ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (47)
  • Copernicus  (47)
  • American Association for the Advancement of Science
  • 2010-2014  (47)
  • 1980-1984
  • 1965-1969
  • 1960-1964
  • 1925-1929
  • 2010  (47)
  • 92597
Collection
  • Articles  (47)
Publisher
  • Copernicus  (47)
  • American Association for the Advancement of Science
Years
  • 2010-2014  (47)
  • 1980-1984
  • 1965-1969
  • 1960-1964
  • 1925-1929
Year
Journal
Topic
  • 1
    Publication Date: 2010-12-21
    Description: The sea level contribution from glacial sources has been accelerating during the first decade of the 21st Century (Meier et al., 2007; Velicogna, 2009). This contribution is not distributed uniformly across the world's oceans due to both oceanographic and gravitational effects. We compute the sea level signature for ice mass fluxes due to changes in the gravity field, Earth's rotation and related effects for the nine year period 2000–2008. Mass loss from Greenland results in a relative sea level (RSL) reduction for much of North Western Europe and Eastern Canada. RSL rise from this source is concentrated around South America. Losses in West Antarctica marginally compensate for this and produce maxima along the coastlines of North America, Australia and Oceania. The combined far-field pattern of wastage from all ice melt sources, is dominated by losses from the ice sheets and results in maxima at latitudes between 20° N and 40° S across the Pacific and Indian Oceans, affecting particularly vulnerable land masses in Oceania. The spatial pattern of RSL variations from ice mass losses used in this study is time-invariant and cumulative. Thus, sea level rise, based on the gravitational effects from the ice losses considered here, will be amplified for this sensitive region.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-12-15
    Description: Realistic predictions of the behaviour of marine ice sheets require that models are able to robustly simulate grounding line migration. Fixed-grid ice sheet models have been shown to exhibit inconsistent and hence unreliable grounding line migration, except at very high resolution not yet achievable in whole ice sheet simulations. In this study we present several different approaches to parameterising the grounding line. These are distinguished by choices regarding the ice thickness profile from the last grounded to the first floating grid point, and how this profile impacts the gravitational driving stress and basal drag. We demonstrate that the most obvious choice of thickness parameterisation, linear interpolation from the last grounded to the first floating grid point, is not the most effective. We show that use of a grounding line parameterisation greatly improves performance, and that choice of a better grounding line parameterisation over a simpler one can bring further improvements, in terms of both accuracy and self consistent behaviour, comparable to increasing the grid resolution by factor two (i.e. doubling the number of grid points). The approach presented here to parameterising the grounding line does not completely solve the grounding line problem, however it reduces the resolution required. The parameterisations are presented in the context of a one dimensional "shelfy-stream" flow-line model, but could be extended to cope with more than one dimension and other model formulations.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-12-10
    Description: Glaciers are widely recognized as unique demonstration objects for climate change impacts, mostly due to the strong change of glacier length in response to small climatic changes. However, glacier mass balance as the direct response to the annual atmospheric conditions can be better interpreted in meteorological terms. When the climatic signal is deduced from long-term mass balance data, changes in glacier geometry (i.e. surface extent and elevation) must be considered as such adjustments form an essential part of the glacier reaction to new climatic conditions. In this study, a set of modelling experiments is performed to assess the influence of changes in glacier geometry on mass balance for constant climatic conditions. The calculations are based on a simplified distributed energy/mass balance model in combination with information on glacier extent and surface elevation for the years 1850 and 1973/1985 for about 60 glaciers in the Swiss Alps. The results reveal that over this period about 50–70% of the glacier reaction to climate change (here a one degree increase in temperature) is "hidden" in the geometric adjustment, while only 30–50% can be measured as the long-term mean mass balance. For larger glaciers, the effect of the areal change is partly reduced by a lowered surface elevation, which results in a slightly more negative balance despite a potential increase of topographic shading. In view of several additional reinforcement feedbacks that are observed in periods of strong glacier decline, it seems that the climatic interpretation of long-term mass balance data is rather complex.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-02-05
    Description: Snow transport is one of the most dominant processes influencing the snow cover accumulation and ablation in high mountain environments. Hence, the spatial and temporal variability of the snow cover is significantly modified with respective consequences on the total amount of water in the snow pack, on the temporal dynamics of the runoff and on the energy balance of the surface. For the present study we used the snow transport model SnowModel in combination with MM5 (Penn State University – National Center for Atmospheric Research MM5 model) generated wind fields. In a first step the MM5 wind fields were downscaled by using a semi-empirical approach which accounts for the elevation difference of model and real topography, and vegetation. The target resolution of 30 m corresponds to the resolution of the best available DEM and land cover map of the test site Berchtesgaden National Park. For the numerical modelling, data of six automatic meteorological stations were used, comprising the winter season (September–August) of 2003/04 and 2004/05. In addition we had automatic snow depth measurements and periodic manual measurements of snow courses available for the validation of the results. It could be shown that the model performance of SnowModel could be improved by using downscaled MM5 wind fields for the test site. Furthermore, it was shown that an estimation of snow transport from surrounding areas to glaciers becomes possible by using downscaled MM5 wind fields.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-01-25
    Description: The potential of high-resolution repeat DEMs was investigated for glaciological applications including periglacial features (e.g. rock glaciers). It was shown that glacier boundaries can be delineated using airborne LIDAR-DEMs as a primary data source and that information on debris cover extent could be extracted using multi-temporal DEMs. Problems and limitations are discussed, and accuracies quantified. Absolute deviations of airborne laser scanning (ALS) derived glacier boundaries from ground-truthed ones were below 4 m for 80% of the ground-truthed values. Overall, we estimated an accuracy of +/−1.5% of the glacier area for glaciers larger than 1 km2. The errors in the case of smaller glaciers did not exceed +/−5% of the glacier area. The use of repeat DEMs in order to obtain information on the extent, characteristics and activity of rock glaciers was investigated and discussed based on examples.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-01-21
    Description: The specific surface area (SSA) of the snow constitutes a powerful parameter to quantify the exchange of matter and energy between the snow and the atmosphere. However, currently no snow physics model can simulate the SSA. Therefore, two different types of empirical parameterizations of the specific surface area (SSA) of snow are implemented into the existing one-dimensional snow physics model CROCUS. The parameterizations are either based on diagnostic equations relating the SSA to parameters like snow type and density or on prognostic equations that describe the change of SSA depending on snow age, snowpack temperature, and the temperature gradient within the snowpack. Simulations with the upgraded CROCUS model were performed for a subarctic snowpack, for which an extensive data set including SSA measurements is available at Fairbanks, Alaska for the winter season 2003/2004. While a reasonable agreement between simulated and observed SSA values is obtained using both parameterizations, the model tends to overestimate the SSA. This overestimation is more pronounced using the diagnostic equations compared to the results of the prognostic equations. Parts of the SSA deviations using both parameterizations can be attributed to differences between simulated and observed snow heights, densities, and temperatures. Therefore, further sensitivity studies regarding the thermal budget of the snowpack were performed. They revealed that reducing the thermal conductivity of the snow or increasing the turbulent fluxes at the snow surfaces leads to a slight improvement of the simulated thermal budget of the snowpack compared to the observations. However, their impact on further simulated parameters like snow height and SSA remains small. Including additional physical processes in the snow model may have the potential to advance the simulations of the thermal budget of the snowpack and, thus, the SSA simulations.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-01-08
    Description: Subglacial lakes in Antarctica influence to a large extent the flow of the ice sheet. In this study we use an idealised lake geometry to study this impact. We employ a) an improved three-dimensional full-Stokes ice flow model with a nonlinear rheology, b) a three-dimensional fluid dynamics model with eddy diffusion to simulate the basal mass balance at the lake-ice interface, and c) a newly developed coupler to exchange boundary conditions between the two individual models. Different boundary conditions are applied over grounded ice and floating ice. This results in significantly increased temperatures within the ice on top of the lake, compared to ice at the same depth outside the lake area. Basal melting of the ice sheet increases this lateral temperature gradient. Upstream the ice flow converges towards the lake and accelerates by about 10% whenever basal melting at the ice-lake boundary is present. Above and downstream of the lake, where the ice flow diverges, a velocity decrease of about 10% is simulated.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-04-21
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-02-02
    Description: In recent decades, seven out of twelve ice shelves around the Antarctic Peninsula (AP) have either retreated significantly or have been almost entirely lost. At least some of these retreats have been shown to be unusual within the context of the Holocene and have been widely attributed to recent atmospheric and oceanic changes. To date, measurements of the area of ice shelves on the AP have either been approximated, or calculated for individual shelves over dissimilar time intervals. Here we present a new dataset containing up-to-date and consistent area calculations for each of the twelve ice shelves on the AP over the past five decades. The results reveal an overall reduction in total ice-shelf area by over 28 000 km2 since the beginning of the period. Individual ice shelves show different rates of retreat, ranging from slow but progressive retreat to abrupt collapse. We discuss the pertinent features of each ice shelf and also broad spatial and temporal patterns in the timing and rate of retreat. We believe that an understanding of this diversity and what it implies about the underlying dynamics and control will provide the best foundation for developing a reliable predictive skill for ice-shelf change.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-12-01
    Description: A simulation of 51 years (1957–2008) has been performed over Greenland using the regional atmospheric climate model (RACMO2/GR) at a horizontal grid spacing of 11 km and forced by ECMWF re-analysis products. To better represent processes affecting ice sheet surface mass balance, such as meltwater refreezing and penetration, an additional snow/ice surface module has been developed and implemented into the surface part of the climate model. The temporal evolution and climatology of the model is evaluated with in situ coastal and ice sheet atmospheric measurements of near-surface variables and surface energy balance components. The bias for the near-surface air temperature (−0.8 °C), specific humidity (0.1 g kg−1), wind speed (0.3 m s−1) as well as for radiative (2.5 W m−2 for net radiation) and turbulent heat fluxes shows that the model is in good accordance with available observations on and around the ice sheet. The modelled surface energy budget underestimates the downward longwave radiation and overestimates the sensible heat flux. Due to their compensating effect, the averaged 2 m temperature bias is small and the katabatic wind circulation well captured by the model.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2010-12-08
    Description: The comparison of two shallow ice cores recovered in 1999 and 2000 from the same place on the Chimborazo summit glacier revealed the influence of the coincident Tungurahua volcanic eruption on their stable isotope and chemical records. The surface snow melting and water percolation induced from the ash deposition caused a preferential elution and re-localization of certain ionic species, while the stable isotope records were not affected. Additionally, the comparison of the ionic amount and some selected ion ratios preserved along the ice core column reports under which processes the chemical species are introduced in the snow pack, as snow flake condensation nuclei, by atmospheric scavenging or by dry deposition. This preliminary study is essential for the interpretation of the deep Chimborazo ice core, or for other sites where surrounding volcanic activity influences the glaciochemical records.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2010-11-08
    Description: Multi-channel ground-penetrating radar is used to investigate the late-summer evolution of the thaw depth and the average soil water content of the thawed active layer at a high-arctic continuous permafrost site on Svalbard, Norway. Between mid of August and mid of September 2008, five surveys have been conducted in gravelly soil over transect lengths of 130 and 175 m each. The maximum thaw depths range from 1.6 m to 2.0 m, so that they are among the deepest thaw depths recorded in sediments on Svalbard so far. The thaw depths increase by approximately 0.2 m between mid of August and beginning of September and subsequently remain constant until mid of September. The thaw rates are approximately constant over the entire length of the transects within the measurement accuracy of about 5 to 10 cm. The average volumetric soil water content of the thawed soil varies between 0.18 and 0.27 along the investigated transects. While the measurements do not show significant changes in soil water content over the first four weeks of the study, strong precipitation causes an increase in average soil water content of up to 0.04 during the last week. These values are in good agreement with evapotranspiration and precipitation rates measured in the vicinity of the the study site. While we cannot provide conclusive reasons for the detected spatial variability of the thaw depth at the study site, our measurements show that thaw depth and average soil water content are not directly correlated. The study demonstrates the potential of multi-channel ground-penetrating radar for mapping thaw depth in permafrost areas. The novel non-invasive technique is particularly useful when the thaw depth exceeds 1.5 m, so that it is hardly accessible by manual probing. In addition, multi-channel ground-penetrating radar holds potential for mapping the latent heat content of the active layer and for estimating weekly to monthly averages of the ground heat flux during the thaw period.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2010-10-18
    Description: Ground-based radio echo sounding data acquired along the 1700 km US-ITASE traverse have been used to determine ice attenuation and relative basal reflectivity across the major catchments funneling ice from East Antarctica to the Ross Ice Shelf. We find that basal reflectivity varies locally by up to 40 dB which we interpret as due to changes in the phase state at the bed. Some, though not all, areas of high local reflectivity are observed to have flat-lying bed reflections indicative of sub-glacial lakes. We compare basal reflectivity to ice balance velocity and find a general association of higher flow speeds with high radar reflection strength. This set of observations from two independent remotely sensed geophysical data sets extends the range of field observations to the interior of East Antarctica and confirms the importance of basal lubrication on modulating the ice dynamics of the largest ice sheet on the planet.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2010-09-23
    Description: We first present the results of a series of tracer experiments conducted on an alpine glacier (Gornergletscher, Switzerland) over a diurnal discharge cycle. For these injections, a moulin was used into which an ice marginal lake was draining, providing a relatively constant discharge. The measured tracer transit speeds show two diurnal maxima and minima. These findings are qualitatively different to existing observations from two series of injections conducted at Unteraargletscher (Switzerland) using a moulin fed by supraglacial meltwater having a high diurnal variability, which displayed one diurnal maximum and minimum. We then develop and use a simple two-component model of the glacier drainage system, comprising a moulin and a channel element, to simulate the measured transit speeds for all three injection series. The model successfully reproduces all the observations and shows that the same underlying processes can produce the qualitatively different behaviour depending on the different moulin input discharge regimes. Using the model, we assess the relative importance of the different measurement quantities, show that frequent measurements of moulin input discharge are indispensable and propose an experiment design to monitor the development of the drainage system over several weeks.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2010-09-29
    Description: The western Nyainqentanglha Range is located in the south-eastern centre of the Tibetan Plateau. Its north-western slopes drain into Lake Nam Co. The region is of special interest for glacio-climatological research as it is influenced by both the continental climate of Central Asia and the Indian Monsoon system, and situated at the transition zone between temperate and subcontinental glaciers. A glacier inventory for the whole mountain range was generated for the year around 2001 using automated remote sensing and GIS techniques based on Landsat ETM+ and SRTM3 DEM data. Glacier change analysis was based on data from Hexagon KH-9 and Landsat MSS (both 1976), Metric Camera (1984), and Landsat TM/ETM+ (1991, 2001, 2005, 2009). Manual adjustment was especially necessary for delineating the debris-covered glaciers and the glaciers on the panchromatic Hexagon data. In the years around 2001 the whole mountain range contained about 960 glaciers covering an area of 795.6 ± 22.3 km2 while the ice in the drainage basin of Nam Co covered 198.1 ± 5.6 km2. The median elevation of the glaciers was about 5800 m with the majority terminating around 5600 m. Five glaciers with debris-covered tongues terminated lower than 5200 m. The glacier area decreased by −6.1 ± 3% between 1976 and 2001. This is less than reported in previous studies based on the 1970s topographic maps and Landsat data from 2000. Glaciers continued to shrink during the period 2001–2009. No advancing glaciers were detected. Detailed length measurements for five glaciers indicated a retreat of around 10 m per year (1976–2009). Ice cover is higher south-east of the mountain ridge which reflects the windward direction to the monsoon. The temperature increase during the ablation period was probably the main driver of glacier wastage, but the complex glacier-climate interactions need further investigation.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2010-09-20
    Description: Retrieval of Arctic sea ice thickness from CryoSat-2 radar altimeter freeboard data requires observational data to verify the relation between these two variables. In this study in-situ ice and snow data from 689 observation sites, obtained during the Sever expeditions in the 1980s, have been used to establish an empirical relation between thickness and freeboard of FY ice in late winter. Estimates of mean and variability of snow depth, snow density and ice density were produced on the basis of many field observations. These estimates have been used in the hydrostatic equilibrium equation to retrieve ice thickness as a function of ice freeboard, snow depth and snow/ice density. The accuracy of the ice thickness retrieval has been calculated from the estimated variability in ice and snow parameters and error of ice freeboard measurements. It is found that uncertainties of ice density and freeboard are the major sources of error in ice thickness calculation. For FY ice, retrieval of ≈ 1.0 m (2.0 m) thickness has an uncertainty of 46% (37%), and for MY ice, retrieval of 2.4 m (3.0 m) thickness has an uncertainty of 20% (18%), assuming that the freeboard error is ± 0.03 m for both ice types. For MY ice the main uncertainty is ice density error, since the freeboard error is relatively smaller than that for FY ice. If the freeboard error can be reduced to 0.01 m by averaging measurements from CryoSat-2, the error in thickness retrieval is reduced to about 32% for a 1.0 m thick FY floe and to about 18% for a 2.4 m thick MY floe. The remaining error is dominated by uncertainty in ice density. Provision of improved ice density data is therefore important for accurate retrieval of ice thickness from CryoSat-2 data.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2010-08-23
    Description: Higher temperatures and changes in precipitation patterns have induced an acute decrease in Andean glaciers, thus leading to additional stress on water supply. To adapt to climate changes, local governments need information on the rate of glacier area and volume losses and on current ice thickness. Remote sensing analyses of Coropuna glacier (Peru) delineate an acute glaciated area decline between 1955 and 2008. We tested how volume changes can be estimated with remote sensing and GIS techniques using digital elevation models derived from both topographic maps and satellite images. Ice thickness was measured in 2004 using a Ground Penetrating Radar coupled with a Ground Positioning System during a field expedition. It provided profiles of ice thickness on different slopes, orientations and altitudes. These were used to model the current glacier volume using Geographical Information System and statistical multiple regression techniques. The results revealed a significant glacier volume loss; however the uncertainty is higher than the measured volume loss. We also provided an estimate of the remaining volume. The field study provided the scientific evidence needed by COPASA, a local Peruvian NGO, and GTZ, the German international cooperation agency, in order to alert local governments and communities and guide them in adopting new climate change adaptation policies.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2010-07-23
    Description: The western part of the Greenland ice sheet contains a region that is darker than the surrounding ice. This feature has been analysed with the help of MODIS images. The dark region appears every year during the summer season and can always be found at the same location, which makes meltwater unlikely as the only source for the low albedos. Spectral information indicates that the ice in this region contains more debris than the ice closer to the margin. ASTER images reveal a wavy pattern in the darker ice. Based on these findings we conclude that ice, containing dust from older periods, is presently outcropping near the margin, leading to albedos lower than observed for the remaining ablation area. Therefore it can be concluded that the accumulation of meltwater is a result rather than a cause of the darkening.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2010-05-28
    Description: The spatio-temporal variability of the mountain snow cover determines the avalanche danger, snow water storage, permafrost distribution and the local distribution of fauna and flora. Using a new type of terrestrial laser scanner, which is particularly suited for measurements of snow covered surfaces, snow depth was monitored in a high alpine catchment during an ablation period. From these measurements snow water equivalents and ablation rates were calculated. This allowed us for the first time to obtain a high resolution (2.5 m cell size) picture of spatial variability of the snow cover and its temporal development. A very high variability of the snow cover with snow depths between 0–9 m at the end of the accumulation season was observed. This variability decreased during the ablation phase, while the dominant snow deposition features remained intact. The average daily ablation rate was between 15 mm/d snow water equivalent at the beginning of the ablation period and 30 mm/d at the end. The spatial variation of ablation rates increased during the ablation season and could not be explained in a simple manner by geographical or meteorological parameters, which suggests significant lateral energy fluxes contributing to observed melt. It is qualitatively shown that the effect of the lateral energy transport must increase as the fraction of snow free surfaces increases during the ablation period.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2010-05-28
    Description: We report for the first time on the discovery of calcium carbonate crystals as ikaite (CaCO3·6H2O) in sea ice from the Arctic (Kongsfjorden, Svalbard) as confirmed by morphology and indirectly by X-ray diffraction as well as XANES spectroscopy of its amorophous decomposition product. This finding demonstrates that the precipitation of calcium carbonate during the freezing of sea ice is not restricted to the Antarctic, where it was observed for the first time in 2008. This observation is an important step in the quest to quantify its impact on the sea ice driven carbon cycle.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2010-08-16
    Description: Multi-channel ground-penetrating radar (GPR) was applied at a permafrost site on the Tibetan Plateau to investigate the influence of surface properties and soil texture on the late-summer thaw depth and average soil moisture content of the active layer. Measurements were conducted on an approximately 85 × 60 m2 sized area with surface and soil textural properties that ranged from medium to coarse textured bare soil to finer textured, sparsely vegetated areas covered with fine, wind blown sand, and it included the bed of a gravel road. The survey allowed a clear differentiation of the various units. It showed (i) a shallow thaw depth and low average soil moisture content below the sand-covered, vegetated area, (ii) an intermediate thaw depth and high average soil moisture content along the gravel road, and (iii) an intermediate to deep thaw depth and low to intermediate average soil moisture content in the bare soil terrain. From our measurements, we found hypotheses for the permafrost processes at this site leading to the observed late-summer thaw depth and soil moisture conditions. The study clearly indicates the complicated interactions between surface and subsurface state variables and processes in this environment. Multi-channel GPR is an operational technology to efficiently study such a system at scales varying from a few meters to a few kilometers.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2010-04-28
    Description: The representation of polynyas in viscous-plastic dynamic-thermodynamic sea-ice models is studied in a simplified test domain, in order to give recommendations about parametrisation choices. Bjornsson et al. (2001) validated their dynamic-thermodynamic model against a polynya flux model in a similar setup and we expand on that work here, testing more sea-ice rheologies and new-ice thickness formulations. The two additional rheologies tested give nearly identical results whereas the two new-ice thickness parametrisations tested give widely different results. Based on our results we argue for using the new-ice thickness parametrisation of Hibler (1979). We also implement a new parametrisation for the parameter h0 from Hibler's scheme, based on ideas from a collection depth parametrisation for flux polynya models.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2010-01-15
    Description: We present velocity observations of a glacier outlet in Vatnajökull, Iceland, deduced from interferometric SAR (InSAR) data obtained during the ERS1/2 tandem mission in 1995–2000. More than a 50% decrease in glacier velocity was observed subsequent to a large jökulhlaup from the subglacial lake Grímsvötn in 1996. The glacier had not reached its former flow rate in 2000. The jökulhlaup damaged the lake's ice-dam causing persistent drainage from the lake. InSAR based studies of water accumulation within Grímsvötn suggest that a leakage of 〉3 m3 s−1 prevailed throughout our study period. We suggest that the lake leakage kept open a tunnel at low water pressure underneath the whole length of the glacier. The tunnel flow drained water from its surroundings, hence lowering the water pressure of a distributed drainage system, underneath the upper and centre parts of the glacier, which prior to the jökulhlaup sustained significant basal sliding. This is in accordance with theoretical prediction that tunnel flow in a steady state may cause slow-down in glacier velocity by reducing the subglacial water pressure. The width of the affected areas was ~5 km on the upper part of the glacier and ~8 km on the centre part of the glacier. This indicates that the water pressure reduction propagates laterally from the tunnel over a distance of a few km.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2010-12-02
    Description: Mountain snow-cover is normally heterogeneously distributed due to wind and precipitation interacting with the snow cover on various scales. The aim of this study was to investigate snow deposition and wind-induced snow-transport processes on different scales and to analyze some major drift events caused by north-west storms during two consecutive accumulation periods. In particular, we distinguish between the individual processes that cause specific drifts using a physically based model approach. Very high resolution wind fields (5 m) were computed with the atmospheric model Advanced Regional Prediction System (ARPS) and used as input for a model of snow-surface processes (Alpine3D) to calculate saltation, suspension and preferential deposition of precipitation. Several flow features during north-west storms were identified with input from a high-density network of permanent and mobile weather stations and indirect estimations of wind directions from snow-surface structures, such as snow dunes and sastrugis. We also used Terrestrial and Airborne Laser Scanning measurements to investigate snow-deposition patterns and to validate the model. The model results suggest that the in-slope deposition patterns, particularly two huge cross-slope cornice-like drifts, developed only when the prevailing wind direction was northwesterly and were formed mainly due to snow redistribution processes (saltation-driven). In contrast, more homogeneous deposition patterns on a ridge scale were formed during the same periods mainly due to preferential deposition of precipitation. The numerical analysis showed that snow-transport processes were sensitive to the changing topography due to the smoothing effect of the snow cover.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2010-12-01
    Description: The spatial variability of near-surface variables and surface energy balance components over the Greenland ice sheet are presented, using the output of a regional atmospheric climate model for the period 1958–2008. The model was evaluated in Part 1 of this paper. The near-surface temperature over the ice sheet is affected by surface elevation, latitude, longitude, large-scale and small-scale advection, occurrence of summer melt and mesoscale topographical features. The atmospheric boundary layer is characterised by a strong temperature inversion, due to continuous longwave cooling of the surface. In combination with a gently sloping surface the radiative loss maintains a persistent katabatic wind. This radiative heat loss is mainly balanced by turbulent sensible heat transport towards the surface. In summer, the surface is near radiative balance, resulting in lower wind speeds. Absorption of shortwave radiation and a positive subsurface heat flux due to refreezing melt water are heat sources for surface sublimation and melt. The strongest temperature deficits (〉13 °C) are found on the northeastern slopes, where the strongest katabatic winds (〉9 m s−1) and lowest relative humidity (
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2010-11-30
    Description: Weichselian cryogenic calcites collected in what is referred to as the Rätselhalle of the Herbstlabyrinth-Advent Cave system are structurally classified as rhombohedral crystals and spherulitic aggregates. The carbon and oxygen isotopic composition of these precipitates (δ13C = +0.6 to −7.3‰ δ18O = −6.9 to −18.0‰) corresponds to those of known slowly precipitated cryogenic cave calcites under conditions of isotopic equilibrium between water and ice of Central European caves. The carbon and oxygen isotopic composition varies between different caves which is attributed to the effects of cave air ventilation before the freezing started. By petrographic and geochemical comparisons of Weichselian cryogenic calcite with recent to sub-recent precipitates as well as Weichselian non-cryogenic calcites of the same locality, a model for the precipitation of these calcites is proposed. While the recent and sub-recent pool-calcites isotopically match the composition of interglacial speleothems (stalagmites, etc.), isotope ratios of Weichselian non-cryogenic pool-calcites reflect cooler conditions. Weichselian cryogenic calcites show a trend towards low δ18O values with higher carbon isotope ratios reflecting slow freezing of the precipitating solution. In essence, the isotope geochemistry of the Weichselian calcites reflects the climate history changing from overall initial permafrost conditions to permafrost-free and subsequently to renewed permafrost conditions. Judging from the data compiled here, the last permafrost stage in the Rätselhalle is followed by a warm period (interstadial and/or Holocene). During this warmer period, the cave ice melted and cryogenic and non-cryogenic Weichselian calcite precipitates were deposited on the cave ground or on fallen blocks, respectively.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2010-10-26
    Description: Terrestrial inputs of freshwater flux to Sermilik Fjord, SE Greenland, were estimated, indicating ice discharge to be the dominant source of freshwater. A freshwater flux of 40.4 ± 4.9×109 m3 y−1 was found (1999–2008), with an 85% contribution originated from ice discharge (65% alone from Helheim Glacier), 11% from terrestrial surface runoff (from melt water and rain), 3% from precipitation at the fjord surface area, and 1% from subglacial geothermal and frictional melting due to basal ice motion. The results demonstrate the dominance of ice discharge as a primary mechanism for delivering freshwater to Sermilik Fjord. Time series of ice discharge for Helheim Glacier, Midgård Glacier, and Fenris Glacier were calculated from satellite-derived average surface velocity, glacier width, and estimated ice thickness, and fluctuations in terrestrial surface freshwater runoff were simulated based on observed meteorological data. These simulations were compared and bias corrected against independent glacier catchment runoff observations. Modeled runoff to Sermilik Fjord was variable, ranging from 2.9 ± 0.4×109 m3 y−1 in 1999 to 5.9 ± 0.9×109 m3 y−1 in 2005. The sub-catchment runoff of the Helheim Glacier region accounted for 25% of the total runoff to Sermilik Fjord. The runoff distribution from the different sub-catchments suggested a strong influence from the spatial variation in glacier coverage, indicating high runoff volumes, where glacier cover was present at low elevations.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2010-11-02
    Description: We present estimates of accumulation rate along a 200 km transect ranging in elevation from 2750 to 3150 m in the dry snow zone on the western slope of the Greenland Ice Sheet. An airborne radar altimeter is used to estimate the thickness of annual internal layers and, in conjunction with ground based snow/firn density profiles, annual accumulation rates between 1998 and 2003 are derived. A clear gradient in the thickness of each layer observed by the radar altimeter and in the associated estimates of annual accumulation is seen along the transect, with a 33.6% ± 16% mean decrease in accumulation from west to east. The observed inter-annual variability is high, with the annual mean accumulation rate estimated at 0.359 m.w.e. yr−1 (s.d. ± 0.049 m.w.e. yr−1). Mean accumulation rates modelled using meteorological models overestimate our results by 16% on average, but by 32% and 42% in the years 2001 and 2002. The methodology presented here demonstrates the potential to obtain accurate and spatially extensive accumulation rates from radar altimeters in regions of ice sheets where field observations are sparse, and accumulation rates greater than several tens of cm.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2010-11-26
    Description: The Gouffre des Diablotins is a deep cave system located in the Swiss Prealps. In 1991, the lower entrance zone of the cave was almost free of ice. Nevertheless the ice volume sharply increased in 1994, plugging almost totally the gallery from the lower entrance. The ice cave has also experienced a flood period between 1996 and 2007 and very heterogeneous ice surface morphologies and textures have formed. Continuous cave climate measurements initiated in 2009 showed the predominant role of winter atmospheric air conditions to drive both the efficiency of chimney-effect air circulation and seasonal modifications of the ice mass. The main part of the ice loss is currently due to sublimation in wintertime.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2010-10-06
    Description: We studied contrasting glacier systems in continental (Orulgan, Suntar-Khayata and Chersky) mountain ranges, located in the region of the lowest temperatures in the Northern Hemisphere at the boundary of Atlantic and Pacific influences – and maritime ones (Kamchatka Peninsula) – under Pacific influence. Our purpose is to present a simple projection method to assess the main parameters of these glacier regions under climate change. To achieve this, constructed vertical profiles of mass balance (accumulation and ablation) based both on meteorological data for the 1950–1990s (baseline period) and ECHAM4 for 2049–2060 (projected period) are used, the latter – as a climatic scenario. The observations and scenarios were used to define the recent and future equilibrium line altitude and glacier terminus altitude level for each glacier system as well as areas and balance components. The altitudinal distributions of ice areas were determined for present and future, and they were used for prediction of glacier extent versus altitude in the system taking into account the correlation between the ELA and glacier-terminus level change. We tested two hypotheses of ice distribution versus altitude in mountain (valley) glaciers – "linear" and "non-linear". The results are estimates of the possible changes of the areas and morphological structure of northeastern Asia glacier systems and their mass balance characteristics for 2049–2060. Glaciers in the southern parts of northeastern Siberia and those covering small ranges in Kamchatka will likely disappear under the ECHAM4 scenario; the best preservation of glaciers will be on the highest volcanic peaks of Kamchatka. Finally, we compare characteristics of the stability of continental and maritime glacier systems under global warming.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2010-09-08
    Description: Seasonal glaciological mass balances have been measured on Storglaciären without interruption since 1945/46. In addition, aerial surveys have been carried out on a decadal basis since the beginning of the observation program. Early studies had used the resulting aerial photographs to produce topographic glacier maps with which the in-situ observations could be verified. However, these maps as well as the derived volume changes are subject to errors which resulted in major differences between the derived volumetric and the glaciological mass balance. As a consequence, the original photographs were re-processed using uniform photogrammetric methods, which resulted in new volumetric mass balances for 1959–69, 1969–80, 1980–90, and 1990–99. We compared these new volumetric mass balances with mass balances obtained by standard glaciological methods including an uncertainty assessment considering all related previous studies. The absolute differences between volumetric and the glaciological mass balances are 0.8 m w.e. for the period of 1959–69 and 0.3 m w.e. or less for the other survey periods. These deviations are slightly reduced when considering corrections for systematic uncertainties due to differences in survey dates, reference areas, and internal ablation, whereas internal accumulation systematically increases the mismatch. However, the mean annual differences between glaciological and volumetric mass balance are less than the uncertainty of the in-situ stake reading and stochastic error bars of both data series overlap. Hence, no adjustment of the glaciological data series to the volumetric one is required.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2010-09-15
    Description: The advance of a glacier over a deforming sediment layer is analysed numerically. We treat this problem as a contact problem involving two slowly-deforming viscous bodies. The surface evolution of the two bodies, and of the contact interface between them, is followed through time. Using various different non-linear till rheologies, we show how the mode of advance depends on the relative effective viscosities of ice and till. Three modes of advances are observed: (1) overriding, where the glacier advances through ice deformation only and without deforming the sediment; (2) plug-flow, where the sediment is strongly deformed, the ice moves forward as a block and a bulge is built in front of the glacier; and (3) mixed-flow, where the glacier advances through both ice and sediment deformation. For the cases of both overriding and mixed-flow, an inverse depth-age relationship within the ice is obtained. A series of model experiments show the contrast in effective viscosity between ice and till to be the single most important model parameter defining the mode of advance and the resulting thickness distribution of the till. Our model experiments indicate that the thickness of the deforming till layer is greatest close to the glacier front. Measurements of till thickness taken in such locations may not be representative of deforming till thickness elsewhere. Given sufficiently large contrast in effective viscosity between ice and till, a sediment bulge is formed in front of the glacier. During glacier advance, the bulge quickly reaches a steady state form strongly resembling single-crested push moraines. Inspection of particle paths within the sediment bulge, shows that particles within the till travel at a different speed from the bulge itself, and the push moraine to advance as a form-conserving non-linear wave.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2010-08-18
    Description: We present the detailed construction of a manufactured analytical solution to time-dependent and steady-state isothermal full-Stokes ice sheet problems. The solutions are constructed for two-dimensional flowline and three-dimensional full-Stokes ice sheet models with variable viscosity. The construction is done by choosing for the specified ice surface and bed a velocity distribution that satisfies both mass conservation and the kinematic boundary conditions. Then a compensatory stress term in the conservation of momentum equations and their boundary conditions is calculated to make the chosen velocity distributions as well as the chosen pressure field into exact solutions. By substituting different ice surface and bed geometry formulas into the derived solution formulas, analytical solutions for different geometries can be constructed. The boundary conditions can be specified as essential Dirichlet conditions or as periodic boundary conditions. By changing a parameter value, the analytical solutions allow investigation of algorithms for a different range of aspect ratios as well as for different, frozen or sliding, basal conditions. The analytical solutions can also be used to estimate the numerical error of the method in the case when the effects of the boundary conditions are eliminated, that is, when the exact solution values are specified as inflow and outflow boundary conditions.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2010-09-29
    Description: Ice thickness and bedrock topography are essential boundary conditions for numerical modelling of the evolution of the Greenland ice-sheet (GrIS). The datasets currently in use by the majority of GrIS modelling studies are over two decades old and based on data collected from the 1970s and 80s. We use a newer, high-resolution Digital Elevation Model of the GrIS and new temperature and precipitation forcings to drive the Glimmer ice-sheet model offline under steady state, present day climatic conditions. Comparisons are made of ice-sheet geometry between these new datasets and older ones used in the EISMINT-3 exercise. We find that changing to the newer bedrock and ice thickness makes the greatest difference to Greenland ice volume and ice surface extent. When all boundary conditions and forcings are simultaneously changed to the newer datasets the ice-sheet is 33% larger in volume compared with observation and 17% larger than that modelled by EISMINT-3. We performed a tuning exercise to improve the modelled present day ice-sheet. Several solutions were chosen in order to represent improvement in different aspects of the GrIS geometry: ice thickness, ice volume and ice surface extent. We applied these new parameter sets for Glimmer to several future climate scenarios where atmospheric CO2 concentration was elevated to 400, 560 and 1120 ppmv (compared with 280 ppmv in the control) using a fully coupled General Circulation Model. Collapse of the ice-sheet was found to occur between 400 and 560 ppmv, a threshold substantially lower than previously modelled using the standard EISMINT-3 setup. This work highlights the need to assess carefully boundary conditions and forcings required by ice-sheet models, particularly in terms of the abstractions required for large-scale ice-sheet models, and the implications that these can have on predictions of ice-sheet geometry under past and future climate scenarios.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2010-06-29
    Description: This study provides insights into surface mass-balance (SMB) and runoff exiting the Watson River drainage basin, Kangerlussuaq, West Greenland during a 30 year period (1978/1979–2007/2008) when the climate experienced increasing temperatures and precipitation. The 30-year simulations quantify the terrestrial freshwater output from part of the Greenland Ice Sheet (GrIS) and the land between the GrIS and the ocean, in the context of global warming and increasing GrIS surface melt. We used a snow-evolution modeling system (SnowModel) to simulate the winter accumulation and summer ablation processes, including runoff and SMB, of the ice sheet: indicating that the simulated equilibrium line altitude (ELA) was in accordance with independent observations. To a large extent, the SMB fluctuations could be explained by changes in net precipitation (precipitation minus evaporation and sublimation), with 8 out of 30 years having negative SMB, mainly because of relatively low annual net precipitation. The overall trend in net precipitation and runoff increased significantly, while SMB increased insignificantly throughout the simulation period, leading to enhanced precipitation of 0.59 km3 w.eq. (or ~60%), runoff of 0.43 km3 w.eq. (or ~55%), and SMB of 0.16 km3 w.eq. (or ~85%). Runoff rose on average from 0.80 km3 w.eq. in 1978/1979 to 1.23 km3 w.eq. in 2007/2008. The GrIS satellite-derived melt-extent increased significantly, and the melting intensification occurred simultaneously with the increase in local Kangerlussuaq runoff, indicating that satellite data can be used as a proxy (r2=0.64) for runoff from the Kangerlussuaq drainage area.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2010-09-02
    Description: Over the past years, several studies have validated Nieuwstadt's local scaling hypothesis by utilizing turbulence observations from the mid-latitude, nocturnal stable boundary layers. In this work, we probe into the local scaling characteristics of polar, long-lived stable boundary layers by analyzing turbulence data from the South Pole region of the antarctic plateau.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2010-05-12
    Description: Glaciers respond to mass balance changes by adjusting their surface elevation and area. These properties in their turn affect the local and area-averaged mass balance. To incorporate this interdependence in the response of glaciers to climate change, models should include an interactive scheme coupling mass balance and ice dynamics. In this study, a spatially distributed mass balance model, comprising surface energy balance calculations, was coupled to a vertically integrated ice-flow model based on the shallow ice approximation. The coupled model was applied to the ice cap Hardangerjøkulen in southern Norway. The available glacio-meteorological records, mass balance and glacier length change measurements were utilized for model calibration and validation. Forced with meteorological data from nearby synoptic weather stations, the coupled model realistically simulated the observed mass balance and glacier length changes during the 20th century. The mean climate for the period 1961–1990, computed from local meteorological data, was used as a basis to prescribe climate projections for the 21st century at Hardangerjøkulen. For a linear temperature increase of 3 °C from 1961–1990 to 2071–2100, the modelled net mass balance soon becomes negative at all altitudes and Hardangerjøkulen disappears around the year 2100. The projected changes in the other meteorological variables could at most partly compensate for the effect of the projected warming.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2010-05-10
    Description: In this paper, we estimate the contribution of snowdrift sublimation (SUds) to the surface mass balance at Neumayer, located on the Ekström ice shelf in Eastern Antarctica. A single column version of the RACMO2-ANT model is used as a physical interpolation tool of high-quality radiosonde and surface measurements for a 15-yr period (1993–2007), and combined with a routine to calculate snowdrift sublimation and horizontal snow transport. The site is characterised by a relatively mild, wet and windy climate, so snowdrift is a common phenomenon. The modelled timing and frequency of snowdrift events compares well with observations. This is further illustrated by an additional simulation for Kohnen base, where the timing of snowdrift is realistic, although the modelled horizontal transport is overestimated. Snowdrift sublimation is mainly dependent on wind speed, but also on relative humidity and temperature. During high wind speeds, SUds saturates and cools the air, limiting its own strength. We estimate that SUds removes around 16%±8% of the accumulated snow from the surface. The total sublimation more than triples when snowdrift is considered, although snowdrift sublimation limits sublimation at the surface. SUds shows a strong seasonal cycle, as well as large inter-annual variability. This variability can be related to the variability of the atmospheric conditions in the surface layer.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2010-07-16
    Description: The ice content of the subsurface is a major factor controlling the natural hazard potential of permafrost degradation in alpine terrain. Monitoring of changes in ice content is therefore similarly important as temperature monitoring in mountain permafrost. Although electrical resistivity tomography monitoring (ERTM) proved to be a valuable tool for the observation of ice degradation, results are often ambiguous or contaminated by inversion artefacts. In theory, the sensitivity of P-wave velocity of seismic waves to phase changes between unfrozen water and ice is similar to the sensitivity of electric resistivity. Provided that the general conditions (lithology, stratigraphy, state of weathering, pore space) remain unchanged over the observation period, temporal changes in the observed travel times of repeated seismic measurements should indicate changes in the ice and water content within the pores and fractures of the subsurface material. In this paper, a time-lapse refraction seismic tomography (TLST) approach is applied as an independent method to ERTM at two test sites in the Swiss Alps. The approach was tested and validated based on a) the comparison of time-lapse seismograms and analysis of reproducibility of the seismic signal, b) the analysis of time-lapse travel time curves with respect to shifts in travel times and changes in P-wave velocities, and c) the comparison of inverted tomograms including the quantification of velocity changes. Results show a high potential of the TLST approach concerning the detection of altered subsurface conditions caused by freezing and thawing processes. For velocity changes on the order of 3000 m/s even an unambiguous identification of significant ice loss is possible.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2010-12-15
    Description: Precise measurements of ice-flow velocities are necessary for a proper understanding of the dynamics of glaciers and their response to climate change. We use stand-alone single-frequency GPS receivers for this purpose. They are designed to operate unattended for 1–3 years, allowing uninterrupted measurements for long periods with hourly temporal resolution. We present the system and illustrate its functioning using data from 9 GPS receivers deployed on Nordenskiöldbreen, Svalbard, for the period 2006–2009. The accuracy of the receivers is 1.62 m based on the standard deviation in the average location of a stationary reference station (NBRef). Both the location of NBRef and the observed flow velocities agree within one standard deviation with DGPS measurements. Periodicity (6, 8, 12, 24 h) in the NBRef data is largely explained by the atmospheric, mainly ionospheric, influence on the GPS signal. A (weighed) running-average on the observed locations significantly reduces the standard deviation and removes high frequency periodicities, but also reduces the temporal resolution. Results show annual average velocities varying between 40 and 55 m yr−1 at stations on the central flow-line. On weekly to monthly time-scales we observe a peak in the flow velocities (from 60 to 90 m yr−1) at the beginning of July related to increased melt-rates. No significant lag is observed between the timing of the maximum speed between different stations. This is likely due to the limited temporal resolution after averaging in combination with the relatively small distance (max. ±13 km) between the stations.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2010-12-13
    Description: In preparation for the European Space Agency's (ESA) Soil Moisture and Ocean Salinity (SMOS) mission, we investigated the potential of L-band (1.4 GHz) radiometry to measure sea-ice thickness. Sea-ice brightness temperature was measured at 1.4 GHz and ice thickness was measured along nearly coincident flight tracks during the SMOS Sea-Ice campaign in the Bay of Bothnia in March 2007. A research aircraft was equipped with the L-band Radiometer EMIRAD and coordinated with helicopter based electromagnetic induction (EM) ice thickness measurements. We developed a three layer (ocean-ice-atmosphere) dielectric slab model for the calculation of ice thickness from brightness temperature. The dielectric properties depend on the relative brine volume which is a function of the bulk ice salinity and temperature. The model calculations suggest a thickness sensitivity of up to 1.5 m for low-salinity (multi-year or brackish) sea-ice. For Arctic first year ice the modelled thickness sensitivity is less than half a meter. It reduces to a few centimeters for temperatures approaching the melting point. The campaign was conducted under unfavorable melting conditions and the spatial overlap between the L-band and EM-measurements was relatively small. Despite these disadvantageous conditions we demonstrate the possibility to measure the sea-ice thickness with the certain limitation up to 1.5 m. The ice thickness derived from SMOS measurements would be complementary to ESA's CryoSat-2 mission in terms of the error characteristics and the spatiotemporal coverage. The relative error for the SMOS ice thickness retrieval is expected to be not less than about 20%.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2010-09-08
    Description: Storglaciären, located in the Kebnekaise massif in northern Sweden, has a long history of glaciological research. Early photo documentations date back to the late 19th century. Measurements of front position variations and distributed mass balance have been carried out since 1910 and 1945/46, respectively. In addition to these in-situ measurements, aerial photographs have been taken at decadal intervals since the beginning of the mass balance monitoring program and were used to produce topographic glacier maps. Inaccuracies in the maps were a challenge to early attempts to derive glacier volume changes and resulted in major differences when compared to the direct glaciological mass balances. In this study, we reanalyzed dia-positives of the original aerial photographs of 1959, -69, -80, -90 and -99 based on consistent photogrammetric processing. From the resulting digital elevation models and orthophotos, changes in length, area, and volume of Storglaciären were computed between the survey years, including an assessment of related errors. Between 1959 and 1999, Storglaciären lost an ice volume of 19×106 m3, which corresponds to a cumulative ice thickness loss of 5.69 m and a mean annual loss of 0.14 m. This ice loss resulted largely from a strong volume loss during the period 1959–80 and was partly compensated during the period 1980–99. As a consequence, the glacier shows a strong retreat in the 1960s, a slowing in the 1970s, and pseudo-stationary conditions in the 1980s and 1990s.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2010-05-06
    Description: We investigate the velocity field of the Larsen C ice shelf, Antarctic Peninsula, over the periods 2002–2006 and 2006–2009 based on repeat optical satellite data. The velocity field of the entire ice shelf is measured using repeat low resolution MODIS data (250 m spatial resolution). The measurements are validated for two ice shelf sections against repeat medium resolution Landsat 7 ETM + pan data (15 m spatial resolution). Horizontal surface velocities are obtained through image matching using both orientation correlation operated in the frequency domain and normalized crosscorrelation operated in the spatial domain, and the two methods compared. The uncertainty in the displacement measurements turns out to be about one fourth of the pixel size for the MODIS derived data, and about one pixel for the Landsat derived data. The difference between MODIS and Landsat based speeds is −15.4 m a−1 and 13.0 m a−1, respectively, for the first period for the two different validation sections on the ice shelf, and −26.7 m a−1 and 27.9 m a−1 for the second period for the same sections. This leads us to conclude that repeat MODIS images are well suited to measure ice shelf velocity fields and monitor their changes over time. Orientation correlation seems better suited for this purpose because it produces fewer mismatches, is able to match images with regular noise and data voids, and is faster. Since it can match images with regular data voids it is possible to match Landsat 7 ETM+ images even after the 2003 failure of the Scan Line Corrector (SLC off) that leaves significant image stripes with no data. Image matching based on the original 12-bit radiometric resolution MODIS data produced slightly better results than using the 8-bit version of the same images. Streamline interpolation from the obtained surface velocity field on Larsen C indicates ice travel times of up to 450 to 550 years between the inland boundary and the ice shelf edge. In a second step of the study we test our method successfully on 10 other ice shelves around Antarctica demonstrating that the approach presented could in fact be used for large scale monitoring of ice shelf dynamics.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2010-01-29
    Description: Temperate alpine glacier survival is dependent on the consistent presence of an accumulation zone. Frequent low accumulation area ratio values, below 30%, indicate the lack of a consistent accumulation zone, which leads to substantial thinning of the glacier in the accumulation zone. This thinning is often evident from substantial marginal recession, emergence of new rock outcrops and surface elevation decline in the accumulation zone. In the North Cascades 9 of the 12 examined glaciers exhibit characteristics of substantial accumulation zone thinning; marginal recession or emergent bedrock areas in the accumulation zone. The longitudinal profile thinning factor, f, which is a measure of the ratio of thinning in the accumulation zone to that at the terminus, is above 0.6 for all glaciers exhibiting accumulation zone thinning characteristics. The ratio of accumulation zone thinning to cumulative mass balance is above 0.5 for glacier experiencing substantial accumulation zone thinning. Without a consistent accumulation zone these glaciers are forecast not to survive the current climate or future additional warming. The results vary considerably with adjacent glaciers having a different survival forecast. This emphasizes the danger of extrapolating survival from one glacier to the next.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2010-01-19
    Description: The dynamics and mass balance regime of the Austfonna ice cap, the largest glacier on Svalbard, deviates significantly from most other glaciers in the region and is not fully understood. We have compared ICESat laser altimetry, airborne laser altimetry, GNSS surface profiles and radio echo-sounding data to estimate elevation change rates for the periods 1983–2007 and 2002–2008. The data sets indicate a pronounced interior thickening of up to 0.5 m y−1, at the same time as the margins are thinning at a rate of 1–3 m y−1. The southern basins are thickening at a higher rate than the northern basins due to a higher accumulation rate. The overall volume change in the 2002–2008 period is estimated to be −1.3±0.5 km3 w.e. y−1 (or −0.16±0.06 m w.e. y−1) where the entire net loss is due to a rapid retreat of the calving fronts. Since most of the marine ice loss occurs below sea level, Austfonna's current contribution to sea level change is close to zero. The geodetic results are compared to in-situ mass balance measurements which indicate that the 2004–2008 surface net mass balance has been slightly positive (0.05 m w.e. y−1) though with large annual variations. Similarities between local net mass balances and local elevation changes indicate that most of the ice cap is slow-moving and not in dynamic equilibrium with the current climate. More knowledge is needed about century-scale dynamic processes in order to predict the future evolution of Austfonna based on climate scenarios.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2010-02-09
    Description: A large number of Himalayan glacier catchments are under the influence of humid climate with snowfall in winter (November–April) and south-west monsoon in summer (June–September) dominating the regional hydrology. Such catchments are defined as "Himalayan catchment", where the glacier meltwater contributes to the river flow during the period of annual high flows produced by the monsoon. The winter snow dominated Alpine catchments of the Kashmir and Karakoram region and cold-arid regions of the Ladakh mountain range are the other major glacio-hydrological regimes identified in the region. Factors influencing the river flow variations in a "Himalayan catchment" were studied in a micro-scale glacier catchment in the Garhwal Himalaya, covering an area of 77.8 km2. Three hydrometric stations were established at different altitudes along the Din Gad stream and discharge was monitored during the summer ablation period from 1998 to 2004, with an exception in 2002. These data have been analysed along with winter/summer precipitation, temperature and mass balance data of the Dokriani glacier to study the role of glacier and precipitation in determining runoff variations along the stream continuum from the glacier snout to 2360 m a.s.l. The study shows that the inter-annual runoff variation in a "Himalayan catchment" is linked with precipitation rather than mass balance changes of the glacier. This study also indicates that the warming induced an initial increase of glacier runoff and subsequent decline as suggested by the IPCC (2007) is restricted to the glacier degradation-derived component in a precipitation dominant Himalayan catchment and cannot be translated as river flow response. The preliminary assessment suggests that the "Himalayan catchment" could experience higher river flows and positive glacier mass balance regime together in association with strong monsoon. The important role of glaciers in this precipitation dominant system is to augment stream runoff during the years of low summer discharge. This paper intends to highlight the importance of creating credible knowledge on the Himalayan cryospheric processes to develop a more representative global view on river flow response to cryospheric changes and locally sustainable water resources management strategies.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2010-04-07
    Description: In order to explore the response of the Greenland ice sheet (GIS) to climate change on long (centennial to multi-millennial) time scales, a regional energy-moisture balance model has been developed. This model simulates seasonal variations of temperature and precipitation over Greenland and explicitly accounts for elevation and albedo feedbacks. From these fields, the annual mean surface temperature and surface mass balance can be determined and used to force an ice sheet model. The melt component of the surface mass balance is computed here using both a positive degree day approach and a more physically-based alternative that includes insolation and albedo explicitly. As a validation of the climate model, we first simulated temperature and precipitation over Greenland for the prescribed, present-day topography. Our simulated climatology compares well to observations and does not differ significantly from that of a simple parameterization used in many previous simulations. Furthermore, the calculated surface mass balance using both melt schemes falls within the range of recent regional climate model results. For a prescribed, ice-free state, the differences in simulated climatology between the regional energy-moisture balance model and the simple parameterization become significant, with our model showing much stronger summer warming. When coupled to a three-dimensional ice sheet model and initialized with present-day conditions, the two melt schemes both allow realistic simulations of the present-day GIS.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...