers to quantify the kinetics of root-mediated gas transfer, which is a critical efflux pathway for gases from wetland soils. This tracer approach disentangles the effects of physical transport from simultaneous reaction in saturated, vegetated wetland soils. We measured significant seasonal variation in first-order gas exchange rate constants, with smaller spatial variations between different soil depths and vegetation zones in a New Jersey tidal marsh. Gas transfer rates for most biogeochemical trace gases are expected to be bracketed by the rate constants for SF 6 and He, which ranged from ∼10 −2 to 2x10 −1 h −1 at our site. A modified Damköhler number analysis is used to evaluate the balance between biochemical reaction and root-driven gas exchange in governing the fate of environmental trace gases in rooted, anaerobic soils. This approach confirmed the importance of plant gas transport for CH 4 , and showed that root-driven transport may affect nitrous oxide (N 2 O) balances in settings where N 2 O reduction rates are slow This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2015-08-15
    Description: Measuring vertically nested temperatures at the streambed interface poses practical challenges that are addressed here with a new discrete subsurface temperature profiling probe. We describe a new temperature probe and its application for heat as a tracer investigations to demonstrate the probe's utility. Accuracy and response time of temperature measurements made at 6 discrete depths in the probe were analyzed in the laboratory using temperature bath experiments. We find the temperature probe to be an accurate and robust instrument that allows for easily installation and long-term monitoring in highly variable environments. Because the probe is inexpensive and versatile, it is useful for many environmental applications that require temperature data collection for periods of several months in environments that are difficult to access or require minimal disturbance. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2015-09-11
    Description: Negative density dependence (NDD) and niche partitioning have been perceived as important mechanisms for the maintenance of species diversity. However, little is known about their relative contributions to seedling survival. We examined the effects of biotic and abiotic neighborhoods and the variations of biotic neighborhoods among species using survival data for 7503 seedlings belonging to 22 woody species over a period of 2 years in three different forest types, a half-mature forest (HF), a mature forest (MF), and an old-growth forest (OGF), each of these representing a specific successional stage in a temperate forest ecosystem in northeastern China. We found a convincing evidence for the existence of NDD in temperate forest ecosystems. The biotic and abiotic variables affecting seedlings survival change with successional stage, seedling size, and age. The strength of NDD for the smaller (〈20 cm in height) and younger seedlings (1–2 years) as well as all seedlings combined varies significantly among species. We found no evidence that a community compensatory trend (CCT) existed in our study area. The results of this study demonstrate that the relative importance of NDD and habitat niche partitioning in driving seedling survival varies with seedling size and age and that the biotic and abiotic factors affecting seedlings survival change with successional stage. The results of this study demonstrate that NDD and habitat niche partitioning simultaneously operate in driving seedling survival in temperate forests, while the strength and importance of these processes vary with successional stage, seedling size and age.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2015-09-11
    Description: Interspecific hybridization, especially when regularly followed by backcrossing (i.e., introgressive hybridization), conveys a substantial risk for many endangered organisms. This is particularly true for narrow endemics occurring within distributional ranges of widespread congeners. An excellent example is provided by the plant genus Knautia (Caprifoliaceae): Locally endemic K .  carinthiaca is reported from two isolated populations in southern Austria situated within an area predominantly occupied by widespread K .  arvensis . While K .  carinthiaca usually inhabits low-competition communities on rocky outcrops, K .  arvensis occurs mainly in dry to mesic managed grasslands, yet both species can coexist in marginal environments and were suspected to hybridize. Flow cytometry revealed that diploid K .  carinthiaca only occurs at its locus classicus, whereas the second locality is inhabited by the morphologically similar but tetraploid K .  norica . In the, therefore, single population of K .  carinthiaca, flow cytometry and AFLP fingerprinting showed signs of introgressive hybridization with diploid K .  arvensis . Hybridization patterns were also reflected in intermediate habitat preferences and morphology of the hybrids. Environmental barriers to gene flow seem to prevent genetic erosion of K .  carinthiaca individuals from the core ecological niches, restricting most introgressed individuals to peripheral habitats. Efficient conservation of K. carinthiaca will require strict protection of its habitat and ban on forest clear cuts in a buffer zone to prevent invasion of K. arvensis . We demonstrate the large potential of multidisciplinary approaches combining molecular, cytometric, and ecological tools for a reliable inventory and threat assessment of rare species. Interspecific hybridization and/or introgression may convey a substantial threat for narrow endemics occurring within distributional ranges of their widespread congeners. We tested this assumption on an exemplary model system provided by the plant genus Knautia (Caprifoliaceae). By employing several complementary approaches, we determined the current distribution of locally endemic K. carinthiaca , estimated the hybridization risk and proposed necessary conservation actions.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2015-09-11
    Description: In dioecious species with both sexual and asexual reproduction, the spatial distribution of individual clones affects the potential for sexual reproduction and local adaptation. The seaweed Fucus radicans , endemic to the Baltic Sea, has separate sexes, but new attached thalli may also form asexually. We mapped the spatial distribution of clones (multilocus genotypes, MLGs) over macrogeographic (〉500 km) and microgeographic (〈100 m) scales in the Baltic Sea to assess the relationship between clonal spatial structure, sexual recruitment, and the potential for natural selection. Sexual recruitment was predominant in some areas, while in others asexual recruitment dominated. Where clones of both sexes were locally intermingled, sexual recruitment was nevertheless low. In some highly clonal populations, the sex ratio was strongly skewed due to dominance of one or a few clones of the same sex. The two largest clones (one female and one male) were distributed over 100–550 km of coast and accompanied by small and local MLGs formed by somatic mutations and differing by 1–2 mutations from the large clones. Rare sexual events, occasional long-distance migration, and somatic mutations contribute new genotypic variation potentially available to natural selection. However, dominance of a few very large (and presumably old) clones over extensive spatial and temporal scales suggested that either these have superior traits or natural selection has only been marginally involved in the structuring of genotypes. The seaweed Fucus radicans , endemic to the Baltic Sea, has separate sexes but all thalli may also form new attached thalli asexually. We mapped clones (genotypes) and their spatial distribution over macrogeographic (the species' distribution in northern and eastern Baltic) and microgeographic (〈100 m) scales. Rare sexual events, occasional long-distance migration and somatic mutations contribute new genotypic variation in northern and western populations of this brown algae, nevertheless the same few clones have resisted environmental changes and have dominated much of the species' distribution over extensive periods of time, which suggests that the distribution of clones of F. radicans cannot solely be ascribed to natural selection.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2015-09-11
    Description: To date, the implications of the predicted greater intra-annual variability and extremes in precipitation on ecosystem functioning have received little attention. This study presents results on leaf-level physiological responses of five species covering the functional groups grasses, forbs, and legumes in the understorey of a Mediterranean oak woodland, with increasing precipitation variability, without altering total annual precipitation inputs. Although extending the dry period between precipitation events from 3 to 6 weeks led to increased soil moisture deficit, overall treatment effects on photosynthetic performance were not observed in the studied species. This resilience to prolonged water stress was explained by different physiological and morphological strategies to withstand periods below the wilting point, that is, isohydric behavior in Agrostis , Rumex, and Tuberaria , leaf succulence in Rumex , and taproots in Tolpis . In addition, quick recovery upon irrigation events and species-specific adaptations of water-use efficiency with longer dry periods and larger precipitation events contributed to the observed resilience in productivity of the annual plant community. Although none of the species exhibited a change in cover with increasing precipitation variability, leaf physiology of the legume Ornithopus exhibited signs of sensitivity to moisture deficit, which may have implications for the agricultural practice of seeding legume-rich mixtures in Mediterranean grassland-type systems. This highlights the need for long-term precipitation manipulation experiments to capture possible directional changes in species composition and seed bank development, which can subsequently affect ecosystem state and functioning. This study presents results on leaf-level physiological responses of five species in the understorey of a Mediterranean oak woodland. The previous reported resilience of productivity in this ecosystem with increasing precipitation variability is explained by different physiological and morphological strategies to withstand periods below the wilting point.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2015-09-11
    Description: The scale-eating cichlid fish, Perissodus microlepis , from Lake Tanganyika are a well-known example of an asymmetry dimorphism because the mouth/head is either left-bending or right-bending. However, how strongly its pronounced morphological laterality is affected by genetic and environmental factors remains unclear. Using quantitative assessments of mouth asymmetry, we investigated its origin by estimating narrow-sense heritability ( h 2 ) using midparent–offspring regression. The heritability estimates [field estimate: h 2  = 0.22 ± 0.06, P  =   0.013; laboratory estimate: h 2  = 0.18 ± 0.05, P  =   0.004] suggest that although variation in laterality has some additive genetic component, it is strongly environmentally influenced. Family-level association analyses of a putative microsatellite marker that was claimed to be linked to gene(s) for laterality revealed no association of this locus with laterality. Moreover, the observed phenotype frequencies in offspring from parents of different phenotype combinations were not consistent with a previously suggested single-locus two-allele model, but they neither were able to reject with confidence a random asymmetry model. These results reconcile the disputed mechanisms for this textbook case of mouth asymmetry where both genetic and environmental factors contribute to this remarkable case of morphological asymmetry. Using quantitative assessments of mouth asymmetry of scale-eating cichlid fish Perissodus microlepis, we investigated its origin by estimating narrow-sense heritability ( h 2 ) using midparent-offspring regression. The heritability estimates [field-estimate: h 2  = 0.22 ± 0.06, P  = 0.013; laboratory-estimate: h 2  = 0.18 ± 0.05, P  = 0.004] suggest that although variation in laterality has some additive genetic component, it is strongly environmentally influenced. These results reconcile the disputed mechanisms for this textbook case of mouth asymmetry where both genetic and environmental factors contribute to this remarkable case of morphological asymmetry.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2015-09-12
    Description: Nanoparticle deposition behavior observed at the Darcy scale represents an average of the processes occurring at the pore scale. Hence, the effect of various pore-scale parameters on nanoparticle deposition can be understood by studying nanoparticle transport at pore scale and upscaling the results to the Darcy scale. In this work, correlation equations for the deposition rate coefficients of nanoparticles in a cylindrical pore are developed as a function of nine pore-scale parameters: the pore radius, nanoparticle radius, mean flow velocity, solution ionic strength, viscosity, temperature, solution dielectric constant, and nanoparticle and collector surface potentials. Based on dominant processes, the pore space is divided into three different regions, namely, bulk, diffusion, and potential regions. Advection-diffusion equations for nanoparticle transport are prescribed for the bulk and diffusion regions, while the interaction between the diffusion and potential regions is included as a boundary condition. This interaction is modeled as a first-order reversible kinetic adsorption. The expressions for the mass transfer rate coefficients between the diffusion and the potential regions are derived in terms of the interaction energy profile. Among other effects, we account for nanoparticle-collector interaction forces on nanoparticle deposition. The resulting equations are solved numerically for a range of values of pore-scale parameters. The nanoparticle concentration profile obtained for the cylindrical pore is averaged over a moving averaging volume within the pore in order to get the 1D concentration field. The latter is fitted to the 1D advection-dispersion equation with an equilibrium or kinetic adsorption model to determine the values of the average deposition rate coefficients. In this study, pore-scale simulations are performed for three values of Péclet number, Pe = 0.05, 5 and 50. We find that under unfavorable conditions, the nanoparticle deposition at pore scale is best described by an equilibrium model at low Péclet numbers ( Pe = 0.05), and by a kinetic model at high Péclet numbers ( Pe = 50). But, at an intermediate Pe (e.g., near Pe = 5), both equilibrium and kinetic models fit the 1D concentration field. Correlation equations for the pore-averaged nanoparticle deposition rate coefficients under unfavorable conditions are derived by performing a multiple-linear regression analysis between the estimated deposition rate coefficients for a single pore and various pore-scale parameters. The correlation equations, which follow a power law relation with nine pore-scale parameters, are found to be consistent with the column-scale and pore-scale experimental results, and qualitatively agree with the colloid filtration theory. These equations can be incorporated into pore network models to study the effect of pore-scale parameters on nanoparticle deposition at larger length scales such as Darcy scale. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2015-09-12
    Description: Safe drinking water is critical to human health and development. In rural sub-Saharan Africa, most improved water sources are boreholes with handpumps; studies suggest that up to one third of these handpumps are non-functional at any given time. This work presents findings from a secondary analysis of cross-sectional data from 1509 water sources in 570 communities in the rural Greater Afram Plains (GAP) region of Ghana; one of the largest studies of its kind. 79.4% of enumerated water sources were functional when visited; in multivariable regressions, functionality depended on source age, management, the number of other sources in the community, and the district. A Bayesian network (BN) model developed using the same dataset found strong dependencies of functionality on implementer, pump type, management, and the availability of tools, with synergistic effects from management determinants on functionality, increasing the likelihood of a source being functional from a baseline of 72% to more than 97% with optimal management and available tools. We suggest that functionality may be a dynamic equilibrium between regular breakdowns and repairs, with management a key determinant of repair rate. Management variables may interact synergistically in ways better captured by BN analysis than by logistic regressions. These qualitative findings may prove generalizable beyond the study area, and may offer new approaches to understanding and increasing handpump functionality and safe water access. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2015-09-12
    Description: Process controls on water, sediment, nutrient and organic carbon exports from the landscape through runoff are not fully understood. This paper provides analyses from 446 sites worldwide to evaluate the impact of environmental factors (MAP and MAT: mean annual precipitation and temperature; CLAY and BD: soil clay content and bulk density; S: slope gradient and LU: land use) on annual exports (R C : runoff coefficients; SL: sediment loads; TOC L : organic carbon losses; TN L : nitrogen losses and TP L : phosphorus losses) from different spatial scales. R C was found to increase, on average, from 18% at local scale (in headwaters), 25% at micro and subcatchment scale (mid-reaches) to 41% at catchment scale (lower reaches of river basins) in response to multiple factors. SL increased from microplots (468 g m −2 yr −1 ) to plots (901 g m −2 yr −1 ), accompanied by decreasing TOC L and TN L . Climate was a major control masking the effects of other factors. For example, R C , SL, TOC L , TN L and TP L tended to increase with MAP at all spatial scales. These variables, however, decreased with MAT. The impact of CLAY, BD, LU and S on erosion variables was largely confined to the hillslope scale, where R C, SL and TOC L decreased with CLAY, while TNL and TP L increased. The results contribute to better understanding of water, nutrient and carbon cycles in terrestrial ecosystems, and should inform river basin modelling and ecosystem management. The important role of spatial climate variability points to a need for comparative research in specific environments at nested spatio-temporal scales. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2015-09-15
    Description: The Crassulacean genus Aeonium is a well-known example for plant species radiation on oceanic archipelagos. However, while allopatric speciation among islands is documented for this genus, the role of intra-island speciation due to population divergence by topographical isolation or ecological heterogeneity has not yet been addressed. The aim of this study was to investigate intraspecific genetic structures and to identify spatial and ecological drivers of genetic population differentiation on the island scale. We analyzed inter simple sequence repeat variation within two island-endemic Aeonium species of La Palma: one widespread generalist that covers a large variety of different habitat types ( Ae. davidbramwellii ) and one narrow ecological specialist ( Ae. nobile ), in order to assess evolutionary potentials on this island. Gene pool differentiation and genetic diversity patterns were associated with major landscape structures in both species, with phylogeographic implications. However, overall levels of genetic differentiation were low. For the generalist species, outlier loci detection and loci–environment correlation approaches indicated moderate signatures of divergent selection pressures linked to temperature and precipitation variables, while the specialist species missed such patterns. Our data point to incipient differentiation among populations, emphasizing that ecological heterogeneity and topographical structuring within the small scales of an island can foster evolutionary processes. Very likely, such processes have contributed to the radiation of Aeonium on the Canary Islands. There is also support for different evolutionary mechanisms between generalist and specialist species. We analysed range-wide population genetic variation within two ecologically different single-island endemics of Aeonium on La Palma, Canary Islands. Population differentiation was moderate for both species but was clearly influenced by landscape structures and, within the generalist species covering a large variety of different habitats, some signatures of divergent selection due to climatic parameters were observable. Our study shows that topographical and ecological heterogeneity within single islands are probable drivers of evolution in this iconic example of plant species radiations.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2015-09-15
    Description: Populations occurring at species' range edges can be locally adapted to unique environmental conditions. From a species' perspective, range-edge environments generally have higher severity and frequency of extreme climatic events relative to the range core. Under future climates, extreme climatic events are predicted to become increasingly important in defining species' distributions. Therefore, range-edge genotypes that are better adapted to extreme climates relative to core populations may be essential to species' persistence during periods of rapid climate change. We use relatively simple conceptual models to highlight the importance of locally adapted range-edge populations (leading and trailing edges) for determining the ability of species to persist under future climates. Using trees as an example, we show how locally adapted populations at species' range edges may expand under future climate change and become more common relative to range-core populations. We also highlight how large-scale habitat destruction occurring in some geographic areas where many species range edge converge, such as biome boundaries and ecotones (e.g., the arc of deforestation along the rainforest-cerrado ecotone in the southern Amazonia), can have major implications for global biodiversity. As climate changes, range-edge populations will play key roles in helping species to maintain or expand their geographic distributions. The loss of these locally adapted range-edge populations through anthropogenic disturbance is therefore hypothesized to reduce the ability of species to persist in the face of rapid future climate change. We synthesize conservation, biogeographic, genetic, and climate change literature to provide a novel conceptual framework of the disproportionately important role that range-edge populations will have in determining species' responses to climate change.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2015-09-17
    Description: The wettability of CO 2 -brine-rock systems will have a major impact on the management of carbon sequestration in subsurface geological formations. Recent contact angle measurement studies have reported sensitivity in wetting behaviour of this system to pressure, temperature and brine salinity. We report observations of the impact of reservoir conditions on the capillary pressure characteristic curve and and relative permeability of a single Berea sandstone during drainage - CO 2 displacing brine - through effects on the wetting state. Eight reservoir condition drainage capillary pressure characteristic curves were measured using CO 2 and brine in a single fired Berea sandstone at pressures (5 to 20 MPa), temperatures (25 to 50°C) and ionic strengths (0 to 5 mol kg −1 NaCl). A ninth measurement using a N 2 -water system provided a benchmark for capillarity with a strongly water wet system. The capillary pressure curves from each of the tests were found to be similar to the N 2 -water curve when scaled by the interfacial tension. Reservoir conditions were not found to have a significant impact on the capillary strength of the CO 2 -brine system during drainage through a variation in the wetting state. Two steady-state relative permeability measurements with CO 2 and brine and one with N 2 and brine similarly show little variation between conditions, consistent with the observation that the CO 2 -brine-sandstone system is water wetting and multiphase flow properties invariant across a wide range of reservoir conditions. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2015-09-17
    Description: Hillslope-scale rainfall-runoff processes leading to a fast catchment response are not explicitly included in land surface models (LSMs) for use in earth system models (ESMs) due to computational constraints. This study presents a hybrid-3D hillslope hydrological model (h3D) that couples a 1D vertical soil column model with a lateral pseudo-2D saturated zone and overland flow model for use in ESMs. By representing vertical and lateral responses separately at different spatial resolutions, h3D is computationally efficient. The h3D model was first tested for three different hillslope planforms (uniform, convergent and divergent). We then compared h3D (with single and multiple soil columns) with a complex physically-based 3D model and a simple 1D soil moisture model coupled with an unconfined aquifer (as typically used in LSMs). It is found that simulations obtained by the simple 1D model vary considerably from the complex 3D model and are not able to represent hillslope-scale variations in the lateral flow response. In contrast, the single soil column h3D model shows a much better performance and saves computational time by 2-3 orders of magnitude compared with the complex 3D model. When multiple vertical soil columns are implemented, the resulting hydrological responses (soil moisture, water table depth, and baseflow along the hillslope) from h3D are nearly identical to those predicted by the complex 3D model, but still saves computational time. As such, the computational efficiency of the h3D model provides a valuable and promising approach to incorporating hillslope-scale hydrological processes into continental and global-scale ESMs. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2015-09-17
    Description: We investigated potential source areas of dissolved organic carbon (DOC) in headwater streams by examining DOC concentrations in lysimeter, shallow well, and streamwater samples from a reference catchment at the Hubbard Brook Experimental Forest. These observations were then compared to high frequency temporal variations in fluorescent dissolved organic matter (FDOM) at the catchment outlet and the predicted spatial extent of shallow groundwater in soils throughout the catchment. While near-stream soils are generally considered a DOC source in forested catchments, DOC concentrations in near-stream groundwater were low (mean = 2.4 mg/L, standard error = 0.6 mg/L), less than hillslope groundwater farther from the channel (mean = 5.7 mg/L, standard error = 0.4 mg/L). Furthermore, water tables in near-stream soils did not rise into the carbon rich upper B or O horizons even during events. In contrast, soils below bedrock outcrops near channel heads where lateral soil formation processes dominate had much higher DOC concentrations. Soils immediately downslope of bedrock areas had thick eluvial horizons indicative of leaching of organic materials, Fe, and Al and had similarly high DOC concentrations in groundwater (mean = 14.5 mg/L, standard error = 0.8 mg/L). Flow from bedrock outcrops partially covered by organic soil horizons produced the highest groundwater DOC concentrations (mean = 20.0 mg/L, standard error = 4.6 mg/L) measured in the catchment. Correspondingly, streamwater in channel heads sourced in part by shallow soils and bedrock outcrops had the highest stream DOC concentrations measured in the catchment. Variation in FDOM concentrations at the catchment outlet followed water table fluctuations in shallow to bedrock soils near channel heads. We show that shallow hillslope soils receiving runoff from organic matter-covered bedrock outcrops may be a major source of DOC in headwater catchments in forested mountainous regions where catchments have exposed or shallow bedrock near channel heads. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2015-09-17
    Description: ABSTRACT Multiple scenarios of upward CO 2 migration driven by both injection-induced pressure and buoyancy force were investigated in a horizontally and vertically stratified core utilizing a core-flooding system with a 2D X-ray scanner. Two reservoir type scenarios were considered: (1) the terrestrial reservoir scenario (10 MPa and 50°C), where CO 2 exists in a supercritical state and (2) the deep-sea sediment reservoir scenario (28 MPa and 25°C), where CO 2 is stored in the liquid phase. The core-flooding experiments showed a 36% increase in migration rate in the vertical core setting compared with the horizontal setting, indicating the significance of the buoyancy force under the terrestrial reservoir scenario. Under both reservoir conditions, the injected CO 2 tended to find a preferential flow path (low capillary entry pressure and high-permeability (high- k ) path) and bypass the unfavorable pathways, leaving low CO 2 saturation in the low-permeability (low- k ) layers. No distinctive fingering was observed as the CO 2 moved upward, and the CO 2 movement was primarily controlled by media heterogeneity. The CO 2 saturation in the low- k layers exhibited a more sensitive response to injection rates, implying that the increase in CO 2 injection rates could be more effective in terms of storage capacity in the low- k layers in a stratified reservoir. Under the deep-sea sediment condition, the storage potential of liquid CO 2 was more than twice as high as that of supercritical CO 2 under the terrestrial reservoir scenario. In the end, multiphase transport simulations were conducted to assess the effects of heterogeneity on the spatial variation of pressure build-up, CO 2 saturation and CO 2 flux. Finally, we showed that a high gravity number () tended to be more influenced by the heterogeneity of the porous media. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2015-09-17
    Description: Lake water storage change (Δ S w ) is an important indicator of the hydrologic cycle and greatly influences lake expansion/shrinkage over the Tibetan Plateau (TP). Accurate estimation of Δ S w will contribute to improved understanding of lake variations in the TP. Based on a water balance, this study explored the variations of Δ S w for the Lake Selin Co (the largest closed lake on the TP) during 2003-2012 using the Water and Energy Budget-based Distributed Hydrological Model (WEB-DHM) together with two different evapotranspiration (ET) algorithms (the Penman-Monteith method and a simple sublimation estimation approach for water area in unfrozen and frozen period). The contributions of basin discharge and climate causes to the Δ S w are also quantitatively analyzed. The results showed that WEB-DHM could well reproduce daily discharge, the spatial pattern and basin-averaged values of MODIS land surface temperature (LST) during nighttime and daytime. Compared with the ET reference values estimated from the basin-wide water balance, our ET estimates showed better performance than three global ET products in reproducing basin-averaged ET. The modeled ET at point scale matches well with short-term in situ daily measurements (RMSE = 0.82 mm/day). Lake inflows and precipitation over the water area had stronger relationships with Δ S w in the warm season and monthly scale, whereas evaporation from the water area had remarkable effects on Δ S w in the cold season. The total contribution of the three factors to Δ S w was about 90%, and accounting for 49.5%, 22.1% and 18.3%, respectively. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2015-09-17
    Description: Predicting hydro(geo)logical or environmental systems is subject to high levels of uncertainties, especially if appropriate data for model calibration are lacking. For subsurface systems, where data acquisition is cost intensive and time demanding, it is especially important to collect only those data that provide the largest amount of relevant information. The high expenses call for optimal experimental design, which is widely recognized for maximizing the efficiency of experiments. In model-based design of experiments, the analysis of the design efficiency and the resulting optimal design are based on the initial state of knowledge about the modeled system. Joint optimization of multi-measurement designs is a well known challenge and the usefulness of global optimization approaches is widely recognized in this context. However, we will show that the benefit for such global optimization becomes questionable when measurement data become available sequentially. Instead, the optimization effort should be invested within an interactive design approach. Today's fast telecommunication, global connectivity and high-performance computing allow to consider such interactive coupling. This study will use a synthetic case study to compare the standard en-bloc global optimization approach to two interactive design approaches. The approaches are implemented in a Bayesian framework and are compared based on their complexity and overall performance. The key conclusion confirms a previously untested presumption: for models that trigger nonlinear parameter inference problems, interaction (which may come at a loss of global optimization) is more beneficial than global optimization based on the initial state of knowledge (which typically implies the impossibility of interactivity). This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2015-09-17
    Description: ABSTRACT Environmental tracers provide information on groundwater age, recharge conditions, and flow processes which can be helpful for evaluating groundwater sustainability and vulnerability. Dissolved noble gas data have proven particularly useful in mountainous terrain because they can be used to determine recharge elevation. However, tracer-derived recharge elevations have not been utilized as calibration targets for numerical groundwater flow models. Herein we constrain and calibrate a regional groundwater flow model with noble-gas-derived recharge elevations for the first time. Tritium and noble gas tracer results improved the site conceptual model by identifying a previously uncertain contribution of mountain-block recharge from the Coast Mountains to an alluvial coastal aquifer in humid southwestern British Columbia. The revised conceptual model was integrated into a three-dimensional numerical groundwater flow model and calibrated to hydraulic head data in addition to recharge elevations estimated from noble gas recharge temperatures. Recharge elevations proved to be imperative for constraining hydraulic conductivity, recharge location and bedrock geometry, and thus minimizing model non-uniqueness. Results indicate that 45% of recharge to the aquifer is mountain-block recharge. A similar match between measured and modeled heads was achieved in a second numerical model that excludes the mountain block (no mountain block recharge), demonstrating that hydraulic head data alone are incapable of quantifying mountain block recharge. This result has significant implications for understanding and managing source water protection in recharge areas, potential effects of climate change, the overall water budget, and ultimately ensuring groundwater sustainability. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2015-09-19
    Description: Many studies have explored the value of using more sophisticated coastal impact models and higher resolution elevation data in sea-level rise (SLR) adaptation planning. However, we know little about to what extent the improved models and data could actually lead to better conservation outcomes under SLR. This is important to know because high-resolution data are likely to not be available in some data-poor coastal areas in the world and running more complicated coastal impact models is relatively time-consuming, expensive, and requires assistance by qualified experts and technicians. We address this research question in the context of identifying conservation priorities in response to SLR. Specifically, we investigated the conservation value of using more accurate light detection and ranging (Lidar)-based digital elevation data and process-based coastal land-cover change models (Sea Level Affecting Marshes Model, SLAMM) to identify conservation priorities versus simple “bathtub” models based on the relatively coarse National Elevation Dataset (NED) in a coastal region of northeast Florida. We compared conservation outcomes identified by reserve design software (Zonation) using three different model dataset combinations (Bathtub–NED, Bathtub–Lidar, and SLAMM–Lidar). The comparisons show that the conservation priorities are significantly different with different combinations of coastal impact models and elevation dataset inputs. The research suggests that it is valuable to invest in more accurate coastal impact models and elevation datasets in SLR adaptive conservation planning because this model–dataset combination could improve conservation outcomes under SLR. Less accurate coastal impact models, including ones created using coarser Digital Elevation Model (DEM) data can still be useful when better data and models are not available or feasible, but results need to be appropriately assessed and communicated. A future research priority is to investigate how conservation priorities may vary among different SLR scenarios when different combinations of model-data inputs are used. We know little about to what extent the improved models and data could actually lead to better conservation outcomes for adaptation to sea-level rise (SLR). We investigated the value of using more accurate light detection and ranging (Lidar)-based digital elevation data and rules-based coastal land-cover change models (Sea Level Affecting Marshes Model, SLAMM) to identify conservation priorities versus simple “bathtub” models based on the relatively coarse National Elevation Dataset in a coastal region of northeast Florida. The comparison shows that it is valuable to invest in more accurate coastal impact models and elevation datasets in SLR adaptive conservation planning because the less accurate models and elevation datasets could fail to identify areas of high conservation value under a 1-m SLR scenario.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2015-09-19
    Description: How much should an individual invest in immunity as it grows older? Immunity is costly and its value is likely to change across an organism's lifespan. A limited number of studies have focused on how personal immune investment changes with age in insects, but we do not know how social immunity, immune responses that protect kin, changes across lifespan, or how resources are divided between these two arms of the immune response. In this study, both personal and social immune functions are considered in the burying beetle, Nicrophorus vespilloides . We show that personal immune function declines (phenoloxidase levels) or is maintained (defensin expression) across lifespan in nonbreeding beetles but is maintained (phenoloxidase levels) or even upregulated (defensin expression) in breeding individuals. In contrast, social immunity increases in breeding burying beetles up to middle age, before decreasing in old age. Social immunity is not affected by a wounding challenge across lifespan, whereas personal immunity, through PO, is upregulated following wounding to a similar extent across lifespan. Personal immune function may be prioritized in younger individuals in order to ensure survival until reproductive maturity. If not breeding, this may then drop off in later life as state declines. As burying beetles are ephemeral breeders, breeding opportunities in later life may be rare. When allowed to breed, beetles may therefore invest heavily in “staying alive” in order to complete what could potentially be their final reproductive opportunity. As parental care is important for the survival and growth of offspring in this genus, staying alive to provide care behaviors will clearly have fitness payoffs. This study shows that all immune traits do not senesce at the same rate. In fact, the patterns observed depend upon the immune traits measured and the breeding status of the individual. Multiple immune responses have evolved to protect the individual (personal) or their kin (social). Several studies have considered how personal immunity changes with age, but this is the first study to consider how social immunity changes with age. We found that in virgins, personal immunity declined or was maintained with age, while in breeders, it was maintained or even increased with age. Social immunity increased to middle age before falling in old age. We discuss the potential reasons for these differing responses to aging.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2015-09-19
    Description: The probability that new hydraulically fractured wells drilled within the area of New York underlain by the Marcellus Shale will intersect existing an wellbore is calculated using a statistical model, which incorporates: the depth of a new fracturing well, the vertical growth of induced fractures, and the depths and locations of existing nearby wells. The model first calculates the probability of encountering an existing well in plan view and combines this with the probability of an existing well being at sufficient depth to intersect the fractured region. Average probability estimates for the entire region of New York underlain by the Marcellus Shale range from 0.00% to 3.45% based upon the input parameters used. The largest contributing parameter on the probability value calculated is the nearby density of wells meaning that due diligence by oil and gas companies during construction in identifying all nearby wells will have the greatest effect in reducing the probability of interwellbore communication. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2015-09-19
    Description: The idea of complementary evaporative fluxes, first advanced by Bouchet in 1963 is reformulated as a general polynomial, satisfying boundary conditions based on strictly physical considerations. Experimental evidence supports the validity of the imposed constraints. Earlier complementary relationships are shown to be special cases which satisfy only one of the necessary conditions. The new formulation provides a more rigorous base for the complementary principle. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2015-09-19
    Description: A levee failure occurred along the Secchia River, Northern Italy, on January 19, 2014, resulting in flood damage in excess of $500 Million. In response to this failure, immediate surveillance of other levees in the region led to the identification of a second breach developing on the neighboring Panaro River, where rapid mitigation efforts were successful in averting a full levee failure. The paired breach events that occurred along the Secchia and Panaro Rivers provided an excellent window on an emerging levee failure mechanism. In the Secchia River, by combining the information content of photographs taken from helicopters in the early stage of breach development and 10-cm resolution aerial photographs taken in 2010 and 2012, animal burrows were found to exist in the precise levee location where the breach originated. In the Panaro River, internal erosion was observed to occur at a location where a crested porcupine den was known to exist and this erosion led to the collapse of the levee top. This paper uses detailed numerical modeling of rainfall, river flow, and variably saturated flow in the levee to explore the hydraulic and geotechnical mechanisms that were triggered along the Secchia and Panaro Rivers by activities of burrowing animals leading to levee failures. As habitats become more fragmented and constrained along river corridors it is possible that this failure mechanism could become more prevalent and, therefore, will demand greater attention in both the design and maintenance of earthen hydraulic structures as well as in wildlife management. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2015-09-19
    Description: Future water demand is a main consideration in water system management. Consequently, water demand models (WDMs) have evolved in past decades, identifying principal demand-generating factors and modeling their influence on water demand. Regional water systems serve consumers of various types (e.g., municipalities, farmers, industrial regions) and consumption patterns. Thus, one of the challenges in regional water demand modeling is the heterogeneity of the consumers served by the water system. When a high-resolution, regional WDM is desired, accounting for this heterogeneity becomes all the more important. This paper presents a novel approach to regional water demand modeling. The two-step approach includes aggregating the dataset into groups of consumers having similar consumption characteristics, and developing a WDM for each homogeneous group. The development of WDMs is widely applied in the literature and thus, the focus of this paper is to discuss the first step of data aggregation. The research hypothesis is that water consumption records in their original or transformed form can provide a basis for aggregating the dataset into groups of consumers with similar consumption characteristics. This paper presents a methodology for water consumption data clustering by comparing several data representation methods (termed Feature Vectors): monthly normalized average, monthly consumption coefficient of variation, a combination of the monthly average and monthly variation, and the autocorrelation coefficients of the consumption time-series. Clustering using solely normalized monthly average provided homogeneous and distinct clusters with respect to monthly consumption, which succeed in capturing different consumer characteristics (water use, geographical location) that were not specified a-priori. Clustering using the monthly coefficient of variation provided different, yet homogeneous clusters, clustering consumers characterized by similar variation trends that were closely related to consumer water use type. The concatenation of these two Feature Vectors provided further insight into the relationship between consumption patterns and variability of consumers. An autocorrelation Feature Vector provided results that can form a basis for constructing a time-series model that is based on a group of resembling time-series. The approaches presented here are steps towards utilizing the increasing amount of available water consumption data and data analysis techniques to facilitate the modeling of water demands in larger and heterogeneous regions with sufficient resolution. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2015-09-21
    Description: The expression of male secondary sexual traits can be dynamic, changing size, shape, color, or structure over the course of different seasons. However, the factors underlying such changes are poorly understood. In male Anolis carolinensis lizards, a morphological secondary sexual signal called the dewlap changes size seasonally within individuals. Here, we test the hypothesis that seasonal changes in male dewlap size are driven by increased use and extension of the dewlap in spring and summer, when males are breeding, relative to the winter and fall. We captured male green anole lizards prior to the onset of breeding and constrained the dewlap in half of them such that it could not be extended. We then measured dewlap area in the spring, summer, and winter, and dewlap skin and belly skin elasticity in summer and winter. Dewlaps in unconstrained males increase in area from spring to summer and then shrink in the winter, whereas the dewlaps of constrained males consistently shrink from spring to winter. Dewlap skin is significantly more elastic than belly skin, and skin overall is more elastic in the summer relative to winter. These results show that seasonal changes in dewlap size are a function of skin elasticity and display frequency, and suggest that the mechanical properties of signaling structures can have important implications for signal evolution and design. Male Anolis carolinensis dewlaps used for display change size over the course of a breeding season. Here we show that this size change is likely a consequence of dewlap elasticity, which causes the dewlap to stretch out when it is displayed frequently.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2015-09-22
    Description: Most of the human appropriation of freshwater resources is for agriculture. Water availability is a major constraint to mankind's ability to produce food. The notion of virtual water content ( VWC ), also known as crop water footprint, provides an effective tool to investigate the linkage between food and water resources as a function of climate, soil and agricultural practices. The spatial variability in the virtual water content of crops is here explored, disentagling its dependency on climate and crop yields, and assessing the sensitivity of VWC estimates to parameter variability and uncertainty. Here we calculate the virtual water content of four staple crops (i.e., wheat, rice, maize, and soybean) for the entire world developing a high-resolution (5 by 5 arc minute) model, and we evaluate the VWC sensitivity to input-parameters. We find that food production almost entirely depends on green water (〉90%), but, when applied, irrigation makes crop production more water efficient, thus requiring less water. The spatial variability of the VWC is mostly controlled by the spatial patterns of crop yields with an average correlation coefficient of 0.83. The results of the sensitivity analysis show that wheat is most sensitive to the length of the growing period, rice to reference evapotranspiration, maize and soybean to the crop planting date. The VWC sensitivity varies not only among crops, but also across the harvested areas of the world, even at the sub-national scale. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2015-09-22
    Description: The dissolution rate of non-aqueous phase liquid (NAPL) often governs the remediation time frame at subsurface hazardous waste sites. Most formulations for estimating this rate are empirical and assume that the NAPL is the non-wetting fluid. However, field evidence suggests that some waste sites might be organic-wet. Thus, formulations that assume the NAPL is non-wetting may be inappropriate for estimating the rates of NAPL dissolution. An exact solution to the Young-Laplace equation, assuming NAPL resides as pendular rings around the contact points of porous media idealized as spherical particles in a hexagonal close packing arrangement, is presented in this work to provide a theoretical prediction for NAPL-water interfacial area. This analytic expression for interfacial area is then coupled with an exact solution to the advection-diffusion equation in a capillary tube assuming Hagen-Poiseuille flow to provide a theoretical means of calculating the mass transfer rate coefficient for dissolution at the NAPL-water interface in an organic-wet system. A comparison of the predictions from this theoretical model with predictions from empirically-derived formulations from the literature for water-wet systems showed a consistent range of values for the mass transfer rate coefficient, despite the significant differences in model foundations (water-wetting vs NAPL-wetting, theoretical vs. empirical). This finding implies that, under these system conditions, the important parameter is interfacial area, with a lesser role played by NAPL configuration. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2015-09-22
    Description: A number of important candidate CO 2 reservoirs exhibit sedimentary architecture reflecting fluvial deposition. Recent studies have led to new conceptual and quantitative models for sedimentary architecture in fluvial deposits over a range of scales that are relevant to CO 2 injection and storage. We used a geocellular modelling approach to represent this multi-scaled and hierarchical sedimentary architecture. With this model, we investigated the dynamics of CO 2 plumes, during and after injection, in such reservoirs. The physical mechanism of CO 2 trapping by capillary trapping incorporates a number of related processes, i.e. residual trapping, trapping due to hysteresis of the relative permeability, and trapping due to hysteresis of the capillary pressure. Additionally CO 2 may be trapped due to differences in capillary entry pressure for different textural sedimentary facies (e.g. coarser- vs. finer-grained cross-sets). The amount of CO 2 trapped by these processes depends upon a complex system of non-linear and hysteretic characteristic relationships including how relative permeability and capillary pressure vary with brine and CO 2 saturation. The results strongly suggest that representing small-scale features (decimeter to meter), including their organization within a hierarchy of larger-scale features, and representing their differences in characteristic relationships, can all be critical to understanding trapping processes in some important candidate CO 2 reservoirs. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2015-09-22
    Description: Under changing environments, not only univariate but also multivariate hydrological series might become nonstationary. Nonstationarity, in forms of change-point or trend, has been widely studied for univariate hydrological series, while it attracts attention only recently for multivariate hydrological series. For multivariate series, two types of change-point need to be distinguished, i.e. change-point in marginal distributions and change-point in the dependence structure among individual variables. In this paper, a three-step framework is proposed to separately detect two types of change-point in multivariate hydrological series, i.e. change-point detection for individual univariate series, estimation of marginal distributions, and change-point detection for dependence structure. The last step is implemented using both the Cramér-von Mises statistic (CvM) method and the copula-based likelihood-ratio test (CLR) method. For CLR, three kinds of copula model (symmetric, asymmetric, and pair-copula) are employed to construct the dependence structure of multivariate series. Monte Carlo experiments indicate that CLR is far more powerful than CvM in detecting the change-point of dependence structure. This framework is applied to the trivariate flood series composed of annual maxima daily discharge (AMDD), annual maxima 3-day flood volume and annual maxima 15-day flood volume of the Upper Hanjiang River, China. It is found that each individual univariate flood series has a significant change-point; and the trivariate series presents a significant change-point in dependence structure due to the abrupt change in the dependence structure between AMDD and annual maxima 3-day flood volume. All these changes are caused by the construction of the Ankang Reservoir. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2015-09-22
    Description: An output-feedback control strategy for pollution mitigation in combined sewer networks is presented. The proposed strategy provides means to apply model-based predictive control to large-scale sewer networks, in-spite of the lack of measurements at most of the network sewers. In previous works, the authors presented a hybrid linear control-oriented model for sewer networks together with the formulation of Optimal Control Problems (OCP) and State Estimation Problems (SEP). By iteratively solving these problems, preliminary Receding Horizon Control with Moving Horizon Estimation (RHC/MHE) results, based on flow measurements, were also obtained. In this work, the RHC/MHE algorithm has been extended to take into account both flow and water level measurements and the resulting control loop has been extensively simulated to assess the system performance according different measurement availability scenarios and rain events. All simulations have been carried out using a detailed physically-based model of a real case-study network as virtual reality. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2015-09-22
    Description: This paper investigates nonpayment behavior in Guatemala. Determinants of nonpayment behavior are identified through zero-inflated negative binomial regression models in order to take into account particular distributional characteristics of the amount of outstanding payments. Findings indicate that nonpayment behavior is a demonstration of consumer dissatisfaction with current water services. The amount of outstanding bill payments also responds to system unreliability. Results also suggest that nonpayment behaviors are more prominent in community-managed systems than in municipal systems. No evidence was found on a potential relationship between nonpayment behavior and household income. Policy implications are discussed. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2015-09-23
    Description: Ecological and environmental heterogeneity can produce genetic differentiation in highly mobile species. Accordingly, local adaptation may be expected across comparatively short distances in the presence of marked environmental gradients. Within the European continent, wolves ( Canis lupus ) exhibit distinct north–south population differentiation. We investigated more than 67-K single nucleotide polymorphism (SNP) loci for signatures of local adaptation in 59 unrelated wolves from four previously identified population clusters (northcentral Europe n  = 32, Carpathian Mountains n  = 7, Dinaric-Balkan n  = 9, Ukrainian Steppe n  = 11). Our analyses combined identification of outlier loci with findings from genome-wide association study of individual genomic profiles and 12 environmental variables. We identified 353 candidate SNP loci. We examined the SNP position and neighboring megabase (1 Mb, one million bases) regions in the dog ( C. lupus familiaris ) genome for genes potentially under selection, including homologue genes in other vertebrates. These regions included functional genes for, for example, temperature regulation that may indicate local adaptation and genes controlling for functions universally important for wolves, including olfaction, hearing, vision, and cognitive functions. We also observed strong outliers not associated with any of the investigated variables, which could suggest selective pressures associated with other unmeasured environmental variables and/or demographic factors. These patterns are further supported by the examination of spatial distributions of the SNPs associated with universally important traits, which typically show marked differences in allele frequencies among population clusters. Accordingly, parallel selection for features important to all wolves may eclipse local environmental selection and implies long-term separation among population clusters. We investigated 〉67 K single nucleotide polymorphism (SNP) loci for signatures of local adaptation in 59 unrelated wolves ( Canis lupus ) from four previously identified population clusters and identified 353 candidate loci. The neighbouring megabase regions in the dog ( C. lupus familiaris ) genome included functional genes for e.g. temperature regulation that may indicate local adaptation and genes controlling for universally important functions, including olfaction, hearing, vision and cognition. Single nucleotide polymorphisms associated with universally important traits typically show marked differences in allele frequencies among population clusters, and parallel selection for features important to all wolves may eclipse local environmental selection and implies long-term separation among population clusters.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2015-09-24
    Description: The genitalia of internally fertilizing taxa represent a striking example of rapid morphological evolution. Although sexual selection can shape variation in genital morphology, it has been difficult to test whether multiple sexual selection pressures combine to drive the rapid evolution of individual genital structures. Here, we test the hypothesis that both pre- and postcopulatory sexual selection can act in concert to shape complex structural variation in secondary genital morphology. We genetically modified the size and shape of the posterior lobes of Drosophila melanogaster males and tested the consequences of morphological variation on several reproductive measures. We found that the posterior lobes are necessary for genital coupling and that they are also the targets of multiple postcopulatory processes that shape quantitative variation in morphology, even though these structures make no direct contact with the external female genitalia or internal reproductive organs during mating. We also found that males with smaller and less structurally complex posterior lobes suffer substantial fitness costs in competitive fertilization experiments. Our results show that sexual selection mechanisms can combine to shape the morphology of a single genital structure and that the posterior lobes of D. melanogaster are the targets of multiple postcopulatory selection pressures. Pre- and post-copulatory sexual selection are thought to target genital structures that differ functionally during copulation, and with different strengths. We find that both selective forces combine to shape complex morphology of a single structure that is not directly involved with insemination during mating.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2015-09-24
    Description: Species distribution models (SDM) are increasingly used to understand the factors that regulate variation in biodiversity patterns and to help plan conservation strategies. However, these models are rarely validated with independently collected data and it is unclear whether SDM performance is maintained across distinct habitats and for species with different functional traits. Highly mobile species, such as bees, can be particularly challenging to model. Here, we use independent sets of occurrence data collected systematically in several agricultural habitats to test how the predictive performance of SDMs for wild bee species depends on species traits, habitat type, and sampling technique. We used a species distribution modeling approach parametrized for the Netherlands, with presence records from 1990 to 2010 for 193 Dutch wild bees. For each species, we built a Maxent model based on 13 climate and landscape variables. We tested the predictive performance of the SDMs with independent datasets collected from orchards and arable fields across the Netherlands from 2010 to 2013, using transect surveys or pan traps. Model predictive performance depended on species traits and habitat type. Occurrence of bee species specialized in habitat and diet was better predicted than generalist bees. Predictions of habitat suitability were also more precise for habitats that are temporally more stable (orchards) than for habitats that suffer regular alterations (arable), particularly for small, solitary bees. As a conservation tool, SDMs are best suited to modeling rarer, specialist species than more generalist and will work best in long-term stable habitats. The variability of complex, short-term habitats is difficult to capture in such models and historical land use generally has low thematic resolution. To improve SDMs’ usefulness, models require explanatory variables and collection data that include detailed landscape characteristics, for example, variability of crops and flower availability. Additionally, testing SDMs with field surveys should involve multiple collection techniques. Species distribution models (SDM) are becoming increasingly used to understand the factors that regulate variation in biodiversity patterns and to help plan conservation strategies. but are rarely validated with independent data. Here we use independent data to test how the predictive performance of SDMs constructed to predict wild bee distributions depends on species traits, habitat type, and sampling technique. We conclude that, as a conservation tool, SDMs are best suited to modelling rarer, specialist species than more generalist species and will be most useful in long-term stable habitats.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2015-09-24
    Description: Despite the scientific method's central tenets of reproducibility (the ability to obtain similar results when repeated) and repeatability (the ability to replicate an experiment based on methods described), published ecological research continues to fail to provide sufficient methodological detail to allow either repeatability of verification. Recent systematic reviews highlight the problem, with one example demonstrating that an average of 13% of studies per year (±8.0 [SD]) failed to report sample sizes. The problem affects the ability to verify the accuracy of any analysis, to repeat methods used, and to assimilate the study findings into powerful and useful meta-analyses. The problem is common in a variety of ecological topics examined to date, and despite previous calls for improved reporting and metadata archiving, which could indirectly alleviate the problem, there is no indication of an improvement in reporting standards over time. Here, we call on authors, editors, and peer reviewers to consider repeatability as a top priority when evaluating research manuscripts, bearing in mind that legacy and integration into the evidence base can drastically improve the impact of individual research reports. Despite the widely accepted need to ensure that scientific research is both reproducible and repeatable, currently published ecological research still fails to provide sufficient methodological detail. Recent systematic reviews highlight the extent of the problem, which affects the ability to verify the accuracy and assess the reliability of any analysis, to repeat methods used, and to assimilate the study findings into powerful and useful meta-analyses. We call on authors, editors and peer-reviewers to consider repeatability as a top priority when evaluating research manuscripts, bearing in mind that legacy and integration into the evidence base can drastically improve the impact of individual research reports.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2015-09-24
    Description: The soil CO 2 emission is recognized as one of the largest fluxes in the global carbon cycle. Small errors in its estimation can result in large uncertainties and have important consequences for climate model predictions. Monte Carlo approach is efficient for estimating and reducing spatial scale sampling errors. However, that has not been used in soil CO 2 emission studies. Here, soil respiration data from 51 PVC collars were measured within farmland cultivated by maize covering 25 km 2 during the growing season. Based on Monte Carlo approach, optimal sample sizes of soil temperature, soil moisture, and soil CO 2 emission were determined. And models of soil respiration can be effectively assessed: Soil temperature model is the most effective model to increasing accuracy among three models. The study demonstrated that Monte Carlo approach may improve soil respiration accuracy with limited sample size. That will be valuable for reducing uncertainties of global carbon cycle. Monte Carlo approach can effectively optimize sample size and filter model; A small plot with enough sample size can introduce similar optimal error; Monte Carlo method identified W may be a greater source of variability in scaling up.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2015-09-24
    Description: In recent decades, alpine grasslands have been seriously degraded on the Tibetan Plateau and grazing exclusion by fencing has been widely adopted to restore degraded grasslands since 2004. To elucidate how alpine grasslands carbon (C), nitrogen (N), and phosphorus (P) storage responds to this management strategy, three types of alpine grassland in nine counties in Tibet were selected to investigate C, N, and P storage in the environment by comparing free grazing (FG) and grazing exclusion (GE) treatments, which had run for 6–8 years. The results revealed that there were no significant differences in total ecosystem C, N, and P storage, as well as the C, N, and P stored in both total biomass and soil (0–30 cm) fractions between FG and GE grasslands. However, precipitation played a key role in controlling C, N, and P storage and distribution. With grazing exclusion, C and N stored in aboveground biomass significantly increased by 5.7 g m −2 and 0.1 g m −2 , respectively, whereas the C and P stored in the soil surface layer (0–15 cm) significantly decreased by 862.9 g m −2 and 13.6 g m −2 , respectively. Furthermore, the storage of the aboveground biomass C, N, and P was positively correlated with vegetation cover and negatively correlated with the biodiversity index, including Pielou evenness index, Shannon–Wiener diversity index, and Simpson dominance index. The storage of soil surface layer C, N, and P was positively correlated with soil silt content and negatively correlated with soil sand content. Our results demonstrated that grazing exclusion had no impact on total C, N, and P storage, as well as C, N, and P in both total biomass and soil (0–30 cm) fractions in the alpine grassland ecosystem. However, grazing exclusion could result in increased aboveground biomass C and N pools and decreased soil surface layer (0–15 cm) C and P pools. In recent decades, alpine grasslands have been seriously degraded on the Tibetan Plateau and grazing exclusion by fencing has been widely adopted to restore degraded grasslands since 2004. This article investigates how alpine grasslands carbon (C), nitrogen (N) and phosphorus (P) storage response to this management strategy by comparing free grazing (FG) and grazing exclusion (GE) treatments. Our results demonstrated that this short-term grazing exclusion had no impact on total C, N, and P storage, as well as C, N, and P in both total biomass and soil fractions in the alpine grassland ecosystem.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2015-09-25
    Description: Agricultural practices have altered watershed-scale dissolved organic matter (DOM) dynamics, including in-stream concentration, biodegradability, and total catchment export. However, mechanisms responsible for these changes are not clear, and field-scale processes are rarely directly linked to the magnitude and quality of DOM that is transported to surface water. In a small (12 ha) agricultural catchment in eastern Washington State, we tested the hypothesis that hydrologic connectivity in a catchment is the dominant control over the concentration and quality of DOM exported to surface water via artificial subsurface drainage. Concentrations of dissolved organic carbon (DOC) and humic-like components of DOM decreased while the Fluorescence Index and Freshness Index increased with depth through the soil profile. In drain discharge, these characteristics were significantly correlated with drain flow across seasons and years, with drain DOM resembling deep sources during low flow and shallow sources during high flow, suggesting that DOM from shallow sources bypasses removal processes when hydrologic connectivity in the catchment is greatest. Assuming changes in streamflow projected for the Palouse River (which contains the study catchment) under the A1B climate scenario (rapid growth, dependence on fossil fuel and renewable energy sources) apply to the study catchment, we project greater interannual variability in annual DOC export in the future, with significant increases in the driest years. This study highlights the variability in DOM inputs from agricultural soil to surface water on daily to interannual timescales, pointing to the need for a more nuanced understanding of agricultural impacts on DOM dynamics in surface water. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2015-09-25
    Description: In basement catchments of sub-humid West Africa, baseflow is the main component of annual streamflow. However, the important heterogeneity of lithology hinders the understanding of baseflow generation processes. Since these processes are linked with water storage changes (WSCs) across the catchment, we propose the use of hybrid gravity data in addition to neutron probe-derived water content and water levels to monitor spatiotemporal WSC of a typical crystalline basement headwater catchment (16 ha) in Benin. These behaviors are shown to provide insights into hydrological processes in terms of water redistribution toward the catchment outlet. Hybrid gravimetry produces gravity change observations from time-lapse microgravity surveys coupled with gravity changes monitored at a base station using a superconducting gravimeter and/or an absolute gravimeter. A dense microgravity campaign (70 surveys of 14 stations) covering three contrasted years was set up with a rigorous protocol, leading to low uncertainties (〈 2.5 µGal) on station gravity determinations (with respect to the network reference station). Empirical orthogonal function analyses of both gravity changes and WSCs from neutron probe data show similar spatial patterns in the seasonal signal. Areas where storage and water table show a capping behavior (when data reach a plateau during the wet season), suggesting threshold-governed fast subsurface redistribution, are identified. This observed storage dynamics, together with geological structures investigated by electrical resistivity tomography and drill log analysis make it possible to derive a conceptual model for the catchment hydrology. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2015-09-25
    Description: Groundwater and surface water contain interfaces across which hydrologic functions are discontinuous. Thin elements with high hydraulic conductivity in a porous media focus groundwater, which flows through such inhomogeneities and causes an abrupt change in stream function across their interfaces, and elements with low conductivity retards flow with discontinuous head. Baseflow interactions at the interface between groundwater and surface water transport water between these stores and generate a discontinuous normal component of flow. Thin objects in surface water with Kutta condition generates circulation by the discontinuous tangential component of flow across their interface. These discontinuities across hydrologic interfaces are quantified and visualized using the Analytic Element Method, where slit elements are formulated using the Joukowsky transformation with Laurent series and new influence functions to represent sinks and circulation, and methods are developed for these applications expressing discontinuities as Fourier series. The specific geometries illustrate solutions for a randomly generated heterogeneous porous media with non-intersecting inhomogeneities, for groundwater/surface water interaction in a synthetic river network, and for a slender body with geometry similar to the wings of the Wright Brothers. The mathematical details are reduced to series solutions and matrix multiplications, which are easily extensible to other geometries and applications. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2015-09-25
    Description: Both flow field heterogeneity and mass transfer between mobile and immobile domains have been studied separately for explaining observed anomalous transport. Here, we investigate non-Fickian transport using high-resolution 3D X-ray micro-tomographic images of Berea sandstone containing microporous cement with pore size below the setup resolution. Transport is computed for a set of representative elementary volumes and results from advection and diffusion in the resolved macroporosity (mobile domain) and diffusion in the microporous phase (immobile domain) where the effective diffusion coefficient is calculated from the measured local porosity using a phenomenological model that includes a porosity threshold ( ɸ ϴ ) below which diffusion is null and the exponent n that characterizes tortuosity-porosity power-law relationship. We show that both flow field heterogeneity and microporosity trigger anomalous transport. Breakthrough curve (BTC) tailing is positively correlated to microporosity volume and mobile-immobile interface area. The sensitivity analysis showed that the BTC tailing increases with the value of ɸ ϴ , due to the increase of the diffusion path tortuosity until the volume of the microporosity becomes negligible. Furthermore, increasing the value of n leads to an increase in the standard deviation of the distribution of effective diffusion coefficients, which in turn results in an increase of the BTC tailing. Finally, we propose a continuous time random walk upscaled model where the transition time is the sum of independently distributed random variables characterized by specific distributions. It allows modeling a 1D equivalent macroscopic transport honoring both the control of the flow field heterogeneity and the multi-rate mass transfer between mobile and immobile domains. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2015-11-21
    Description: Understanding the mechanisms underlying the movements and spread of a species over time and space is a major concern of ecology. Here, we assessed the effects of an individual's sex and the density and sex ratio of conspecifics in the local and neighboring environment on the movement probability of the banana weevil, Cosmopolites sordidus . In a “two patches” experiment, we used radiofrequency identification tags to study the C. sordidus movement response to patch conditions. We showed that local and neighboring densities of conspecifics affect the movement rates of individuals but that the density-dependent effect can be either positive or negative depending on the relative densities of conspecifics in local and neighboring patches. We demonstrated that sex ratio also influences the movement of C. sordidus , that is, the weevil exhibits nonfixed sex-biased movement strategies. Sex-biased movement may be the consequence of intrasexual competition for resources (i.e., oviposition sites) in females and for mates in males. We also detected a high individual variability in the propensity to move. Finally, we discuss the role of demographic stochasticity, sex-biased movement, and individual heterogeneity in movement on the colonization process. This article presents an empirical approach to understand how the decision to move is influenced by relationships between individual phenotype (sex) and the population density, and sex ratio of the local and neighboring patches. We prove that movement depends on the dynamics of population density and sex ratio of both the local patch and the neighboring patch. We show that sex-biased dispersal is highly dependent on the interactions between the sex of the individual and the patch conditions (sex ratio and density).
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2015-11-24
    Description: The Yucatán Peninsula in Mexico contains some of the largest breeding groups of the globally distributed and critically endangered hawksbill turtle ( Eretmochelys imbricata ). An improved understanding of the breeding system of this species and how its genetic variation is structured among nesting areas is required before the threats to its survival can be properly evaluated. Here, we genotype 1195 hatchlings and 41 nesting females at 12 microsatellite loci to assess levels of multiple paternity, genetic variation and whether individual levels of homozygosity are associated with reproductive success. Of the 50 clutches analyzed, only 6% have multiple paternity. The distribution of pairwise relatedness among nesting localities (rookeries) was not random with elevated within-rookery relatedness, and declining relatedness with geographic distance indicating some natal philopatry. Although there was no strong evidence that particular rookeries had lost allelic variation via drift, younger turtles had significantly lower levels of genetic variation than older turtles, suggesting some loss of genetic variation. At present there is no indication that levels of genetic variation are associated with measures of reproductive success such as clutch size, hatching success, and frequency of infertile eggs. We genotype critically endangered hawksbill turtle ( Eretmochelys imbricata ) hatchlings and nesting females at 12 microsatellite loci from the Yucatan Peninsula to assess levels of multiple paternity, genetic variation and it relation with reproductive success. We found very low multiple paternity levels; relatedness among rookeries was not random and decrease with geographic distance indicating natal philopatry; and there is no indication that levels of genetic variation are associated with reproductive success.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2015-11-24
    Description: Using airborne thermal infrared imaging and horizontally-resolved in situ temperature monitoring at the lake surface we estimated strength and duration of regular wind-driven upwelling of dense deep water to the lake surface in two small (in terms of Rossby radius) temperate lakes during the initial phase of summer thermal stratification. The onset and duration of the upwelling events correlated well with the balance between stratification (in terms of Schmidt Stability) and wind forcing, as expressed by Lake and Wedderburn Numbers: The period of regular upwelling appearances lasted 7-15 days, identified by Schmidt stabilities around 30 J m −2 and Lake Numbers between 0 and 1, and resulted in persistent temperature gradients of up to 2°C across the lake surface. Our results suggest that spring upwelling should inevitably take place in all freshwater temperate lakes with mean temperatures crossing the maximum density value of freshwater on annual cycle, whereas duration and intensity of the upwelling would vary depending on lake morphometry and weather conditions. Our results suggest major contribution of upwelling in nutrient supply to the upper waters, oxygenation of the deep water column, and air-lake gas exchange, in particular, the release of the sediment-produced methane into the atmosphere. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...