ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3,848)
  • Oxford University Press  (3,848)
  • Genome Biology and Evolution  (1,147)
  • 119207
  • 1
  • 2
  • 3
  • 4
    Publication Date: 2021-07-20
    Description: Tests based on the dN/dS statistic are used to identify positive selection of nonsynonymous polymorphisms. Using these tests on alignments of all orthologs from related species can provide insights into which gene categories have been most frequently positively selected. However, longer alignments have more power to detect positive selection, creating a detection bias that could create misleading results from functional enrichment tests. Most studies of positive selection in plant pathogens focus on genes with specific virulence functions, with little emphasis on broader molecular processes. Furthermore, no studies in plant pathogens have accounted for detection bias due to alignment length when performing functional enrichment tests. To address these research gaps, we analyze 12 genomes of the phytopathogenic fungal genus Botrytis, including two sequenced in this study. To establish a temporal context, we estimated fossil-calibrated divergence times for the genus. We find that Botrytis likely originated 16–18 Ma in the Miocene and underwent continuous radiation ending in the Pliocene. An untargeted scan of Botrytis single-copy orthologs for positive selection with three different statistical tests uncovered evidence for positive selection among proteases, signaling proteins, CAZymes, and secreted proteins. There was also a strong overrepresentation of transcription factors among positively selected genes. This overrepresentation was still apparent after two complementary controls for detection bias due to sequence length. Positively selected sites were depleted within DNA-binding domains, suggesting changes in transcriptional responses to internal and external cues or protein–protein interactions have undergone positive selection more frequently than changes in promoter fidelity.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-08-01
    Description: Haptophytes are biogeochemically and industrially important protists with underexplored genomic diversity. We present a nuclear genome assembly for the class Pavlovales, which was assembled with PacBio long-read data into highly contiguous sequences. We sequenced strain Diacronema lutheri NIVA-4/92, formerly known as Pavlova lutheri, because it has established roles in aquaculture and has been a key organism for studying microalgal lipid biosynthesis. Our data show that D. lutheri has the smallest and most streamlined haptophycean genome assembled to date, with an assembly size of 43.503 Mb and 14,446 protein-coding genes. Together with its high nuclear GC content, Diacronema is an important genus for investigating selective pressures on haptophyte genome evolution, contrasting with the much larger and more repetitive genome of the coccolithophore Emiliania huxleyi. The D. lutheri genome will be a valuable resource for resolving the genetic basis of algal lipid biosynthesis and metabolic remodeling that takes place during adaptation and stress response in natural and engineered environments.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-03-01
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-03-24
    Description: Lactase persistence (LP) is a well-studied example of a Mendelian trait under selection in some human groups due to gene-culture co-evolution. We investigated the frequencies of genetic variants linked to LP in Sudanese and South Sudanese populations. These populations have diverse subsistence patterns, and some are dependent on milk to various extents, not only from cows, but also from other livestock such as camels and goats. We sequenced a 316bp region involved in regulating the expression of the LCT gene on chromosome 2, which encompasses five polymorphisms that have been associated with LP. Pastoralist populations showed a higher frequency of LP-associated alleles compared to non-pastoralist groups, hinting at positive selection also among northeast African pastoralists. Among the LP variants, the -14009:G variant occurs at the highest frequency among the investigated populations, followed by the -13915:G variant, which is likely of Middle Eastern origin, consistent with Middle Eastern gene-flow to the Sudanese populations. There was no incidence of the ’East African’ LP allele (-14010:C) in the Sudanese and South Sudanese groups, and only one heterozygous individual for the ’European’ LP allele (-13910:T), suggesting limited recent admixture from these geographic regions. The Beja population of the Beni Amer show three different LPvariants at substantial and similar levels, resulting in one of the greatest aggregation of LPvariants among all populations across the world.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-03-24
    Description: Recombination reshuffles the alleles of a population through crossover and gene conversion. These mechanisms have considerable consequences on the evolution and maintenance of genetic diversity. Crossover, for example, can increase genetic diversity by breaking the linkage between selected and nearby neutral variants. Bias in favor of G or C alleles during gene conversion may instead promote the fixation of one allele over the other, thus decreasing diversity. Mutation bias from G or C to A and T opposes GC-biased gene conversion (gBGC). Less recognized is that these two processes may –when balanced– promote genetic diversity. Here we investigate how gBGC and mutation bias shape genetic diversity patterns in wood white butterflies (Leptidea sp.). This constitutes the first in-depth investigation of gBGC in butterflies. Using 60 re-sequenced genomes from six populations of three species, we find substantial variation in the strength of gBGC across lineages. When modeling the balance of gBGC and mutation bias and comparing analytical results with empirical data, we reject gBGC as the main determinant of genetic diversity in these butterfly species. As alternatives, we consider linked selection and GC content. We find evidence that high values of both reduce diversity. We also show that the joint effects of gBGC and mutation bias can give rise to a diversity pattern which resembles the signature of linked selection. Consequently, gBGC should be considered when interpreting the effects of linked selection on levels of genetic diversity.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-03-25
    Description: Spotted owls (SO, Strix occidentalis) are a flagship species inhabiting old-growth forests in Western North America. In recent decades, their populations have declined due to ongoing reductions in suitable habitat caused by logging, wildfires, and competition with the congeneric barred owl (BO, Strix varia). The northern spotted owl (S. o. caurina) has been listed as “threatened” under the Endangered Species Act since 1990. Here we use an updated SO genome assembly along with 51 high-coverage whole-genome sequences to examine population structure, hybridization and recent changes in population size in SO and BO. We found that potential hybrids identified from intermediate plumage morphology were a mixture of pure BO, F1 hybrids and F1 x BO backcrosses. Also, while SO underwent a population bottleneck around the time of the Pleistocene – Holocene transition, their population sizes rebounded and show no evidence of any historical (i.e., 100 – 10,000 years ago) population decline. This suggests that the current decrease in SO abundance is due to events in the past century. Finally, we estimate that western and eastern BO have been genetically separated for thousands of years, instead of the previously assumed recent (i.e.,
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-03-24
    Description: Introduced into Hawaii in the early 1900s, the Japanese white-eye or warbling white-eye (Zosterops japonicus) is now the most abundant land bird in the archipelago. Here, we present the first Z. japonicus genome, sequenced from an individual in its invasive range. This genome provides an important resource for future studies in invasion genomics. We annotated the genome using two workflows – standalone AUGUSTUS and BRAKER2. We found that AUGUSTUS was more conservative with gene predictions when compared to BRAKER2. The final number of annotated gene models was similar between the two workflows, but standalone AUGUSTUS had over 70% of gene predictions with Blast2GO annotations versus under 30% using BRAKER2. Additionally, we tested whether using RNA-seq data from 47 samples had a significant impact on annotation quality when compared to data from a single sample, as generating RNA-seq data for genome annotation can be expensive and requires well preserved tissue. We found that more data did not significantly change the number of annotated genes using AUGUSTUS but using BRAKER2 the number increased substantially. The results presented here will aid researchers in annotating draft genomes of non-model species as well as those studying invasion success.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2021-03-27
    Description: There is an expectation that analyses of molecular sequences might be able to distinguish between alternative hypotheses for ancient relationships, but the phylogenetic methods used and types of data analyzed are of critical importance in any attempt to recover historical signal. Here we discuss some common issues that can influence the topology of trees obtained when using overly-simple models to analyze molecular data that often display complicated patterns of sequence heterogeneity. To illustrate our discussion, we have used three examples of inferred relationships which have changed radically as models and methods of analysis have improved. In two of these examples, the sister-group relationship between thermophilic Thermus and mesophilic Deinococcus, and the position of long-branch Microsporidia among eukaryotes, we show that recovering what is now generally considered to be the correct tree is critically dependent on the fit between model and data. In the third example, the position of eukaryotes in the tree of life, the hypothesis that is currently supported by the best available methods is fundamentally different from the classical view of relationships between major cellular domains. Since heterogeneity appears to be pervasive and varied among all molecular sequence data, and even the best available models can still struggle to deal with some problems, the issues we discuss are generally relevant to phylogenetic analyses. It remains essential to maintain a critical attitude to all trees as hypotheses of relationship that may change with more data and better methods.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2021-02-12
    Description: Staphylococcus cohnii (SC), a coagulase-negative bacterium, was first isolated in 1975 from human skin. Early phenotypic analyses led to the delineation of two subspecies (subsp.), Staphylococcus cohnii subsp. cohnii (SCC) and Staphylococcus cohnii subsp. urealyticus (SCU). SCC was considered to be specific to humans whereas SCU apparently demonstrated a wider host range, from lower primates to humans. The type strains ATCC 29974 and ATCC 49330 have been designated for SCC and SCU, respectively. Comparative analysis of 66 complete genome sequences—including a novel SC isolate—revealed unexpected patterns within the SC complex, both in terms of genomic sequence identity and gene content, highlighting the presence of 3 phylogenetically distinct groups. Based on our observations, and on the current guidelines for taxonomic classification for bacterial species, we propose a revision of the SC species complex. We suggest that SCC and SCU should be regarded as two distinct species: SC and SU (Staphylococcus urealyticus), and that two distinct subspecies, SCC and SCB (SC subsp. barensis, represented by the novel strain isolated in Bari) should be recognized within SC. Furthermore, since large scale comparative genomics studies recurrently suggest inconsistencies or conflicts in taxonomic assignments of bacterial species, we believe that the approach proposed here might be considered for more general application.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-02-22
    Description: The common chaffinch, Fringilla coelebs, is one of the most common, widespread and well-studied passerines in Europe, with a broad distribution encompassing Western Europe and parts of Asia, North Africa and the Macaronesian archipelagos. We present a high-quality genome assembly of the common chaffinch generated using Illumina shotgun sequencing in combination with Chicago and Hi-C libraries. The final genome is a 994.87 Mb chromosome-level assembly, with 98% of the sequence data located in chromosome scaffolds and a N50 statistic of 69.73 Mb. Our genome assembly shows high completeness, with a complete BUSCO score of 93.9% using the avian dataset. Around 7.8% of the genome contains interspersed repetitive elements. The structural annotation yielded 17,703 genes, 86.5% of which have a functional annotation, including 7,827 complete universal single-copy orthologs out of 8,338 genes represented in the BUSCO avian data set. This new annotated genome assembly will be a valuable resource as a reference for comparative and population genomic analyses of passerine, avian and vertebrate evolution.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-02-12
    Description: The dark sleeper, Odontobutis potamophila, is a commercially valuable fish that widely distributed in China and Southeast Asia contries. The phenomenon of sexual dimorphism in growth is conspicuous, which the males grow substantially larger and faster than the females. However, the high-quality genome resources for gaining insight into sex-determining mechanisms to develop sex-control breeding is still lacking. Here, a chromosomal-level genome assembly of O. potamophila was generated from a combination of Illumina reads, 10x Genomics sequencing, and Hi-C chromatin interaction sequencing. The assembled genome was 1,134.62 Mb with a contig N50 of 22.25 Mb and a scaffold N50 of 24.85 Mb, representing 94.4% completeness (BUSCO). Using Hi-C data, 96.49% of the total contig bases were anchored to the 22 chromosomes, with a contig N50 of 22.25 Mb and a scaffold N50 of 47.68 Mb. Approximately 54.18% of the genome were identified as repetitive elements, and 23,923 protein-coding genes were annotated in the genome. The assembled genome can be used as a valuable resource for molecular breeding and functional studies of O. potamophila in the future.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2021-03-26
    Description: The painted urchin Lytechinus pictus is a sea urchin in the family Toxopneustidae and one of several sea urchin species that are routinely used as an experimental research organism. Recently, L. pictus has emerged as a tractable model system for establishing transgenic sea urchin lines due to its amenability to long term laboratory culture. We present the first published genome of L. pictus. This chromosomal-level assembly was generated using Illumina sequencing in conjunction with Oxford Nanopore Technologies long read sequencing and HiC chromatin conformation capture sequencing. The 998.9 Mb assembly exhibits high contiguity and has a scaffold length N50 of 46.0 Mb with 97% of the sequence assembled into 19 chromosomal-length scaffolds. These 19 scaffolds exhibit a high degree of synteny compared to the 19 chromosomes of a related species Lytechinus variegatus. Ab initio and transcript evidence gene modeling, combined with sequence homology, identified 28,631 gene models that capture 92% of BUSCO orthologs. This annotation strategy was validated by manual curation of gene models for the ABC transporter superfamily, which confirmed the completeness and accuracy of the annotations. Thus, this genome assembly, in conjunction with recent high contiguity assemblies of related species, positions Lytechinus pictus as an exceptional model system for comparative functional genomics and it will be a key resource for the developmental, toxicological, and ecological biology scientific communities.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-03-19
    Description: Supergenes are genomic regions containing sets of tightly linked loci that control multi-trait phenotypic polymorphisms under balancing selection. Recent advances in genomics have uncovered significant variation in both the genomic architecture as well as the mode of origin of supergenes across diverse organismal systems. Although the role of genomic architecture for the origin of supergenes has been much discussed, differences in the genomic architecture also subsequently affect the evolutionary trajectory of supergenes and the rate of degeneration of supergene haplotypes. In this review, we synthesize recent genomic work and historical models of supergene evolution, highlighting how the genomic architecture of supergenes affects their evolutionary fate. We discuss how recent findings on classic supergenes involved in governing ant colony social form, mimicry in butterflies, and heterostyly in flowering plants relate to theoretical expectations. Furthermore, we use forward simulations to demonstrate that differences in genomic architecture affect the degeneration of supergenes. Finally, we discuss implications of the evolution of supergene haplotypes for the long-term fate of balanced polymorphisms governed by supergenes.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2021-03-19
    Description: The last eukaryote common ancestor (LECA) possessed mitochondria and all key traits that make eukaryotic cells more complex than their prokaryotic ancestors, yet the timing of mitochondrial acquisition and the role of mitochondria in the origin of eukaryote complexity remain debated. Here we report evidence from gene duplications in LECA indicating an early origin of mitochondria. Among 163,545 duplications in 24,571 gene trees spanning 150 sequenced eukaryotic genomes, we identify 713 gene duplication events that occurred in LECA. LECA's bacterial derived genes include numerous mitochondrial functions and were duplicated significantly more often than archaeal derived and eukaryote specific genes. The surplus of bacterial derived duplications in LECA most likely reflects the serial copying of genes from the mitochondrial endosymbiont to the archaeal host's chromosomes. Clustering, phylogenies and likelihood ratio tests for 22.4 million genes from 5,655 prokaryotic and 150 eukaryotic genomes reveal no evidence for lineage specific gene acquisitions in eukaryotes, except from the plastid in the plant lineage. That finding, and the functions of bacterial genes duplicated in LECA, suggest that the bacterial genes in eukaryotes are acquisitions from the mitochondrion, followed by vertical gene evolution and differential loss across eukaryotic lineages, flanked by concomitant lateral gene transfer among prokaryotes. Overall, the data indicate that recurrent gene transfer via the copying of genes from a resident mitochondrial endosymbiont to archaeal host chromosomes preceded the onset of eukaryotic cellular complexity, favoring mitochondria-early over mitochondria-late hypotheses for eukaryote origin.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2021-03-19
    Description: Cyanobacteria are prolific producers of natural products, including polyketides and hybrid compounds thereof. Type III polyketide synthases (PKSs) are of particular interest, due to their wide substrate specificity and simple reaction mechanism, compared to both type I and type II PKSs. Surprisingly, only two type III PKS products, hierridins and (7.7)paracyclophanes, have been isolated from cyanobacteria. Here we report the mining of 517 cyanobacterial genomes for type III PKS biosynthesis gene clusters. Approximately 17% of the genomes analysed encoded one or more type III PKSs. Together with already characterised type III PKSs, the phylogeny of this group of enzymes was investigated. Our analysis showed that type III PKSs in cyanobacteria evolved into three major lineages, including enzymes associated with (i) (7.7)paracyclophane-like biosynthesis gene clusters, (ii) hierridin-like biosynthesis gene clusters, and (iii) cytochrome b5 genes. The evolutionary history of these enzymes is complex, with some sequences partitioning primarily according to speciation and others putatively according to their reaction type. Protein modelling showed that cyanobacterial type III PKSs generally have a smaller active site cavity (mean = 109.035 Å3) compared to enzymes from other organisms. The size of the active site did not correlate well with substrate size, however, the ‘Gatekeeper’ amino acid residues within the active site were strongly correlated to enzyme phylogeny. Our study provides unprecedented insight into the distribution, diversity and molecular evolution of cyanobacterial type III PKSs, which could facilitate the discovery, characterisation and exploitation of novel enzymes, biochemical pathways, and specialised metabolites from this biosynthetically talented clade of microorganisms.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2021-03-13
    Description: One of the central goals in molecular evolutionary biology is to determine the sources of variation in the rate of sequence evolution among proteins. Gene expression level is widely accepted as the primary determinant of protein evolutionary rate, because it scales with the extent of selective constraints imposed on a protein, leading to the well-known negative correlation between expression level and protein evolutionary rate (the E-R anticorrelation). Selective constraints have been hypothesized to entail the maintenance of protein function, the avoidance of cytotoxicity caused by protein misfolding or nonspecific protein-protein interactions, or both. However, empirical tests evaluating the relative importance of these hypotheses remain scarce, likely due to the non-trivial difficulties in distinguishing the effect of a deleterious mutation on a protein’s function vs. its cytotoxicity. We realized that examining the sequence evolution of viral proteins could overcome this hurdle. It is because purifying selection against mutations in a viral protein that result in cytotoxicity per se is likely relaxed, while purifying selection against mutations that impair viral protein function persists. Multiple analyses of SARS-CoV-2 and nine other virus species revealed a complete absence of any E-R anticorrelation. As a control, the E-R anticorrelation does exist in human endogenous retroviruses where purifying selection against cytotoxicity is present. Taken together, these observations do not support the maintenance of protein function as the main constraint on protein sequence evolution in cellular organisms.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2021-03-13
    Description: Genes duplicated by whole genome duplication (WGD) and small-scale duplication (SSD) have played important roles in adaptive evolution of all flowering plants. However, it still remains under-investigated how the distinct models of duplication events and their contending evolutionary patterns have shaped the genome and epigenomes of extant plant species. In this study, we investigated the contribution of the WGD- and SSD-derived duplicate genes to the genome evolution of one diploid and three closely related allotetraploid Panax species based on genome, methylome and proteome datasets. Our genome-wide comparative analyses revealed that while the ginseng species complex were recently diverged, they have evolved distinct overall patterns of nucleotide variation, cytosine methylation and protein-level expression. In particular, genetic and epigenetic asymmetries observed in the recent WGD-derived genes are largely consistent across the ginseng species complex. In addition, our results revealed that gene duplicates generated by ancient WGD and SSD mechanisms exhibited distinct evolutionary patterns. We found the ancient WGD-derived genes (i.e., ancient collinear gene) are genetically more conserved and hypo-methylated at the cytosine sites. In contrast, some of the SSD-derived genes (i.e., dispersal duplicated gene) showed hyper-methylation and high variance in nucleotide variation pattern. Functional enrichment analyses of the duplicated genes indicated that adaptation-related traits (i.e., photosynthesis) created during the distant ancient WGDs are further strengthened by both the more recent WGD and SSD. Together, our findings suggest that different types of duplicated genes may have played distinct but relaying evolutionary roles in the polyploidization and speciation processes in the ginseng species complex.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2021-03-19
    Description: We report a chromosome-level assembly for Pieris macdunnoughii, a North American butterfly whose involvement in an evolutionary trap imposed by an invasive Eurasian mustard has made it an emerging model system for studying maladaptation in plant-insect interactions. Assembled using nearly 100X coverage of Oxford Nanopore long reads, the contig-level assembly comprised 106 contigs totaling 316,549,294 bases, with an N50 of 5.2 Mb. We polished the assembly with PoolSeq Illumina short-read data, demonstrating for the first time the comparable performance of individual and pooled short reads as polishing datasets. Extensive synteny between the reported contig-level assembly and a published, chromosome-level assembly of the European butterfly Pieris napi allowed us to generate a pseudo-chromosomal assembly of 47 contigs, placing 91.1% of our 317 Mbp genome into a chromosomal framework. Additionally, we found support for a Z chromosome arrangement in P. napi, showing that the fusion event leading to this rearrangement predates the split between European and North American lineages of Pieris butterflies. This genome assembly and its functional annotation lay the groundwork for future research into the genetic basis of adaptive and maladaptive egg-laying behavior by P. macdunnoughii, contributing to our understanding of the susceptibility and responses of insects to evolutionary traps.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2021-03-19
    Description: Regarding the phylogenetic relationship of the three primary groups of teleost fishes, Osteoglossomorpha (bonytongues and others), Elopomorpha (eels and relatives), Clupeocephala (the remaining teleost fish), early morphological studies hypothesized the first divergence of Osteoglossomorpha, whereas the recent prevailing view is the first divergence of Elopomorpha. Molecular studies supported all the possible relationships of the three primary groups. This study analyzed genome-scale data from four previous studies: (1) 412 genes from 12 species, (2) 772 genes from 15 species, (3) 1,062 genes from 30 species, and (4) 491 UCE loci from 27 species. The effects of the species, loci, and models used on the constructed tree topologies were investigated. In the analyses of the datasets (1) - (3), although the first divergence of Clupeocephala that left the other two groups in a sister relationship was supported by concatenated sequences and gene trees of all the species and genes, the first divergence of Elopomorpha among the three groups was supported using species and/or genes with low divergence of sequence and amino-acid frequencies. This result corresponded to that of the UCE dataset (4), whose sequence divergence was low, which supported the first divergence of Elopomorpha with high statistical significance. The increase in accuracy of the phylogenetic construction by using species and genes with low sequence divergence was predicted by a phylogenetic informativeness approach and confirmed by computer simulation. These results supported that Elopomorpha was the first basal group of teleost fish to have diverged, consistent with the prevailing view of recent morphological studies.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2021-02-10
    Description: Differences in immune function between species could be a result of interspecific divergence in coding sequence and/or expression of immune genes. Here, we investigate how the degree of divergence in coding sequence and expression differs between functional categories of immune genes, and if differences between categories occur independently of other factors (expression level, pleiotropy). To this end, we compared spleen transcriptomes of wild-caught yellow-necked mice and bank voles. Immune genes expressed in the spleen were divided into four categories depending on the function of the encoded protein: Pattern Recognition Receptors (PRR); signal transduction proteins; transcription factors; and cyto- and chemokines and their receptors. Genes encoding PRR and cytokines etc had higher sequence divergence than genes encoding signal transduction proteins and transcription factors, even when controlling for potentially confounding factors. Genes encoding PRR also had higher expression divergence than genes encoding signal transduction proteins and transcription factors. There was a positive correlation between expression divergence and coding sequence divergence, in particular for PRR genes. We propose that this is a result of that divergence in PRR coding sequence leads to divergence in PRR expression through positive feedback of PRR ligand binding on PRR expression. When controlling for sequence divergence, expression divergence of PRR genes did not differ from other categories. Taken together, the results indicate that coding sequence divergence of PRR genes is a major cause of differences in immune function between species.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2021-02-10
    Description: Two-component systems (TCS) are important types of machinery allowing for efficient signal recognition and transmission in bacterial cells. The majority of TCSs utilized by bacteria is composed of a sensor histidine kinase (HK) and a cognate response regulator (RR). In the present study, we report two newly predicted protein domains — both to be included in the next release of the Pfam database: Response_reg_2 (PF19192) and HEF_HK (PF19191) — in bacteria which exhibit high structural similarity, respectively, with typical domains of RRs and HKs. Additionally, the genes encoding for the novel predicted domains exhibit a 91.6% linkage observed across 644 genomic regions recovered from 628 different bacterial strains. The remarkable adjacent co-localization between genes carrying Response_reg_2 and HEF_HK in addition to their conserved structural features, which are highly similar to those from well-known HKs and RRs, raises the possibility of Response_reg_2 and HEF_HK constituting a new TCS in bacteria. The genomic regions in which these predicted two-component systems-like are located additionally exhibit an overrepresented presence of restriction-modification (R-M) systems especially the type II R-M. Among these, there is a conspicuous presence of C-5 cytosine-specific DNA methylases which may indicate a functional association with the newly discovered domains. The solid presence of R-M systems and the presence of the GHKL family domain HATPase_c_3 across most of the HEF_HK-containing genes are also indicative that these genes are evolutionarily related to the paraMORC family of ATPases.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2021-02-11
    Description: The novel DSE Laburnicola rhizohalophila (Pleosporales, Ascomycota) is frequently found in the halophytic seepweed (Suaeda salsa). In this paper, we report a near-chromosome-level hybrid assembly of this fungus using a combination of short-read Illumina data to polish assemblies generated from long-read Nanopore data. The reference genome for L. rhizohalophila was assembled into 26 scaffolds with a total length of 64.0 Mb and a N50 length of 3.15 Mb. Of them, 17 scaffolds approached the length of intact chromosomes, and 5 had telomeres at one end only. A total of 10,891 gene models were predicted. Intriguingly, 27.5 Mb of repeat sequences that accounted for 42.97% of the genome was identified, and long terminal repeat retrotransposons were the most frequent known transposable elements (TEs), indicating that TE proliferation contributes to its increased genome size. BUSCO analyses using the Fungi_odb10 dataset showed that 95.0% of genes were complete. In addition, 292 carbohydrate active enzymes, 33 secondary metabolite clusters, and 84 putative effectors were identified in silico. The resulting high-quality assembly and genome features are not only an important resource for further research on understanding the mechanism of root-fungi symbiotic interactions, but will also contribute to comparative analyses of genome biology and evolution within Pleosporalean species.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2021-02-18
    Description: Legionella spp. are ubiquitous bacteria principally found in water networks and around 20 species are implicated in Legionnaire’s disease. Among them, Legionella pneumophila is an intracellular pathogen of environmental protozoa, responsible for about 90% of cases in the world. Legionella pneumophila regulates in part its virulence by a quorum sensing system named “Legionella quorum sensing”, composed of a signal synthase LqsA, two histidine kinase membrane receptors LqsS and LqsT and a cytoplasmic receptor LqsR. To date, this communication system was only found in L. pneumophila. Here we investigated 58 Legionella genomes to determine the presence of a lqs cluster or homologous receptors using tblastn. This analysis revealed three categories of species: 19 harboured a complete lqs cluster, 20 did not possess lqsA but maintained the receptor lqsR and/or lqsS, and 19 did not have any of the lqs genes. No correlation was observed between pathogenicity and the presence of a quorum sensing system. We determined by RT-qPCR that the lqsA gene was expressed at least in four strains among different species available in our laboratory. Furthermore, we showed that the lqs genomic region was conserved even in species possessing only the receptors of the quorum sensing system, indicating an ancestral acquisition and various loss dynamics during evolution. This system could therefore function in inter-specific communication as well.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2021-02-16
    Description: sangeranalyseR is feature-rich, free, and open-source R package for processing Sanger sequencing data. It allows users to go from loading reads to saving aligned contigs in a few lines of R code by using sensible defaults for most actions. It also provides complete flexibility for determining how individual reads and contigs are processed, both at the command-line in R and via interactive Shiny applications. sangeranalyseR provides a wide range of options for all steps in Sanger processing pipelines including trimming reads, detecting secondary peaks, viewing chromatograms, detecting indels and stop codons, aligning contigs, estimating phylogenetic trees, and more. Input data can be in either ABIF or FASTA format. sangeranalyseR comes with extensive online documentation and outputs aligned and unaligned reads and contigs in FASTA format, along with detailed interactive HTML reports. sangeranalyseR supports the use of colourblind-friendly palettes for viewing alignments and chromatograms. It is released under an MIT licence and available for all platforms on Bioconductor (https://bioconductor.org/packages/sangeranalyseR) and on Github (https://github.com/roblanf/sangeranalyseR).
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2021-02-16
    Description: Metazoans usually reproduce sexually, blending the unique identity of parental genomes for the next generation through functional crossing-over and recombination in meiosis. However, some metazoan lineages have evolved reproductive systems where offspring are either full (clonal) or partial (hemiclonal) genetic replicas. In the latter group, the process of uniparental genome elimination selectively eliminates either the maternal or paternal genome from germ cells, and only one parental genome is selected for transmission. Although fairly common in plants, hybridogenesis (i.e. clonal haploidization via chromosome elimination) remains a poorly understood process in animals. Here, we explore the proximal cytogenomic mechanisms of somatic and germ cell chromosomes in sexual and hybrid genotypes of Australian carp gudgeons (Hypseleotris) by tracing the fate of each set during mitosis (in somatic tissues) and meiosis (in gonads). Our comparative study of diploid hybrid and sexual individuals revealed visually functional gonads in male and female hybrid genotypes and generally high karyotype variability, although the number of chromosome arms remains constant. Our results delivered direct evidence for classic hybridogenesis as a reproductive mode in carp gudgeons. Two parental sets with integral structure in the hybrid soma (the F1 constitution) contrasted with uniparental chromosomal inheritance detected in gonads. The inheritance mode happens through pre-meiotic genome duplication of the parental genome to be transmitted, while the second parental genome is likely gradually eliminated already in juvenile individuals. The role of metacentric chromosomes in hybrid evolution is also discussed.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2021-02-24
    Description: Semaphorins and plexins are cell surface ligand/receptor proteins that affect cytoskeletal dynamics in metazoan cells. Interestingly, they are also present in Choanoflagellata, a class of unicellular heterotrophic flagellates that forms the phylogenetic sister group to Metazoa. Several members of choanoflagellates are capable of forming transient colonies, while others reside solitary inside exoskeletons; their molecular diversity is only beginning to emerge. Here, we surveyed genomics data from 22 choanoflagellate species and detected semaphorin/plexin pairs in 16 species. Choanoflagellate semaphorins (Sema-FN1) contain several domain features distinct from metazoan semaphorins, including an N-terminal Reeler domain that may facilitate dimer stabilization, an array of fibronectin type III domains, a variable serine/threonine-rich domain that is a potential site for O-linked glycosylation, and a SEA domain that can undergo autoproteolysis. In contrast, choanoflagellate plexins (Plexin-1) harbor a largely identical domain arrangement as metazoan plexins. Both Sema-FN1 and Plexin-1 also contain a short homologous motif near the C-terminus, likely associated with a shared function. Three-dimensional molecular models revealed a highly conserved structural architecture between choanoflagellate Plexin-1 and metazoan plexins, including similar conformational changes in a segment that can lead to activation of the intracellular Ras-GAP domain. The absence of semaphorins and plexins in several choanoflagellate species did not appear to correlate with unicellular vs. colonial lifestyle or ecological factors such as fresh vs. salt water environment. Together, our findings support a conserved mechanism of semaphorin/plexin proteins in regulating cytoskeletal dynamics in unicellular and multicellular organisms.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2021-02-11
    Description: From a genomics perspective, bivalves (Mollusca: Bivalvia) have been poorly explored with the exception for those of high economic value. The bivalve order Unionida, or freshwater mussels, has been of interest in recent genomic studies due to their unique mitochondrial biology and peculiar life cycle. However, genomic studies have been hindered by the lack of a high-quality reference genome. Here, I present a genome assembly of Potamilus streckersoni using Pacific Bioscience single-molecule real-time long reads and 10X Genomics linked read sequencing. Further, I use RNA sequencing from multiple tissue types and life stages to annotate the reference genome. The final assembly was far superior to any previously published freshwater mussel genome and was represented by 2,368 scaffolds (2,472 contigs) and 1,776,755,624 bp, with a scaffold N50 of 2,051,244 bp. A high proportion of the assembly was comprised of repetitive elements (51.03%), aligning with genomic characteristics of other bivalves. The functional annotation returned 52,407 gene models (41,065 protein, 11,342 tRNAs), which was concordant with the estimated number of genes in other freshwater mussel species. This genetic resource, along with future studies developing high-quality genome assemblies and annotations, will be integral toward unraveling the genomic bases of ecologically and evolutionarily important traits in this hyper-diverse group.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2021-04-20
    Description: Most cellular functions are carried out by a dynamic network of interacting proteins. An open question is whether the network properties of protein interactomes represent phenotypes under natural selection. One proposal is that protein interactomes have evolved to be resilient, such that they tend to maintain connectivity when proteins are removed from the network. This hypothesis predicts that interactome resilience should be maintained by natural selection during long-term experimental evolution. I tested this prediction by modeling the evolution of protein-protein interaction (PPI) networks in Lenski’s long-term evolution experiment with Escherichia coli (LTEE). In this test, I removed proteins affected by nonsense, insertion, deletion, and transposon mutations in evolved LTEE strains, and measured the resilience of the resulting networks. I compared the rate of change of network resilience in each LTEE population to the rate of change of network resilience for corresponding randomized networks. The evolved PPI networks are significantly more resilient than networks in which random proteins have been deleted. Moreover, the evolved networks are generally more resilient than networks in which the random deletion of proteins was restricted to those disrupted in LTEE. These results suggest that evolution in the LTEE has favored PPI networks that are, on average, more resilient than expected from the genetic variation across the evolved strains. My findings therefore support the hypothesis that selection maintains protein interactome resilience over evolutionary time.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2021-04-26
    Description: Insects are among the most diverse and successful groups of animals and exhibit great morphological diversity and complexity. The innovation of wings and metamorphosis are some examples of the fascinating biological evolution of insects. Most miRNAs contribute to canalization by conferring robustness to gene networks and thus increase the heritability of important phenotypes. Though previous studies have demonstrated how miRNAs regulate important phenotypes, little is still known about miRNA evolution in insects. Here, we used both small RNA-seq data and homology searching methods to annotate the miRNA repertoires of 152 arthropod species, including 135 insects and 17 non-insect arthropods. We identified 16,212 miRNA genes, and classified them into highly-conserved (62), insect-conserved (90) and lineage-specific (354) miRNA families. The phylogenetic relationship of miRNA binary presence/absence dynamics implies that homoplastic loss of conserved miRNA families tends to occur in far-related morphologically-simplified taxa, including scale insects (Coccoidea) and twisted-wing insects (Strepsiptera), leading to inconsistent phylogenetic tree reconstruction. The common ancestor of Insecta shares 62 conserved miRNA families, of which five were rapidly gained in the early winged-insects (Pterygota). We also detected extensive miRNA losses in Paraneoptera that are correlated with morphological reduction, and miRNA gains in early Endopterygota around the time holometabolous metamorphosis appeared. This was followed by abundant miRNA gains in Hymenoptera and Lepidoptera. In summary, we provide a comprehensive dataset and a detailed evolutionary analysis of miRNAs in insects. These data will be important for future studies on miRNA functions associated with insect morphological innovation and trait biodiversity.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2021-04-26
    Description: Songbirds have an unusual genomic element which is only found in their germline cells, known as the germline-restricted chromosome (GRC). Because germ cells contain both GRC and non-GRC (or A-chromosome) sequences, confidently identifying the GRC-derived elements from genome assemblies has proven difficult. Here we introduce a new application of a transcriptomic method for GRC sequence identification. By adapting the Stringtie/Ballgown pipeline method to use somatic and germline DNA reads, we find that the ratio of fragments per kilobase per million mapped reads (FPKM) can be used to confidently assign contigs to the GRC. Using this comparative coverage analysis, we successfully identify 733 contigs as high confidence GRC sequences (720 newly identified in this study) and 51 contigs which were validated using quantitative polymerase chain reaction (qPCR). We also identified two new GRC genes, one hypothetical protein and one gene encoding an RNase H-like domain, and placed 16 previously identified but unplaced genes onto their host contigs. With the current focus on sequencing GRCs from different songbirds, our work adds to the genomic toolkit to identify GRC elements, and we provide a detailed protocol and GitHub repository at https://github.com/brachtlab/Comparative_Coverage_Analysis.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2021-03-03
    Description: Cobalamin is a cofactor present in essential metabolic pathways in animals and one of the water-soluble vitamins. It is a complex compound synthesized solely by prokaryotes. Cobalamin dependence is scattered across the tree of life. In particular, fungi and plants were deemed devoid of cobalamin. We demonstrate that cobalamin is utilized by all non-Dikarya fungi lineages. This observation is supported by the genomic presence of both B12-dependent enzymes and cobalamin modifying enzymes. Fungal cobalamin-dependent enzymes are highly similar to their animal homologs. Phylogenetic analyses support a scenario of vertical inheritance of the cobalamin usage with several losses. Cobalamin usage was probably lost in Mucorinae and at the base of Dikarya which groups most of the model organisms and which hindered B12-dependent metabolism discovery in fungi. Our results indicate that cobalamin dependence was a widely distributed trait at least in Opisthokonta, across diverse microbial eukaryotes and was likely present in the LECA.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2021-03-02
    Description: The evolution of gene order rearrangements within bacterial chromosomes is a fast process. Closely related species can have almost no conservation in long-range gene order. A prominent exception to this rule is a 〉 40 kb long cluster of five core operons (secE-rpoBC-str-S10-spc-alpha) and three variable adjacent operons (cysS, tufB, and ecf) that together contain 57 genes of the transcriptional and translational machinery. Previous studies have indicated that at least part of this operon cluster might have been present in the last common ancestor of bacteria and archaea. Using 204 whole genome sequences, approximately 2 Gy of evolution of the operon cluster were reconstructed back to the last common ancestors of the Gammaproteobacteria and of the Bacilli. A total of 163 independent evolutionary events were identified in which the operon cluster was altered. Further examination showed that the process of disconnecting two operons generally follows the same pattern. Initially, a small number of genes is inserted between the operons breaking the concatenation followed by a second event that fully disconnects the operons. While there is a general trend for loss of gene synteny over time, there are examples of increased alteration rates at specific branch points or within specific bacterial orders. This indicates the recurrence of relaxed selection on the gene order within bacterial chromosomes. The analysis of the alternation events indicates that segmental genome duplications and/or transposon-directed recombination play a crucial role in rearrangements of the operon cluster.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2021-03-01
    Description: As the closest extant sister group to seed plants, ferns are an important reference point to study the origin and evolution of plant genes and traits. One bottleneck to the use of ferns in phylogenetic and genetic studies is the fact that genome-level sequence information of this group is limited, due to the extreme genome sizes of most ferns. Ceratopteris richardii (hereafter Ceratopteris) has been widely used as a model system for ferns. In this study, we generated a transcriptome of Ceratopteris, through the de novo assembly of the RNA-seq data from 17 sequencing libraries that are derived from two sexual types of gametophytes and five different sporophyte tissues. The Ceratopteris transcriptome, together with 38 genomes and transcriptomes from other species across the Viridiplantae, were used to uncover the evolutionary dynamics of orthogroups (predicted gene families using OrthoFinder) within the euphyllophytes and identify proteins associated with the major shifts in plant morphology and physiology that occurred in the last common ancestors of euphyllophytes, ferns, and seed plants. Furthermore, this resource was used to identify and classify the GRAS domain transcriptional regulators of many developmental processes in plants. Through the phylogenetic analysis within each of the 15 GRAS orthogroups, we uncovered which GRAS family members are conserved or have diversified in ferns and seed plants. Taken together, the transcriptome database and analyses reported here provide an important platform for exploring the evolution of gene families in land plants and for studying gene function in seed-free vascular plants.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2021-03-22
    Description: The comma butterfly (Polygonia c-album, Nymphalidae, Lepidoptera) is a model insect species, most notably in the study of phenotypic plasticity and plant-insect coevolutionary interactions. In order to facilitate the integration of genomic tools with a diverse body of ecological and evolutionary research, we assembled the genome of a Swedish comma using 10X sequencing, scaffolding with matepair data, genome polishing, and assignment to linkage groups using a high-density linkage map. The resulting genome is 373 Mb in size, with a scaffold N50 of 11.7 Mb and contig N50 of 11,2Mb. The genome contained 90.1% of single-copy Lepidopteran orthologs in a BUSCO analysis of 5286 genes. A total of 21,004 gene-models were annotated on the genome using RNAseq data from larval and adult tissue in combination with proteins from the Arthropoda database, resulting in a high-quality annotation for which functional annotations were generated. We further documented the quality of the chromosomal assembly via synteny assessment with Melitaea cinxia. The resulting annotated, chromosome-level genome will provide an important resource for investigating coevolutionary dynamics and comparative analyses in Lepidoptera.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2021-03-22
    Description: Whole genome duplications (WGD) have been considered as springboards that potentiate lineage diversification through increasing functional redundancy. Divergence in gene regulatory elements is a central mechanism for evolutionary diversification, yet the patterns and processes governing regulatory divergence following events that lead to massive functional redundancy, such as WGD, remain largely unknown. We studied the patterns of divergence and strength of natural selection on regulatory elements in the Atlantic salmon (Salmo salar) genome, which has undergone WGD 100-80 Mya. Using ChIPmentation, we first show that H3K27ac, a histone modification typical to enhancers and promoters, is associated with genic regions, tissue specific transcription factor binding motifs, and with gene transcription levels in immature testes. Divergence in transcription between duplicated genes from WGD (ohnologs) correlated with difference in the number of proximal regulatory elements, but not with promoter elements, suggesting that functional divergence between ohnologs after WGD is mainly driven by enhancers. By comparing H3K27ac regions between duplicated genome blocks, we further show that a longer polyploid state post-WGD has constrained regulatory divergence. Patterns of genetic diversity across natural populations inferred from re-sequencing indicate that recent evolutionary pressures on H3K27ac regions are dominated by largely neutral evolution. In sum, our results suggest that post-WGD functional redundancy in regulatory elements continues to have an impact on the evolution of the salmon genome, promoting largely neutral evolution of regulatory elements despite their association with transcription levels. These results highlight a case where genome-wide regulatory evolution following an ancient WGD is dominated by genetic drift.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2021-02-17
    Description: Transposable elements (TEs) inflict numerous negative effects on health and fitness as they replicate by integrating into new regions of the host genome. Even though organisms employ powerful mechanisms to demobilize TEs, transposons gradually lose repression during aging. The rising TE activity causes genomic instability and was implicated in age-dependent neurodegenerative diseases, inflammation and the determination of lifespan. It is therefore conceivable that long-lived individuals have improved TE silencing mechanisms resulting in reduced TE expression relative to their shorter-lived counterparts and fewer genomic insertions. Here, we test this hypothesis by performing the first genome-wide analysis of TE insertions and expression in populations of Drosophila melanogaster selected for longevity through late-life reproduction for 50-170 generations from four independent studies. Contrary to our expectation, TE families were generally more abundant in long-lived populations compared to non-selected controls. Although simulations showed that this was not expected under neutrality, we found little evidence for selection driving TE abundance differences. Additional RNA-seq analysis revealed a tendency for reducing TE expression in selected populations, which might be more important for lifespan than regulating genomic insertions. We further find limited evidence of parallel selection on genes related to TE regulation and transposition. However, telomeric TEs were genomically and transcriptionally more abundant in long-lived flies, suggesting improved telomere maintenance as a promising TE-mediated mechanism for prolonging lifespan. Our results provide a novel viewpoint indicating that reproduction at old age increases the opportunity of TEs to be passed on to the next generation with little impact on longevity.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2021-02-08
    Description: Mitochondrial DNA (mtDNA) is present in multiple copies within an organism. Since these copies are not identical, a single individual carries a heterogeneous population of mtDNAs, a condition known as heteroplasmy. Several factors play a role in the dynamics of the within-organism mtDNA population: among them genetic bottlenecks, selection, and strictly maternal inheritance are known to shape the levels of heteroplasmy across mtDNAs. In Metazoa, the only evolutionarily stable exception to the strictly maternal inheritance of mitochondria is the doubly uniparental inheritance (DUI), reported in 100+ bivalve species. In DUI species there are two highly divergent mtDNA lineages, one inherited through oocyte mitochondria (F-type) and the other through sperm mitochondria (M-type). Having both parents contributing to the mtDNA pool of the progeny makes DUI a unique system to study the dynamics of mtDNA populations. Since in bivalves the spermatozoon has few mitochondria (4-5), M-type mtDNA faces a tight bottleneck during embryo segregation, one of the narrowest mitochondrial bottlenecks investigated so far. Here, we analyzed the F- and M-type mtDNA variability within individuals of the DUI species Ruditapes philippinarum, and we investigated for the first time the effects of such a narrow bottleneck affecting mtDNA populations. As a potential consequence of this narrow bottleneck, the M-type mtDNA shows a large variability in different tissues, a condition so pronounced that it leads to genotypes from different tissues of the same individual not to cluster together. We believe such results may help understanding the effect of low population size on mtDNA bottleneck.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2021-04-15
    Description: Although it is well known that abundant proteins evolve slowly across the tree of life, there is little consensus for why this is true. Here, I report that abundant proteins evolve slowly in the hypermutator populations of Lenski’s long-term evolution experiment with Escherichia coli (LTEE). Specifically, the density of all observed mutations per gene, as measured in metagenomic time series covering 60,000 generations of the LTEE, significantly anti-correlates with mRNA abundance, protein abundance, and degree of protein-protein interaction. The same pattern holds for nonsynonymous mutation density. However, synonymous mutation density, measured across the LTEE hypermutator populations, positively correlates with protein abundance. These results show that universal constraints on protein evolution are visible in data spanning three decades of experimental evolution. Therefore, it should be possible to design experiments to answer why abundant proteins evolve slowly.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2021-04-19
    Description: The members of the globin superfamily are a classical model system to investigate gene evolution and their fates as well as the diversity of protein function. One of the best-known globins is myoglobin (Mb), which is mainly expressed in heart muscle and transports oxygen from the sarcolemma to the mitochondria. Most vertebrates harbor a single copy of the myoglobin gene, but some fish species have multiple myoglobin genes. Phylogenetic analyses indicate an independent emergence of multiple myoglobin genes, whereby the origin is mostly the last common ancestor of each order. By analyzing different transcriptome data sets, we found at least 15 multiple myoglobin genes in the polypterid gray bichir (Polypterus senegalus) and reedfish (Erpetoichthys calabaricus). In reedfish the myoglobin genes are expressed in a broad range of tissues but show very different expression values. In contrast, the Mb genes of the gray bichir show a rather scattered expression pattern; only a few Mb genes were found expressed in the analyzed tissues. Both, gray bichir and reedfish possess lungs which enable them to inhabit shallow and swampy waters throughout tropical Africa with frequently fluctuating and low oxygen concentrations. The myoglobin repertoire probably reflects the molecular adaptation to these conditions. The sequence divergence, the substitution rate and the different expression pattern of multiple myoglobin genes in gray bichir and reedfish imply different functions, probably through sub- and neofunctionalization during evolution.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2021-03-04
    Description: A manually-curated set of ohnolog families has been assembled, for seven species of bony vertebrates, that includes 255 four-member families and 631 three-member families, encompassing over 2,900 ohnologs. Across species, the patterns of chromosomes upon which the ohnologs reside fall into 17 distinct categories. These 17 paralogons reflect the 17 ancestral chromosomes that existed in our chordate ancestor immediately prior to the two rounds of whole-genome duplication (2R-WGD) that occurred around 600 million years ago. Within each paralogon, it has now been possible to assign those pairs of ohnologs that diverged from each other at the first round of duplication, through analysis of the molecular phylogeny of four-member families. Comparison with another recent analysis has identified four apparently incorrect assignments of pairings following 2R, along with several omissions, in that study. By comparison of the patterns between paralogons, it has also been possible to identify nine chromosomal fusions that occurred between 1R and 2R, and three chromosomal fusions that occurred after 2R, that generated an ancestral bony-vertebrate karyotype comprising 47 chromosomes. At least 27 of those ancestral bony-vertebrate chromosomes can, in some extant species, be shown not to have undergone any fusion or fission events. Such chromosomes are here termed ‘archaeochromosomes’, and have each survived essentially unchanged in their content of genes for some 400 million years. Their utility lies in their potential for tracking the various fusion and fission events that have occurred in different lineages throughout the expansion of bony vertebrates.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2021-04-10
    Description: The history of modern humans in the Iberian Peninsula includes a variety of population arrivals sometimes presenting admixture with resident populations. Genetic data from current Iberian populations revealed an overall east - west genetic gradient that some authors interpreted as a direct consequence of the Reconquista, where Catholic Kingdoms expanded their territories towards the south while displacing Muslims. However, this interpretation has not been formally evaluated. Here, we present a qualitative analysis of the causes of the current genetic gradient observed in the Iberian Peninsula using extensive spatially-explicit computer simulations based on a variety of evolutionary scenarios. Our results indicate that the Neolithic range expansion clearly produces the orientation of the observed genetic gradient. Concerning the Reconquista (including political borders among Catholic Kingdoms and regions with different languages), if modelled upon a previous Neolithic expansion it effectively favoured the orientation of the observed genetic gradient and shows local isolation of certain regions (i.e., Basques and Galicia). Despite additional evolutionary scenarios could be evaluated to more accurately decipher the causes of the Iberian genetic gradient, here we show that this gradient has a more complex explanation than that previously hypothesized.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2021-04-10
    Description: The tight interaction between pathogens and their hosts results in reciprocal selective forces that impact the genetic diversity of the interacting species. The footprints of this selection differ between pathosystems because of distinct life-history traits, demographic histories, or genome architectures. Here, we studied the genome-wide patterns of genetic diversity of 22 isolates of the causative agent of the corn smut disease, Ustilago maydis, originating from five locations in Mexico, the presumed center of origin of this species. In this species, many genes encoding secreted effector proteins reside in so-called virulence clusters in the genome, an arrangement that is so far not found in other filamentous plant pathogens. Using a combination of population genomic statistical analyses, we assessed the geographical, historical and genome-wide variation of genetic diversity in this fungal pathogen. We report evidence of two partially admixed subpopulations that are only loosely associated with geographic origin. Using the multiple sequentially Markov coalescent model, we inferred the demographic history of the two pathogen subpopulations over the last 0.5 million years. We show that both populations experienced a recent strong bottleneck starting around 10,000 years ago, coinciding with the assumed time of maize domestication. While the genome average genetic diversity is low compared to other fungal pathogens, we estimated that the rate of non-synonymous adaptive substitutions is three times higher in genes located within virulence clusters compared to non-clustered genes, including non-clustered effector genes. These results highlight the role that these singular genomic regions play in the evolution of this pathogen.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2021-04-19
    Description: Homoeologs are pairs of genes or chromosomes in the same species that originated by speciation and were brought back together in the same genome by allopolyploidization. Bioinformatic methods for accurate homoeology inference are crucial for studying the evolutionary consequences of polyploidization, and homoeology is typically inferred on the basis of bidirectional best hit (BBH) and/or positional conservation (synteny). However, these methods neglect the fact that genes can duplicate and move, both prior to and after the allopolyploidization event. These duplications and movements can result in many-to-many and/or nonsyntenic homoeologs—which thus remain undetected and unstudied. Here, using the allotetraploid upland cotton (Gossypium hirsutum) as a case study, we show that conventional approaches indeed miss a substantial proportion of homoeologs. Additionally, we found that many of the missed pairs of homoeologs are broadly and highly expressed. A Gene Ontology (GO) analysis revealed a high proportion of the nonsyntenic and non-BBH homoeologs to be involved in protein translation and are likely to contribute to the functional repertoire of cotton. Thus, from an evolutionary and functional genomics standpoint, choosing a homoeolog inference method which does not solely rely on 1:1 relationship cardinality or synteny is crucial for not missing these potentially important homoeolog pairs.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2021-03-02
    Description: Most studies of bacterial reproduction have centered on organisms that undergo binary fission. In these models, complete chromosome copies are segregated with great fidelity into two equivalent offspring cells. All genetic material is passed on to offspring, including new mutations and horizontally acquired sequences. However, some bacterial lineages employ diverse reproductive patterns that require management and segregation of more than two chromosome copies. Epulopiscium spp., and their close relatives within the Firmicutes phylum, are intestinal symbionts of surgeonfish (family Acanthuridae). Each of these giant (up to 0.6 mm long), cigar-shaped bacteria contains tens of thousands of chromosome copies. Epulopiscium spp. do not use binary fission but instead produce multiple intracellular offspring. Only ∼1% of the genetic material in an Epulopiscium sp. type B mother cell is directly inherited by its offspring cells. And yet, even in late stages of offspring development, mother-cell chromosome copies continue to replicate. Consequently, chromosomes take on a somatic or germline role. Epulopiscium sp. type B is a strict anaerobe and while it is an obligate symbiont, its host has a facultative association with this intestinal microorganism. Therefore, Epulopiscium sp. type B populations face several bottlenecks that could endanger their diversity and resilience. Multilocus sequence analyses revealed that recombination is important to diversification in populations of Epulopiscium sp. type B. By employing mechanisms common to others in the Firmicutes, the coordinated timing of mother-cell lysis, offspring development and congression may facilitate the substantial recombination observed in Epulopiscium sp. type B populations.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2021-04-02
    Description: Chromosomal rearrangements can reduce fitness of heterozygotes and can thereby prevent gene flow. Therefore, such rearrangements can play a role in local adaptation and speciation. In particular, inversions are considered to be a major potential cause for chromosomal speciation. There are two closely related, partially sympatric lineages of ascidians in the genus Ciona, which we call type-A and type-B animals in the present study. While these invertebrate chordates are largely isolated reproductively, hybrids can be found in wild populations, suggesting incomplete prezygotic barriers. Although the genome of type-A animals has been decoded and widely used, the genome for type-B animals has not been decoded at the chromosomal level. In the present study, we sequenced the genomes of two type-B individuals from different sides of the English Channel (in the zone of sympatry with type-A individuals) and compared them at the chromosomal level with the type-A genome. While the overall structures were well conserved between type A and type B, chromosomal alignments revealed many inversions differentiating these two types of Ciona; it is probable that the frequent inversions have contributed to separation between these two lineages. In addition, comparisons of the genomes between the two type-B individuals revealed that type B had high rates of inversion polymorphisms and nucleotide polymorphisms, and thus type B might be in the process of differentiation into multiple new types or species. Our results suggest an important role of inversions in chromosomal speciation of these broadcasting spawners.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2021-04-01
    Description: Heliconius butterflies (Lepidoptera: Nymphalidae) are a group of 48 neotropical species widely studied in evolutionary research. Despite the wealth of genomic data generated in past years, chromosomal level genome assemblies currently exist for only two species, Heliconius melpomene and H. erato, each a representative of one of the two major clades of the genus. Here, we use these reference genomes to improve the contiguity of previously published draft genome assemblies of 16 Heliconius species. Using a reference-assisted scaffolding approach, we place and order the scaffolds of these genomes onto chromosomes, resulting in 95.7-99.9% of their genomes anchored to chromosomes. Genome sizes are somewhat variable among species (270-422 Mb) and in one small group of species (H. hecale, H. elevatus and H. pardalinus) expansions in genome size are driven mainly by repetitive sequences that map to four small regions in the H. melpomene reference genome. Genes from these repeat regions show an increase in exon copy number, an absence of internal stop codons, evidence of constraint on non-synonymous changes, and increased expression, all of which suggest that at least some of the extra copies are functional. Finally, we conducted a systematic search for inversions and identified five moderately large inversions fixed between the two major Heliconius clades. We infer that one of these inversions was transferred by introgression between the lineages leading to the erato/sara and burneyi/doris clades. These reference-guided assemblies represent a major improvement in Heliconius genomic resources that enable further genetic and evolutionary discoveries in this genus.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2021-07-13
    Description: Interest and controversy surrounding the evolutionary origins of extremely halophilic Archaea has increased in recent years, due to the discovery and characterization of the Nanohaloarchaea and the Methanonatronarchaeia. Initial attempts in explaining the evolutionary placement of the two new lineages in relation to the classical Halobacteria (also referred to as Haloarchaea) resulted in hypotheses that imply the new groups share a common ancestor with the Haloarchaea. However, more recent analyses have led to a shift: the Nanohaloarchaea have been largely accepted as being a member of the DPANN superphylum, outside of the euryarchaeota; whereas the Methanonatronarchaeia have been placed near the base of the Methanotecta (composed of the class II methanogens, the Halobacteriales, and Archaeoglobales). These opposing hypotheses have far-reaching implications on the concepts of convergent evolution (distantly related groups evolve similar strategies for survival), genome reduction, and gene transfer. In this work, we attempt to resolve these conflicts with phylogenetic and phylogenomic data. We provide a robust taxonomic sampling of Archaeal genomes that spans the Asgardarchaea, TACK Group, euryarchaeota, and the DPANN superphylum. In addition, we assembled draft genomes from seven new representatives of the Nanohaloarchaea from distinct geographic locations. Phylogenies derived from these data imply that the highly conserved ATP synthase catalytic/noncatalytic subunits of Nanohaloarchaea share a sisterhood relationship with the Haloarchaea. We also employ a novel gene family distance clustering strategy which shows this sisterhood relationship is not likely the result of a recent gene transfer. In addition, we present and evaluate data that argue for and against the monophyly of the DPANN superphylum, in particular, the inclusion of the Nanohaloarchaea in DPANN.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2021-07-13
    Description: Opsins are light-sensitive proteins involved in many photoreceptive processes, including, but not limited to, vision and regulation of circadian rhythms. Arthropod (e.g., insects, spiders, centipedes, and crabs) opsins have been extensively researched, but the relationships and function of opsins found in lineages that are evolutionarily closely related to the arthropods remains unclear. Multiple, independent, opsin duplications are known in Tardigrada (the water bears), evidencing that protostome opsin duplications are not limited to the Arthropoda. However, the relationships, function, and expression of these new opsins are still unknown. Here, we use two tardigrade transcriptomes with deep coverage to greatly expand our knowledge of the diversity of tardigrade opsins. We reconstruct the phylogenetic relationships of the tardigrade opsins and investigate their ontogenetic expression. We found that while tardigrades have multiple opsins that evolved from lineage-specific duplications of well-understood arthropod opsins, their expression levels change during ontogeny such that most of these opsins are not co-temporally expressed. Co-temporal expression of multiple opsins underpins color vision in Arthropoda and Vertebrata. Our results clearly show duplications of both rhabdomeric and ciliary opsins within Tardigrada, forming clades specific to both the Heterotardigrada and Eutardigrada in addition to multiple independent duplications within genera. However, lack of co-temporal, ontogenetic, expression suggests that while tardigrades possess multiple opsins, they are unlikely to be able to distinguish color.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2021-06-29
    Description: Lake Dali Nur, located in Inner Mongolia, North China, is alkaline, with Triplophysa dalaica one of the three fish species that not only survive, but thrive, in the lake. To investigate the presence of molecular mutations potentially responsible for this adaptation, the whole-genome sequence of the species was sequenced. A total of 126.5 and 106 Gb data, covering nearly 200× of the estimated genome, were generated using long-read sequencing and Hi-C technology, respectively. De novo assembly generated a genome totalled 607.91 Mb, with a contig N50 of 9.27 Mb. Nearly all whole-genome sequences were anchored and oriented onto 25 chromosomes, with telomeres for most chromosomes also being recovered. Repeats comprised approximately 35.01% of the whole genome. A total of 23,925 protein-coding genes were predicted, within which, 98.62% could be functionally annotated. Through comparisons of T. dalaica, T. tibetana, and T. siluroides gene models, a total of 898 genes were identified as likely being subjected to positive selection, with several of them potentially associated with alkaline adaptation, such as sodium bicarbonate cotransporter, SLC4A4. Demographic analyses suggested that the Dali population might have diverged from endemic freshwater Hai River populations, approximately 1 Ma. The high-quality T. dalaica genome, created in this study, not only aids in the analyses of alkaline adaptation, but may also assist in revealing the mysteries of the highly divergent genus Triplophysa in the future.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2021-06-16
    Description: Pangenomes—the cumulative set of genes encoded by a population or species—arise from the interplay of horizontal gene transfer, drift, and selection. The balance of these forces in shaping pangenomes has been debated, and studies to date focused on ancient evolutionary time scales have suggested that pangenomes generally confer niche adaptation to their bacterial hosts. To shed light on pangenome evolution on shorter evolutionary time scales, we inferred the selective pressures acting on mobile genes within individual human microbiomes from 176 Fiji islanders. We mapped metagenomic sequence reads to a set of known mobile genes to identify single nucleotide variants (SNVs) and calculated population genetic metrics to infer deviations from a neutral evolutionary model. We found that mobile gene sequence evolution varied more by gene family than by human social attributes, such as household or village. Patterns of mobile gene sequence evolution could be qualitatively recapitulated with a simple evolutionary simulation without the need to invoke the adaptive value of mobile genes to either bacterial or human hosts. These results stand in contrast with the apparent adaptive value of pangenomes over longer evolutionary time scales. In general, the most highly mobile genes (i.e., those present in more distinct bacterial host genomes) tend to have higher metagenomic read coverage and an excess of low-frequency SNVs, consistent with their rapid spread across multiple bacterial species in the gut. However, a subset of mobile genes—including those involved in defense mechanisms and secondary metabolism—showed a contrasting signature of intermediate-frequency SNVs, indicating species-specific selective pressures or negative frequency-dependent selection on these genes. Together, our evolutionary models and population genetic data show that gene-specific selective pressures predominate over human or bacterial host-specific pressures during the relatively short time scales of a human lifetime.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2021-06-30
    Description: The nearly neutral theory predicts specific relations between effective population size (Ne) and patterns of divergence and polymorphism, which depend on the shape of the distribution of fitness effects (DFE) of new mutations. However, testing these relations is not straightforward, owing to the difficulty in estimating Ne. Here, we introduce an integrative framework allowing for an explicit reconstruction of the phylogenetic history of Ne, thus leading to a quantitative test of the nearly neutral theory and an estimation of the allometric scaling of the ratios of nonsynonymous over synonymous polymorphism (πN/πS) and divergence (dN/dS) with respect to Ne. As an illustration, we applied our method to primates, for which the nearly neutral predictions were mostly verified. Under a purely nearly neutral model with a constant DFE across species, we find that the variation in πN/πS and dN/dS as a function of Ne is too large to be compatible with current estimates of the DFE based on site frequency spectra. The reconstructed history of Ne shows a 10-fold variation across primates. The mutation rate per generation u, also reconstructed over the tree by the method, varies over a 3-fold range and is negatively correlated with Ne. As a result of these opposing trends for Ne and u, variation in πS is intermediate, primarily driven by Ne but substantially influenced by u. Altogether, our integrative framework provides a quantitative assessment of the role of Ne and u in modulating patterns of genetic variation, while giving a synthetic picture of their history over the clade.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2021-06-24
    Description: During photosynthesis, electrons are transferred between the cytochrome b6f complex and photosystem I. This is carried out by the protein plastocyanin in plant chloroplasts, or by either plastocyanin or cytochrome c6 in many cyanobacteria and eukaryotic algal species. There are three further cytochrome c6 homologs: cytochrome c6A in plants and green algae, and cytochromes c6B and c6C in cyanobacteria. The function of these proteins is unknown. Here, we present a comprehensive analysis of the evolutionary relationship between the members of the cytochrome c6 family in photosynthetic organisms. Our phylogenetic analyses show that cytochromes c6B and c6C are likely to be orthologs that arose from a duplication of cytochrome c6, but that there is no evidence for separate origins for cytochromes c6B and c6C. We therefore propose renaming cytochrome c6C as cytochrome c6B. We show that cytochrome c6A is likely to have arisen from cytochrome c6B rather than by an independent duplication of cytochrome c6, and present evidence for an independent origin of a protein with some of the features of cytochrome c6A in peridinin dinoflagellates. We conclude with a new comprehensive model of the evolution of the cytochrome c6 family which is an integral part of understanding the function of the enigmatic cytochrome c6 homologs.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2021-06-24
    Description: Acanthochlamys bracteata (Velloziaceae) is a resurrection plant with cold tolerance. Herein, a chromosome-level reference genome of A. bracteata based on Nanopore, Illumina, and Hi-C data is reported. The high-quality assembled genome was 197.97 Mb, with a scaffold N50 value of 8.64 Mb and a contig N50 value of 6.96 Mb. We annotated 23,509 protein-coding genes. Eight contracted gene families and three expanded gene families were detected. Repeat sequences accounted for approximately 28.63% of the genome. The LEA1 and Dehydrin gene families, which are involved in desiccation resistance, expanded in A. bracteata. We identified genes involved in chilling tolerance, COLD1.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2021-06-28
    Description: Microbial strains with high genomic stability are particularly sought after for testing the quality of commercial microbiological products, such as biological media and antibiotics. Yet, using mutation–accumulation experiments and de novo assembled complete genomes based on Nanopore long-read sequencing, we find that the widely used quality-control strain Shewanella putrefaciens ATCC-8071, also a facultative pathogen, is a hypermutator, with a base-pair substitution mutation rate of 2.42 × 10−8 per nucleotide site per cell division, ∼146-fold greater than that of the wild-type strain CGMCC-1.6515. Using complementation experiments, we confirm that mutL dysfunction, which was a recent evolutionary event, is the cause for the high mutation rate of ATCC-8071. Further analyses also give insight into possible relationships between mutation and genome evolution in this important bacterium. This discovery of a well-known strain being a hypermutator necessitates screening the mutation rate of bacterial strains before any quality control or experiments.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2021-07-10
    Description: The evolution of eukaryotic cellular complexity is interwoven with the extensive diversification of many protein families. One key family is the ARF GTPases that act in eukaryote-specific processes, including membrane traffic, tubulin assembly, actin dynamics, and cilia-related functions. Unfortunately, our understanding of the evolution of this family is limited. Sampling an extensive set of available genome and transcriptome sequences, we have assembled a data set of over 2,000 manually curated ARF family genes from 114 eukaryotic species, including many deeply diverged protist lineages, and carried out comprehensive molecular phylogenetic analyses. These reconstructed as many as 16 ARF family members present in the last eukaryotic common ancestor, nearly doubling the previously inferred ancient system complexity. Evidence for the wide occurrence and ancestral origin of Arf6, Arl13, and Arl16 is presented for the first time. Moreover, Arl17, Arl18, and SarB, newly described here, are absent from well-studied model organisms and as a result their function(s) remain unknown. Analyses of our data set revealed a previously unsuspected diversity of membrane association modes and domain architectures within the ARF family. We detail the step-wise expansion of the ARF family in the metazoan lineage, including discovery of several new animal-specific family members. Delving back to its earliest evolution in eukaryotes, the resolved relationship observed between the ARF family paralogs sets boundaries for scenarios of vesicle coat origins during eukaryogenesis. Altogether, our work fundamentally broadens the understanding of the diversity and evolution of a protein family underpinning the structural and functional complexity of the eukaryote cells.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2021-05-19
    Description: Crosses between the wild tomato species Solanum peruvianum and Solanum chilense result in hybrid seed failure (HSF), characterized by endosperm misdevelopment and embryo arrest. We previously showed that genomic imprinting, the parent-of-origin–dependent expression of alleles, is perturbed in the hybrid endosperm, with many of the normally paternally expressed genes losing their imprinted status. Here, we report transcriptome-based analyses of gene and small RNA (sRNA) expression levels. We identified 2,295 genes and 387 sRNA clusters as differentially expressed when comparing reciprocal hybrid seed to seeds and endosperms from the two within-species crosses. Our analyses uncovered a pattern of overdominance in endosperm gene expression in both hybrid cross directions, in marked contrast to the patterns of sRNA expression in whole seeds. Intriguingly, patterns of increased gene expression resemble the previously reported increased maternal expression proportions in hybrid endosperms. We identified physical clusters of sRNAs; differentially expressed sRNAs exhibit reduced transcript abundance in hybrid seeds of both cross directions. Moreover, sRNAs map to genes coding for key proteins involved in epigenetic regulation of gene expression, suggesting a regulatory feedback mechanism. We describe examples of genes that appear to be targets of sRNA-mediated gene silencing; in these cases, reduced sRNA abundance is concomitant with increased gene expression in hybrid seeds. Our analyses also show that S. peruvianum dominance impacts gene and sRNA expression in hybrid seeds. Overall, our study indicates roles for sRNA-mediated epigenetic regulation in HSF between closely related wild tomato species.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2021-06-30
    Description: Evolve and Resequence (E&R) studies investigate the genomic selection response of populations in an Experimental Evolution setup. Despite the popularity of E&R, empirical studies in sexually reproducing organisms typically suffer from an excess of candidate loci due to linkage disequilibrium, and single gene or SNP resolution is the exception rather than the rule. Recently, so-called “secondary E&R” has been suggested as promising experimental follow-up procedure to confirm putatively selected regions from a primary E&R study. Secondary E&R provides also the opportunity to increase mapping resolution by allowing for additional recombination events, which separate the selection target from neutral hitchhikers. Here, we use computer simulations to assess the effect of different crossing schemes, population size, experimental duration, and number of replicates on the power and resolution of secondary E&R. We find that the crossing scheme and population size are crucial factors determining power and resolution of secondary E&R: A simple crossing scheme with few founder lines consistently outcompetes crossing schemes where evolved populations from a primary E&R experiment are mixed with a complex ancestral founder population. Regardless of the experimental design tested, a population size of at least 4,800 individuals, which is roughly five times larger than population sizes in typical E&R studies, is required to achieve a power of at least 75%. Our study provides an important step toward improved experimental designs aiming to characterize causative SNPs in Experimental Evolution studies.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2021-05-20
    Description: The moth Ephestia elutella (Hübner), is a storage pest that feeds on tobacco, cacao beans, cereals, dried fruits, and nuts. We generated a chromosome-level genome assembly containing 576.94 Mb using Nanopore long reads (approximately 130×) and Hi-C data (approximately 134×). The final assembly contained 804 scaffolds, with an N50 length of 19.00 Mb, and 94.96% (547.89 Mb) of the assembly was anchored into 31 pseudochromosomes. We masked 58.12% (335.32 Mb) of the genome as repetitive elements, identified 727 noncoding RNAs, and predicted 15,637 protein-coding genes. Gene family evolution and functional enrichment analyses revealed significantly expanded gene families primarily involved in digestion, detoxification, and chemosensation. Strong chromosomal syntenic relationships were also observed among E. elutella, silkworm, and tobacco cutworm. This study could provide a valuable genomic basis for better understanding the biology of E. elutella.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2021-06-17
    Description: The large spectrum of hearing sensitivity observed in primates results from the impact of environmental and behavioral pressures to optimize sound perception and localization. Although evidence of positive selection in auditory genes has been detected in mammals including in Hominoids, selection has never been investigated in other primates. We analyzed 123 genes highly expressed in the inner ear of 27 primate species and tested to what extent positive selection may have shaped these genes in the order Primates tree. We combined both site and branch-site tests to obtain a comprehensive picture of the positively selected genes (PSGs) involved in hearing sensitivity, and drew a detailed description of the most affected branches in the tree. We chose a conservative approach, and thus focused on confounding factors potentially affecting PSG signals (alignment, GC-biased gene conversion, duplications, heterogeneous sequencing qualities). Using site tests, we showed that around 12% of these genes are PSGs, an α selection value consistent with average human genome estimates (10–15%). Using branch-site tests, we showed that the primate tree is heterogeneously affected by positive selection, with the black snub-nosed monkey, the bushbaby, and the orangutan, being the most impacted branches. A large proportion of these genes is inclined to shape hair cells and stereocilia, which are involved in the mechanotransduction process, known to influence frequency perception. Adaptive selection, and more specifically recurrent adaptive evolution, could have acted in parallel on a set of genes (ADGRV1, USH2A, PCDH15, PTPRQ, and ATP8A2) involved in stereocilia growth and the whole complex of bundle links connecting them, in species across different habitats, including high altitude and nocturnal environments.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2021-07-15
    Description: During domestication processes, changes in selective pressures induce multiple phenotypical, physiological, and behavioral changes in target species. The rise of next-generation sequencing has provided a chance to study the genetics bases of these changes, most of the time based on single nucleotide polymorphisms (SNPs). However, several studies have highlighted the impact of structural variations (SVs) on individual fitness, particularly in domestic species. We aimed at unraveling the role of SVs during the domestication and later improvement of small ruminants by analyzing whole-genome sequences of 40 domestic sheep and 11 of their close wild relatives (Ovis orientalis), and 40 goats and 18 of their close wild relatives (Capra aegagrus). Using a combination of detection tools, we called 45,796 SVs in Ovis and 15,047 SVs in Capra genomes, including insertions, deletions, inversions, copy number variations, and chromosomal translocations. Most of these SVs were previously unreported in small ruminants. 69 and 45 SVs in sheep and goats, respectively, were in genomic regions with neighboring SNPs highly differentiated between wilds and domestics (i.e., putatively related to domestication). Among them, 25 and 20 SVs were close to or overlapping with genes related to physiological and morpho-anatomical traits linked with productivity (e.g., size, meat or milk quality, wool color), reproduction, or immunity. Finally, several of the SVs differentiated between wilds and domestics would not have been detected by screening only the differentiation of SNPs surrounding them, highlighting the complementarity of SVs and SNPs based approaches to detect signatures of selection.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2021-06-03
    Description: Annotated genome sequences provide valuable insight into the functional capabilities of members of microbial communities. Nevertheless, most studies on the microbiome in animal guts use metagenomic data, hampering the assignment of genes to specific microbial taxa. Here, we make use of the readily culturable bacterial communities in the gut of the fruit fly Drosophila melanogaster to obtain draft genome sequences for 96 isolates from wild flies. These include 81 new de novo assembled genomes, assigned to three orders (Enterobacterales, Lactobacillales, and Rhodospirillales) with 80% of strains identified to species level using average nucleotide identity and phylogenomic reconstruction. Based on annotations by the RAST pipeline, among-isolate variation in metabolic function partitioned strongly by bacterial order, particularly by amino acid metabolism (Rhodospirillales), fermentation, and nucleotide metabolism (Lactobacillales) and arginine, urea, and polyamine metabolism (Enterobacterales). Seven bacterial species, comprising 2–3 species in each order, were well-represented among the isolates and included ≥5 strains, permitting analysis of metabolic functions in the accessory genome (i.e., genes not present in every strain). Overall, the metabolic function in the accessory genome partitioned by bacterial order. Two species, Gluconobacter cerinus (Rhodospirillales) and Lactiplantibacillus plantarum (Lactobacillales) had large accessory genomes, and metabolic functions were dominated by amino acid metabolism (G. cerinus) and carbohydrate metabolism (La. plantarum). The patterns of variation in metabolic capabilities at multiple phylogenetic scales provide the basis for future studies of the ecological and evolutionary processes shaping the diversity of microorganisms associated with natural populations of Drosophila.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2021-06-21
    Description: The first insect genome assembly (Drosophila melanogaster) was published two decades ago. Today, nuclear genome assemblies are available for a staggering 601 insect species representing 20 orders. In this study, we analyzed the most-contiguous assembly for each species and provide a “state-of-the-field” perspective, emphasizing taxonomic representation, assembly quality, gene completeness, and sequencing technologies. Relative to species richness, genomic efforts have been biased toward four orders (Diptera, Hymenoptera, Collembola, and Phasmatodea), Coleoptera are underrepresented, and 11 orders still lack a publicly available genome assembly. The average insect genome assembly is 439.2 Mb in length with 87.5% of single-copy benchmarking genes intact. Most notable has been the impact of long-read sequencing; assemblies that incorporate long reads are ∼48× more contiguous than those that do not. We offer four recommendations as we collectively continue building insect genome resources: 1) seek better integration between independent research groups and consortia, 2) balance future sampling between filling taxonomic gaps and generating data for targeted questions, 3) take advantage of long-read sequencing technologies, and 4) expand and improve gene annotations.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2021-05-28
    Description: Sex chromosomes are generally derived from a pair of autosomes that have acquired a locus controlling sex. Sex chromosomes may evolve reduced recombination around this locus and undergo a long process of molecular divergence. At that point, the original loci controlling sex may be difficult to pinpoint. This difficulty has affected many model species from mammals to birds to flies, which present highly diverged sex chromosomes. Identifying sex-controlling loci is easier in species with molecularly similar sex chromosomes. Here we aimed at pinpointing the sex-determining region (SDR) of Armadillidium vulgare, a terrestrial isopod with female heterogamety (ZW females and ZZ males) and whose sex chromosomes appear to show low genetic divergence. To locate the SDR, we assessed single-nucleotide polymorphism (SNP) allele frequencies in F1 daughters and sons sequenced in pools (pool-seq) in several families. We developed a Bayesian method that uses the SNP genotypes of individually sequenced parents and pool-seq data from F1 siblings to estimate the genetic distance between a given genomic region (contig) and the SDR. This allowed us to assign more than 43 Mb of contigs to sex chromosomes, and to demonstrate extensive recombination and very low divergence between these chromosomes. By taking advantage of multiple F1 families, we delineated a very short genomic region (∼65 kb) that presented no evidence of recombination with the SDR. In this short genomic region, the comparison of sequencing depths between sexes highlighted female-specific genes that have undergone recent duplication, and which may be involved in sex determination in A. vulgare.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2021-05-01
    Description: Domestication of the helmeted guinea fowl (HGF; Numida meleagris) in Africa remains elusive. Here we report a high-quality de novo genome assembly for domestic HGF generated by long- and short-reads sequencing together with optical and chromatin interaction mapping. Using this assembly as the reference, we performed population genomic analyses for newly sequenced whole-genomes for 129 birds from Africa, Asia, and Europe, including domestic animals (n = 89), wild progenitors (n = 34), and their closely related wild species (n = 6). Our results reveal domestication of HGF in West Africa around 1,300–5,500 years ago. Scanning for selective signals characterized the functional genes in behavior and locomotion changes involved in domestication of HGF. The pleiotropy and linkage in genes affecting plumage color and fertility were revealed in the recent breeding of Italian domestic HGF. In addition to presenting a missing piece to the jigsaw puzzle of domestication in poultry, our study provides valuable genetic resources for researchers and breeders to improve production in this species.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2021-07-10
    Description: Despite the progress made in DNA sequencing over the last decade, reconstructing telomere-to-telomere genome assemblies of large and repeat-rich eukaryotic genomes is still difficult. More accurate basecalls or longer reads could address this issue, but no current sequencing platform can provide both simultaneously. Perennial ryegrass (Lolium perenne L.) is an example of an important species for which the lack of a reference genome assembly hindered a swift adoption of genomics-based methods into breeding programs. To fill this gap, we optimized the Oxford Nanopore Technologies’ sequencing protocol, obtaining sequencing reads with an N50 of 62 kb—a very high value for a plant sample. The assembly of such reads produced a highly complete (2.3 of 2.7 Gb), correct (QV 45), and contiguous (contig N50 and N90 11.74 and 3.34 Mb, respectively) genome assembly. We show how read length was key in determining the assembly contiguity. Sequence annotation revealed the dominance of transposable elements and repeated sequences (81.6% of the assembly) and identified 38,868 protein coding genes. Almost 90% of the bases could be anchored to seven pseudomolecules, providing the first high-quality haploid reference assembly for perennial ryegrass. This protocol will enable producing longer Oxford Nanopore Technology reads for more plant samples and ushering forage grasses into modern genomics-assisted breeding programs.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2021-07-10
    Description: Despite life’s diversity, studies of variation often remind us of our shared evolutionary past. Abundant genome sequencing and analyses of gene regulatory networks illustrate that genes and entire pathways are conserved, reused, and elaborated in the evolution of diversity. Predating these discoveries, 19th-century embryologists observed that though morphology at birth varies tremendously, certain stages of vertebrate embryogenesis appear remarkably similar across vertebrates. In the mid to late 20th century, anatomical variability of early and late-stage embryos and conservation of mid-stages embryos (the “phylotypic” stage) was named the hourglass model of diversification. This model has found mixed support in recent analyses comparing gene expression across species possibly owing to differences in species, embryonic stages, and gene sets compared. We compare 186 microarray and RNA-seq data sets covering embryogenesis in six vertebrate species. We use an unbiased clustering approach to group stages of embryogenesis by transcriptomic similarity and ask whether gene expression similarity of clustered embryonic stages deviates from a null expectation. We characterize expression conservation patterns of each gene at each evolutionary node after correcting for phylogenetic nonindependence. We find significant enrichment of genes exhibiting early conservation, hourglass, late conservation patterns in both microarray and RNA-seq data sets. Enrichment of genes showing patterned conservation through embryogenesis indicates diversification of embryogenesis may be temporally constrained. However, the circumstances under which each pattern emerges remain unknown and require both broad evolutionary sampling and systematic examination of embryogenesis across species.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2021-05-27
    Description: The genomic signature of speciation with gene flow is often attributed to the strength of divergent selection and recombination rate in regions harboring targets for selection. In contrast, allopatric speciation provides a different geographic context and evolutionary scenario, whereby introgression is limited by isolation rather than selection against gene flow. Lacking shared divergent selection or selection against hybridization, we would predict the genomic signature of allopatric speciation would largely be shaped by genomic architecture—the nonrandom distribution of functional elements and chromosomal characteristics—through its role in affecting the processes of selection and drift. Here, we built and annotated a chromosome-scale genome assembly for a songbird (Passeriformes: Certhia americana). We show that the genomic signature of allopatric speciation between its two primary lineages is largely shaped by genomic architecture. Regionally, gene density and recombination rate variation explain a large proportion of variance in genomic diversity, differentiation, and divergence. We identified a heterogeneous landscape of selection and neutrality, with a large portion of the genome under the effects of indirect selection. We found higher proportions of small chromosomes under the effects of indirect selection, likely because they have relatively higher gene density. At the chromosome scale, differential genomic architecture of macro- and microchromosomes shapes the genomic signatures of speciation: chromosome size has: 1) a positive relationship with genetic differentiation, genetic divergence, rate of lineage sorting in the contact zone, and proportion neutral evolution and 2) a negative relationship with genetic diversity and recombination rate.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2021-09-04
    Description: Globin-X (GbX) is an enigmatic member of the vertebrate globin gene family with a wide phyletic distribution that spans protostomes and deuterostomes. Unlike canonical globins such as hemoglobins and myoglobins, functional data suggest that GbX does not have a primary respiratory function. Instead, evidence suggests that the monomeric, membrane-bound GbX may play a role in cellular signaling or protection against the oxidation of membrane lipids. Recently released genomes from key vertebrates provide an excellent opportunity to address questions about the early stages of the evolution of GbX in vertebrates. We integrate bioinformatics, synteny, and phylogenetic analyses to characterize the diversity of GbX genes in non-teleost ray-finned fishes, resolve relationships between the GbX genes of cartilaginous fish and bony vertebrates, and demonstrate that the GbX genes of cyclostomes and gnathostomes derive from independent duplications. Our study highlights the role that whole-genome duplications (WGDs) have played in expanding the repertoire of genes in vertebrate genomes. Our results indicate that GbX paralogs have a remarkably high rate of retention following WGDs relative to other globin genes, and provide an evolutionary framework for interpreting results of experiments that examine functional properties of GbX and patterns of tissue-specific expression. By identifying GbX paralogs that are products of different WGDs, our results can guide the design of experimental work to explore whether gene duplicates that originate via WGDs have evolved novel functional properties or expression profiles relative to singleton or tandemly duplicated copies of GbX.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2021-05-04
    Description: Protein coding genes can contain specific motifs within their nucleotide sequence that function as a signal for various biological pathways. The presence of such sequence motifs within a gene can have beneficial or detrimental effects on the phenotype and fitness of an organism, and this can lead to the enrichment or avoidance of this sequence motif. The degeneracy of the genetic code allows for the existence of alternative synonymous sequences that exclude or include these motifs, while keeping the encoded amino acid sequence intact. This implies that locally, there can be a selective pressure for preferentially using a codon over its synonymous alternative in order to avoid or enrich a specific sequence motif. This selective pressure could—in addition to mutation, drift and selection for translation efficiency and accuracy—contribute to shape the codon usage bias. In this review, we discuss patterns of avoidance of (or enrichment for) the various biological signals contained in specific nucleotide sequence motifs: transcription and translation initiation and termination signals, mRNA maturation signals, and antiviral immune system targets. Experimental data on the phenotypic or fitness effects of synonymous mutations in these sequence motifs confirm that they can be targets of local selection pressures on codon usage. We also formulate the hypothesis that transposable elements could have a similar impact on codon usage through their preferred integration sequences. Overall, selection on codon usage appears to be a combination of a global selection pressure imposed by the translation machinery, and a patchwork of local selection pressures related to biological signals contained in specific sequence motifs.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2021-08-12
    Description: Seed-feeding Nysius insects (Hemiptera: Lygaeidae) have a symbiotic association with distinct intracellular bacteria, “Candidatus Schneideria nysicola” (Gammaproteobacteria). Although many other hemipteran insect groups generally rely on bacterial symbionts that synthesize all ten essential amino acids lacking in their plant sap diets, the nutritional role of Schneideria in Nysius hosts that specialize on a more nutritionally complete seed-based diet has remained unknown. To determine the nutritional and functional capabilities of Schneideria, we sequenced the complete Schneideria genomes from three distantly related endemic Hawaiian Nysius seed bug species. The complete Schneideria genomes are highly conserved and perfectly syntenic among Hawaiian Nysius host species. Each circular chromosome is ∼0.57 Mb in size and encodes 537 protein-coding genes. They further exhibit a strong A + T nucleotide substitution bias with an average G + C nucleotide content of 29%. The predicted nutritional contribution of Schneideria includes four B vitamins and five of the ten essential amino acids that likely match its hosts’ seed-based diet. Disrupted and degraded genes in Schneideria suggests that Hawaiian lineages are undergoing continued gene losses observed in the smaller genomes of the other more ancient hemipteran symbionts.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2021-09-01
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2021-08-12
    Description: Fishes of the family Catostomidae (“suckers”; Teleostei: Cypriniformes) are hypothesized to have undergone an allopolyploidy event approximately 60 Ma. However, genomic evidence has previously been unavailable to assess this hypothesis. We sequenced and assembled the first chromosome-level catostomid genome, Chinese sucker (Myxocyprinus asiaticus), and present clear evidence of a catostomid-specific whole-genome duplication (WGD) event (“Cat-4R”). Our results reveal remarkably strong, conserved synteny since this duplication event, as well as between Myxocyprinus and an unduplicated outgroup, zebrafish (Danio rerio). Gene content and repetitive elements are also approximately evenly distributed across homeologous chromosomes, suggesting that both subgenomes retain some function, with no obvious bias in gene fractionation or subgenome dominance. The Cat-4R duplication provides another independent example of genome evolution following WGD in animals, in this case at the extreme end of conserved genome architecture over at least 25.2 Myr since the duplication. The M. asiaticus genome is a useful resource for researchers interested in understanding genome evolution following WGD in animals.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2021-06-16
    Description: Synonymous mutations are often assumed to be neutral with respect to fitness because they do not alter the encoded amino acid and so cannot be “seen” by natural selection. Yet a growing body of evidence suggests that synonymous mutations can have fitness effects that drive adaptive evolution through their impacts on gene expression and protein folding. Here, we review what microbial experiments have taught us about the contribution of synonymous mutations to adaptation. A survey of site-directed mutagenesis experiments reveals the distributions of fitness effects for nonsynonymous and synonymous mutations are more similar, especially for beneficial mutations, than expected if all synonymous mutations were neutral, suggesting they should drive adaptive evolution more often than is typically observed. A review of experimental evolution studies where synonymous mutations have contributed to adaptation shows they can impact fitness through a range of mechanisms including the creation of illicit RNA polymerase binding sites impacting transcription and changes to mRNA folding stability that modulate translation. We suggest that clonal interference in evolving microbial populations may be the reason synonymous mutations play a smaller role in adaptive evolution than expected based on their observed fitness effects. We finish by discussing the impacts of falsely assuming synonymous mutations are neutral and discuss directions for future work exploring the role of synonymous mutations in adaptive evolution.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2021-05-14
    Description: The nucleotide composition, dinucleotide composition, and codon usage of many viruses differ from their hosts. These differences arise because viruses are subject to unique mutation and selection pressures that do not apply to host genomes; however, the molecular mechanisms that underlie these evolutionary forces are unclear. Here, we analyzed the patterns of codon usage in 1,520 vertebrate-infecting viruses, focusing on parameters known to be under selection and associated with gene regulation. We find that GC content, dinucleotide content, and splicing and m6A modification-related sequence motifs are associated with the type of genetic material (DNA or RNA), strandedness, and replication compartment of viruses. In an experimental follow-up, we find that the effects of GC content on gene expression depend on whether the genetic material is delivered to the cell as DNA or mRNA, whether it is transcribed by endogenous or exogenous RNA polymerase, and whether transcription takes place in the nucleus or cytoplasm. Our results suggest that viral codon usage cannot be explained by a simple adaptation to the codon usage of the host—instead, it reflects the combination of multiple selective and mutational pressures, including the need for efficient transcription, export, and immune evasion.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2021-08-12
    Description: The increasing availability of new genome assemblies often comes with a paucity of associated genomic annotations, limiting the range of studies that can be performed. A common workaround is to lift over annotations from better annotated genomes. However, generating the files required to perform a lift over is computationally and labor intensive and only a limited number are currently publicly available. Here we present nf-LO (nextflow-LiftOver), a containerized and scalable Nextflow pipeline that enables lift overs within and between any species for which assemblies are available. nf-LO will consequently facilitate data interpretation across a broad range of genomic studies.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2021-04-29
    Description: Codon bias is common to all organisms and is the result of mutation, drift, and selection. Selection for the efficiency and accuracy of translation is well recognized as a factor shaping the codon usage. In contrast, fewer studies report the control of the rate of translation as an additional selective pressure influencing the codon usage of an organism. Experimental molecular evolution using RNA virus populations is a powerful tool for the identification of mechanisms underlying the codon bias. Indeed, the role of deoptimized codons on the cotranslational folding has been proven in the capsids of two fecal-orally transmitted picornaviruses, poliovirus, and the hepatitis A virus, emphasizing the role of the frequency of codons in determining the phenotype. However, most studies on virus codon usage rely only on computational analyses, and experimental studies should be encouraged to clearly define the role of selection on codon evolution.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2021-09-01
    Description: A large portion of animal and plant genomes consists of non-coding DNA. This part includes tandemly repeated sequences and gained attention because it offers exciting insights into genome biology. We investigated satellite-DNA elements of the platyhelminth Schistosoma mansoni, a parasite with remarkable biological features. S. mansoni lives in the vasculature of humans causing schistosomiasis, a disease of worldwide importance. Schistosomes are the only trematodes that have evolved separate sexes, and the sexual maturation of the female depends on constant pairing with the male. The schistosome karyotype comprises eight chromosome pairs, males are homogametic (ZZ), females heterogametic (ZW). Part of the repetitive DNA of S. mansoni are W-elements (WEs), originally discovered as female-specific satellite DNAs in the heterochromatic block of the W-chromosome. Based on new genome and transcriptome data, we performed a reanalysis of the W-element families (WEFs). Besides a new classification of 19 WEFs, we provide first evidence for stage-, sex-, pairing-, gonad-, and strain-specific/preferential transcription of WEs as well as their mobile nature, deduced from autosomal copies of full-length and partial WEs. Structural analyses suggested roles as sources of non-coding RNA like hammerhead ribozymes (HHRs), for which we obtained functional evidence. Finally, the variable WEF occurrence in different schistosome species revealed remarkable divergence. From these results we propose that WEs potentially exert enduring influence on the biology of S. mansoni. Their variable occurrence in different strains, isolates, and species suggests that schistosome WEs may represent genetic factors taking effect on variability and evolution of the family Schistosomatidae.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2021-09-01
    Description: Orphan genes are characteristic genomic features that have no detectable homology to genes in any other species and represent an important attribute of genome evolution as sources of novel genetic functions. Here, we identified 445 genes specific to Populus trichocarpa. Of these, we performed deeper reconstruction of 13 orphan genes to provide evidence of de novo gene evolution. Populus and its sister genera Salix are particularly well suited for the study of orphan gene evolution because of the Salicoid whole-genome duplication event (WGD) which resulted in highly syntenic sister chromosomal segments across the Salicaceae. We leveraged this genomic feature to reconstruct de novo gene evolution from inter-genera, inter-species, and intra-genomic perspectives by comparing the syntenic regions within the P. trichocarpa reference, then P. deltoides, and finally Salix purpurea. Furthermore, we demonstrated that 86.5% of the putative orphan genes had evidence of transcription. Additionally, we also utilized the Populus genome-wide association mapping panel (GWAS), a collection of 1,084 undomesticated P. trichocarpa genotypes to further determine putative regulatory networks of orphan genes using expression quantitative trait loci (eQTL) mapping. Functional enrichment of these eQTL subnetworks identified common biological themes associated with orphan genes such as response to stress and defense response. We also identify a putative cis-element for a de novo gene and leverage conserved synteny to describe evolution of a putative transcription factor binding site. Overall, 45% of orphan genes were captured in trans-eQTL networks.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2021-09-10
    Description: Adaptation to rapid environmental changes must occur within a short time scale. In this context, studies of invasive species may provide insights into the underlying mechanisms of rapid adaptation as these species have repeatedly encountered and adapted to novel environmental conditions. We investigated how invasive and non-invasive genotypes of Drosophila suzukii deal with oxidative stress at the phenotypic and molecular levels. We also studied the impact of transposable element (TE) insertions on the gene expression in response to stress. Our results show that flies from invasive areas (France and USA) live longer in natural conditions than the ones from native Japanese areas. As expected, lifespan for all genotypes was significantly reduced following exposure to paraquat, but this reduction varied among genotypes (genotype by environment interaction, GEI) with invasive genotypes appearing more affected by exposure than non-invasive ones. A transcriptomic analysis of genotypes upon paraquat treatment detected many genes differentially expressed (DE). While a small core set of genes were DE in all genotypes following paraquat exposure, much of the response of each genotype was unique. Moreover, we showed that TEs were not activated after oxidative stress and DE genes were significantly depleted of TEs. In conclusion, it's likely that transcriptomic changes are involved in the rapid adaptation to local environments. We provide new evidence that in the decade since the invasion from Asia, the sampled genotypes in Europe and USA of D. suzukii diverged from the ones from the native area regarding their phenotypic and genomic response to oxidative stress.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2021-09-01
    Description: The Arabian Peninsula is strategic for investigations centered on the early structuring of modern humans in the wake of the out-of-Africa migration. Despite its poor climatic conditions for the recovery of ancient human DNA evidence, the availability of both genomic data from neighboring ancient specimens and informative statistical tools allow modeling the ancestry of local modern populations. We applied this approach to a data set of 741,000 variants screened in 291 Arabians and 78 Iranians, and obtained insightful evidence. The west-east axis was a strong forcer of population structure in the Peninsula, and, more importantly, there were clear continuums throughout time linking western Arabia with the Levant, and eastern Arabia with Iran and the Caucasus. Eastern Arabians also displayed the highest levels of the basal Eurasian lineage of all tested modern-day populations, a signal that was maintained even after correcting for a possible bias due to a recent sub-Saharan African input in their genomes. Not surprisingly, eastern Arabians were also the ones with highest similarity with Iberomaurusians, who were, so far, the best proxy for the basal Eurasians amongst the known ancient specimens. The basal Eurasian lineage is the signature of ancient non-Africans who diverged from the common European-eastern Asian pool before 50,000 years ago, prior to the later interbred with Neanderthals. Our results appear to indicate that the exposed basin of the Arabo-Persian Gulf was the possible home of basal Eurasians, a scenario to be further investigated by searching ancient Arabian human specimens.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2021-08-25
    Description: The rearrangement of 37 genes with one control region, firstly identified in Gallus gallus mitogenome, is believed to be ancestral for all Aves. However, mitogenomic sequences obtained in recent years revealed that many avian mitogenomes contain duplicated regions that were omitted in previous genomic versions. Their evolution and mechanism of duplication are still poorly understood. The order of Accipitriformes is especially interesting in this context because its representatives contain a duplicated control region in various stages of degeneration. Therefore, we applied an appropriate PCR strategy to look for duplications within the mitogenomes of the early diverged species Sagittarius serpentarius and Cathartiformes, which is a sister order to Accipitriformes. The analyses revealed the same duplicated gene order in all examined taxa and the common ancestor of these groups. The duplicated regions were subjected to gradual degeneration and homogenization during concerted evolution. The latter process occurred recently in the species of Cathartiformes as well as in the early diverged lineages of Accipitriformes, that is, Sagittarius serpentarius and Pandion haliaetus. However, in other lineages, that is, Pernis ptilorhynchus, as well as representatives of Aegypiinae, Aquilinae, and five related subfamilies of Accipitriformes (Accipitrinae, Circinae, Buteoninae, Haliaeetinae, and Milvinae), the duplications were evolving independently for at least 14–47 Myr. Different portions of control regions in Cathartiformes showed conflicting phylogenetic signals indicating that some sections of these regions were homogenized at a frequency higher than the rate of speciation, whereas others have still evolved separately.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
  • 86
    Publication Date: 2021-08-17
    Description: MutS is a key component of the mismatch repair (MMR) pathway. Members of the MutS protein family are present in prokaryotes, eukaryotes, and viruses. Six MutS homologs (MSH1–6) have been identified in yeast, of which three function in nuclear MMR, while MSH1 functions in mitochondrial DNA repair. MSH proteins are believed to be well conserved in animals, except for MSH1—which is thought to be lost. Two intriguing exceptions to this general picture have been found, both in the class Anthozoa within the phylum Cnidaria. First, an ortholog of the yeast-MSH1 was reported in one hexacoral species. Second, a MutS homolog (mtMutS) has been found in the mitochondrial genome of all octocorals. To understand the origin and potential functional implications of these exceptions, we investigated the evolution of the MutS family both in Cnidaria and in animals in general. Our study confirmed the acquisition of octocoral mtMutS by horizontal gene transfer from a giant virus. Surprisingly, we identified MSH1 in all hexacorals and several sponges and placozoans. By contrast, MSH1 orthologs were lacking in other cnidarians, ctenophores, and bilaterian animals. Furthermore, while we identified MSH2 and MSH6 in nearly all animals, MSH4, MSH5, and, especially, MSH3 were missing in multiple species. Overall, our analysis revealed a dynamic evolution of the MutS family in animals, with multiple losses of MSH1, MSH3, some losses of MSH4 and MSH5, and a gain of the octocoral mtMutS. We propose that octocoral mtMutS functionally replaced MSH1 that was present in the common ancestor of Anthozoa.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2021-08-13
    Description: Insect pickpocket (PPK) receptors mediate diverse functions, among them the detection of mechano- and chemo-sensory stimuli. Notwithstanding their relevance, studies on their evolution only focused on Drosophila. We have analyzed the genomes of 26 species of eight orders including holometabolous and hemimetabolous insects (Blattodea, Orthoptera, Hemiptera, Phthiraptera, Hymenoptera, Lepidoptera, Coleoptera, and Diptera), to characterize the evolution of this gene family. PPKs were detected in all genomes analyzed, with 578 genes distributed in seven subfamilies. According to our phylogeny, ppk17 is the most divergent member, composing the new subfamily VII. PPKs evolved under a gene birth-and-death model that generated lineage-specific expansions usually located in clusters, while purifying selection affected several orthogroups. Subfamily V was the largest, including a mosquito-specific expansion that can be considered a new target for pest control. PPKs present a high gene turnover generating considerable variation. On one hand, Musca domestica (59), Aedes albopictus (51), Culex quinquefasciatus (48), and Blattella germanica (41) presented the largest PPK repertoires. On the other hand, Pediculus humanus (only ppk17), bees, and ants (6–9) had the smallest PPK sets. A subset of prevalent PPKs was identified, indicating very conserved functions for these receptors. Finally, at least 20% of the sequences presented calmodulin-binding motifs, suggesting that these PPKs may amplify sensory responses similarly as proposed for Drosophila melanogaster ppk25. Overall, this work characterized the evolutionary history of these receptors revealing relevant unknown gene sequence features and clade-specific expansions.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2021-05-05
    Description: Transposable elements (TEs) are an important component of the complex genomic ecosystem. Understanding the tempo and mode of TE proliferation, that is whether it is in maintained in transposition selection balance, or is induced periodically by environmental stress or other factors, is important for understanding the evolution of organismal genomes through time. Although TEs have been characterized in individuals or limited samples, a true understanding of the population genetics of TEs, and therefore the tempo and mode of transposition, is still lacking. Here, we characterize the TE landscape in an important model Drosophila, Drosophila serrata using the D. serrata reference panel, which is comprised of 102 sequenced inbred genotypes. We annotate the families of TEs in the D. serrata genome and investigate variation in TE copy number between genotypes. We find that many TEs have low copy number in the population, but this varies by family and includes a single TE making up to 50% of the genome content of TEs. We find that some TEs proliferate in particular genotypes compared with population levels. In addition, we characterize variation in each TE family allowing copy number to vary in each genotype and find that some TEs have diversified very little between individuals suggesting recent spread. TEs are important sources of spontaneous mutations in Drosophila, making up a large fraction of the total number of mutations in particular genotypes. Understanding the dynamics of TEs within populations will be an important step toward characterizing the origin of variation within and between species.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2021-04-15
    Description: Transposable elements (TEs) are major components of eukaryotic genomes and represent approximately 45% of the human genome. TEs can be important sources of novelty in genomes and there is increasing evidence that TEs contribute to the evolution of gene regulation in mammals. Gene duplication is an evolutionary mechanism that also provides new genetic material and opportunities to acquire new functions. To investigate how duplicated genes are maintained in genomes, here, we explored the TE environment of duplicated and singleton genes. We found that singleton genes have more short-interspersed nuclear elements and DNA transposons in their vicinity than duplicated genes, whereas long-interspersed nuclear elements and long-terminal repeat retrotransposons have accumulated more near duplicated genes. We also discovered that this result is highly associated with the degree of essentiality of the genes with an unexpected accumulation of short-interspersed nuclear elements and DNA transposons around the more-essential genes. Our results underline the importance of taking into account the TE environment of genes to better understand how duplicated genes are maintained in genomes.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2021-07-17
    Description: Ovothiols are sulfur-containing amino acids synthesized by marine invertebrates, protozoans, and bacteria. They act as pleiotropic molecules in signaling and protection against oxidative stress. The discovery of ovothiol biosynthetic enzymes, sulfoxide synthase OvoA and β-lyase OvoB, paves the way for a systematic investigation of ovothiol distribution and molecular diversification in nature. In this work, we conducted genomic and metagenomics data mining to investigate the distribution and diversification of ovothiol biosynthetic enzymes in Bacteria. We identified the bacteria endowed with this secondary metabolic pathway, described their taxonomy, habitat and biotic interactions in order to provide insight into their adaptation to specific environments. We report that OvoA and OvoB are mostly encountered in marine aerobic Proteobacteria, some of them establishing symbiotic or parasitic relationships with other organisms. We identified a horizontal gene transfer event of OvoB from Bacteroidetes living in symbiosis with Hydrozoa. Our search within the Ocean Gene Atlas revealed the occurrence of ovothiol biosynthetic genes in Proteobacteria living in a wide range of pelagic and highly oxygenated environments. Finally, we tracked the evolutionary history of ovothiol biosynthesis from marine bacteria to unicellular eukaryotes and metazoans. Our analysis provides new conceptual elements to unravel the evolutionary and ecological significance of ovothiol biosynthesis.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2021-08-25
    Description: Species are indisputable units for biodiversity conservation, yet their delimitation is fraught with both conceptual and methodological difficulties. A classic example is the taxonomic controversy surrounding the Gila robusta complex in the lower Colorado River of southwestern North America. Nominal species designations were originally defined according to weakly diagnostic morphological differences, but these conflicted with subsequent genetic analyses. Given this ambiguity, the complex was re-defined as a single polytypic unit, with the proposed “threatened” status under the U.S. Endangered Species Act of two elements being withdrawn. Here we re-evaluated the status of the complex by utilizing dense spatial and genomic sampling (n = 387 and 〉22 k loci), coupled with SNP-based coalescent and polymorphism-aware phylogenetic models. In doing so, we found that all three species were indeed supported as evolutionarily independent lineages, despite widespread phylogenetic discordance. To juxtapose this discrepancy with previous studies, we first categorized those evolutionary mechanisms driving discordance, then tested (and subsequently rejected) prior hypotheses which argued phylogenetic discord in the complex was driven by the hybrid origin of Gila nigra. The inconsistent patterns of diversity we found within G. robusta were instead associated with rapid Plio-Pleistocene drainage evolution, with subsequent divergence within the “anomaly zone” of tree space producing ambiguities that served to confound prior studies. Our results not only support the resurrection of the three species as distinct entities but also offer an empirical example of how phylogenetic discordance can be categorized within other recalcitrant taxa, particularly when variation is primarily partitioned at the species level.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2021-08-27
    Description: Lysozyme enzymes provide classic examples of molecular adaptation and parallel evolution, however, nearly all insights to date come from chicken-type (c-type) lysozymes. Goose-type (g-type) lysozymes occur in diverse vertebrates, with multiple independent duplications reported. Most mammals possess two g-type lysozyme genes (Lyg1 and Lyg2), the result of an early duplication, although some lineages are known to have subsequently lost one copy. Here we examine g-type lysozyme evolution across 〉250 mammals and reveal widespread losses of either Lyg1 or Lyg2 in several divergent taxa across the mammal tree of life. At the same time, we report strong evidence of extensive losses of both gene copies in cetaceans and sirenians, with an additional putative case of parallel loss in the tarsier. To validate these findings, we inspected published short-read data and confirmed the presence of loss of function mutations. Despite these losses, comparisons of selection pressures between intact g- and c-type lysozyme genes showed stronger purifying selection in the former, indicative of conserved function. Although the reasons for the evolutionary loss of g-type lysozymes in fully aquatic mammals are not known, we suggest that this is likely to at least partially relate to their hairlessness. Indeed, although Lyg1 does not show tissue-specific expression, recent studies have linked Lyg2 expression to anagen hair follicle development and hair loss. Such a role for g-type lysozyme would explain why the Lyg2 gene became obsolete when these taxa lost their body hair.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2021-08-25
    Description: The magnitude and functional patterns of intraspecific transcriptional variation in the anophelines, including those of sex-biased genes underlying sex-specific traits relevant for malaria transmission, remain understudied. As a result, how changes in expression levels drive adaptation in these species is poorly understood. We sequenced the female, male, and larval transcriptomes of three populations of Anopheles arabiensis from Burkina Faso. One-third of the genes were differentially expressed between populations, often involving insecticide resistance-related genes in a sample type-specific manner, and with the females showing the largest number of differentially expressed genes. At the genomic level, the X chromosome appears depleted of differentially expressed genes compared with the autosomes, chromosomes harboring inversions do not exhibit evidence for enrichment of such genes, and genes that are top contributors to functional enrichment patterns of population differentiation tend to be clustered in the genome. Further, the magnitude of variation for the sex expression ratio across populations did not substantially differ between male- and female-biased genes, except for some populations in which male-limited expressed genes showed more variation than their female counterparts. In fact, female-biased genes exhibited a larger level of interpopulation variation than male-biased genes, both when assayed in males and females. Beyond uncovering the extensive adaptive potential of transcriptional variation in An. Arabiensis, our findings suggest that the evolutionary rate of changes in expression levels on the X chromosome exceeds that on the autosomes, while pointing to female-biased genes as the most variable component of the An. Arabiensis transcriptome.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2021-08-25
    Description: Discrete classification of SARS-CoV-2 viral genotypes can identify emerging strains and detect geographic spread, viral diversity, and transmission events. We developed a tool (GNU-based Virus IDentification [GNUVID]) that integrates whole-genome multilocus sequence typing and a supervised machine learning random forest-based classifier. We used GNUVID to assign sequence type (ST) profiles to all high-quality genomes available from GISAID. STs were clustered into clonal complexes (CCs) and then used to train a machine learning classifier. We used this tool to detect potential introduction and exportation events and to estimate effective viral diversity across locations and over time in 16 US states. GNUVID is a highly scalable tool for viral genotype classification (https://github.com/ahmedmagds/GNUVID) that can quickly classify hundreds of thousands of genomes in a way that is consistent with phylogeny. Our genotyping ST/CC analysis uncovered dynamic local changes in ST/CC prevalence and diversity with multiple replacement events in different states, an average of 20.6 putative introductions and 7.5 exportations for each state over the time period analyzed. We introduce the use of effective diversity metrics (Hill numbers) that can be used to estimate the impact of interventions (e.g., travel restrictions, vaccine uptake, mask mandates) on the variation in circulating viruses. Our classification tool uncovered multiple introduction and exportation events, as well as waves of expansion and replacement of SARS-CoV-2 genotypes in different states. GNUVID classification lends itself to measures of ecological diversity, and, with systematic genomic sampling, it could be used to track circulating viral diversity and identify emerging clones and hotspots.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2021-08-19
    Description: Recent studies on paleogenomics have reported some Paleolithic and Neolithic genomes that have provided new insights into the human population history in East and Northeast Asia. However, there remain some cases where more recent migration events need to be examined to elucidate the detailed formation process of local populations. Although the area around northern Japan is one of the regions archaeologically suggested to have been affected by migration waves after the Neolithic period, the genetic source of these migrations are still unclear. Thus, genomic data from such past migrant populations would be highly informative to clarify the detailed formation process of local populations in this region. Here, we report the genome sequence of a 900-year-old adult female (NAT002) belonging to the prehistoric Okhotsk people, who have been considered to be the past migrants to northern Japan after the Neolithic period. We found a close relationship between NAT002 and modern Lower Amur populations and past admixture events between the Amur, Jomon, and Kamchatka ancestries. The admixture dating suggested migration of Amur-related ancestry at approximately 1,600 BP, which is compatible with the archaeological evidence regarding the settlement of the Okhotsk people. Our results also imply migration of Kamchatka-related ancestry at approximately 2,000 BP. In addition, human leukocyte antigen (HLA) typing detected the HLA-B*40 allele, which is reported to increase the risk of arthritis, suggesting the genetic vulnerability of NAT002 to hyperostosis, which was observed around her chest clavicle.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2021-08-19
    Description: Previous studies of the brown bear (Ursus arctos) on Hokkaido Island, Japan, have detected three geographically distinct subpopulations representing different mitochondrial lineages and shown that gene flow between subpopulations has occurred due to male-biased dispersal. In this study, we determined whole-genomic sequences for six Hokkaido brown bears and analyzed these data along with previously published genomic sequences of 17 brown bears from other parts of the world. We found that the Hokkaido population is genetically distinct from the other populations, keeping genetic diversity higher than the endangered populations in western Europe but lower than most populations on the continents. A reconstruction of historical demography showed no increase in population size for the Hokkaido population during the Eemian interglacial period (130,000–114,000 years ago). In a phylogenetic analysis of the autosomal data, the Hokkaido population formed a clade distinct from North American and European populations, showing that it has maintained genetic diversity independently from continental populations following geographical isolation on the island. This autosomal genetic similarity contrasts with the geographically separate mitochondrial lineages on Hokkaido and indicates the occurrence of male-driven gene flow between subpopulations.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2021-07-23
    Description: We here describe sequencing and assembly of both the autosomes and the sex chromosome in Micropoecilia picta, the closest related species to the guppy, Poecilia reticulata. Poecilia (Micropoecilia) picta is a close outgroup for studying the guppy, an important organism for studies in evolutionary ecology and in sex chromosome evolution. The guppy XY pair (LG12) has long been studied as a test case for the importance of sexually antagonistic variants in selection for suppressed recombination between Y and X chromosomes. The guppy Y chromosome is not degenerated, but appears to carry functional copies of all genes that are present on its X counterpart. The X chromosomes of M. picta (and its relative Micropoecilia parae) are homologous to the guppy XY pair, but their Y chromosomes are highly degenerated, and no genes can be identified in the fully Y-linked region. A complete genome sequence of a M. picta male may therefore contribute to understanding how the guppy Y evolved. These fish species’ genomes are estimated to be about 750 Mb, with high densities of repetitive sequences, suggesting that long-read sequencing is needed. We evaluated several assembly approaches, and used our results to investigate the extent of Y chromosome degeneration in this species.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2021-08-12
    Description: Since Darwin, evolutionary biologists have sought to understand the drivers and mechanisms of natural trait diversity. The field advances toward this goal with the discovery of phenotypes that vary in the wild, their relationship to ecology, and their underlying genes. Here, we established resistance to extreme low temperature in the free-living nematode Caenorhabditis briggsae as an ecological and evolutionary model system. We found that C. briggsae strains of temperate origin were strikingly more cold-resistant than those isolated from tropical localities. Transcriptional profiling revealed expression patterns unique to the resistant temperate ecotype, including dozens of genes expressed at high levels even after multiple days of cold-induced physiological slowdown. Mutational analysis validated a role in cold resistance for seven such genes. These findings highlight a candidate case of robust, genetically complex adaptation in an emerging model nematode, and shed light on the mechanisms at play.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2021-09-23
    Description: The DNA mismatch repair (MMR) pathway corrects mismatched bases produced during DNA replication and is highly conserved across the tree of life, reflecting its fundamental importance for genome integrity. Loss of function in one or a few MMR genes can lead to increased mutation rates and microsatellite instability, as seen in some human cancers. While loss of MMR genes has been documented in the context of human disease and in hypermutant strains of pathogens, examples of entire species and species lineages that have experienced substantial MMR gene loss are lacking. We examined the genomes of 1,107 species in the fungal phylum Ascomycota for the presence of 52 genes known to be involved in the MMR pathway of fungi. We found that the median ascomycete genome contained 49/52 MMR genes. In contrast, four closely related species of obligate plant parasites from the powdery mildew genera Erysiphe and Blumeria, have lost between 5 and 21 MMR genes, including MLH3, EXO1, and DPB11. The lost genes span MMR functions, include genes that are conserved in all other ascomycetes, and loss of function of any of these genes alone has been previously linked to increased mutation rate. Consistent with the hypothesis that loss of these genes impairs MMR pathway function, we found that powdery mildew genomes with higher levels of MMR gene loss exhibit increased numbers of mononucleotide runs, longer microsatellites, accelerated sequence evolution, elevated mutational bias in the A|T direction, and decreased GC content. These results identify a striking example of macroevolutionary loss of multiple MMR pathway genes in a eukaryotic lineage, even though the mutational outcomes of these losses appear to resemble those associated with detrimental MMR dysfunction in other organisms.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2021-09-01
    Description: Transposable elements (TEs) are genomic parasites, which activity is tightly controlled in germline cells. Using Sindbis virus, it was recently demonstrated that viral infections affect TE transcript amounts in somatic tissues. However, the strongest evolutionary impacts are expected in gonads, because that is where the genomes of the next generations lie. Here, we investigated this aspect using the Drosophila melanogaster Sigma virus. It is particularly relevant in the genome/TE interaction given its tropism to ovaries, which is the organ displaying the more sophisticated TE control pathways. Our results in Drosophila simulans flies allowed us to confirm the existence of a strong homeostasis of the TE transcriptome in ovaries upon infection, which, however, rely on TE-derived small RNA modulations. In addition, we performed a meta-analysis of RNA-seq data and propose that the immune pathway that is triggered upon viral infection determines the direction of TE transcript modulation in somatic tissues.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...