ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-07-15
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2007-01-24
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2007-06-26
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-04-20
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1978-07-01
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-03-01
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-12-20
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2007-02-22
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2006-12-19
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 1957-12-01
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 1957-12-01
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 1957-12-01
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2007-05-15
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 1957-12-01
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2007-05-11
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 1978-07-01
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 1957-12-01
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 1957-12-01
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 1957-12-01
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 1957-12-01
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 1957-12-01
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 1957-12-01
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2007-02-28
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 1978-07-01
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2007-01-26
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 1957-12-01
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2006-12-21
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2007-05-26
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 1978-07-01
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2007-06-20
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 1978-07-01
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2007-06-19
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 1957-12-01
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2007-02-13
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2007-01-26
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
  • 39
  • 40
    Publication Date: 2007-06-30
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 1957-12-01
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 1957-12-01
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2007-03-01
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 1957-12-01
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
  • 46
    Publication Date: 1957-12-01
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2015-08-11
    Description: The generation of a viable, diploid organism depends on the formation of haploid gametes, oocytes, and spermatocytes, with the correct number of chromosomes. Halving the genome requires the execution of two consecutive specialized cell divisions named meiosis I and II. Unfortunately, and in contrast to male meiosis, chromosome segregation in oocytes is error prone, with human oocytes being extraordinarily “meiotically challenged”. Aneuploid oocytes, that are with the wrong number of chromosomes, give rise to aneuploid embryos when fertilized. In humans, most aneuploidies are lethal and result in spontaneous abortions. However, some trisomies survive to birth or even adulthood, such as the well-known trisomy 21, which gives rise to Down syndrome (Nagaoka et al. in Nat Rev Genet 13:493–504, 2012). A staggering 20–25 % of oocytes ready to be fertilized are aneuploid in humans. If this were not bad enough, there is an additional increase in meiotic missegregations as women get closer to menopause. A woman above 40 has a risk of more than 30 % of getting pregnant with a trisomic child. Worse still, in industrialized western societies, child birth is delayed, with women getting their first child later in life than ever. This trend has led to an increase of trisomic pregnancies by 70 % in the last 30 years (Nagaoka et al. in Nat Rev Genet 13:493–504, 2012; Schmidt et al. in Hum Reprod Update 18:29–43, 2012). To understand why errors occur so frequently during the meiotic divisions in oocytes, we review here the molecular mechanisms at works to control chromosome segregation during meiosis. An important mitotic control mechanism, namely the spindle assembly checkpoint or SAC, has been adapted to the special requirements of the meiotic divisions, and this review will focus on our current knowledge of SAC control in mammalian oocytes. Knowledge on how chromosome segregation is controlled in mammalian oocytes may help to identify risk factors important for questions related to human reproductive health.
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2015-08-04
    Description: Thinopyrum bessarabicum (2 n  = 2 x  = 14, JJ or E b E b ) is a valuable source of genes for bread wheat (2 n  = 6 x  = 42) improvement because of its salinity tolerance and disease resistance. Development of wheat- Th. bessarabicum translocation lines by backcrossing the amphiploid in the absence of the Ph1 gene (allowing intergenomic recombination) can assist its utilization in wheat improvement. In this study, six novel wheat- Th. bessarabicum translocation lines involving different chromosome segments (T4BS.4BL-4JL, T6BS.6BL-6JL, T5AS.5AL-5JL, T5DL.5DS-5JS, T2BS.2BL-2JL, and the whole arm translocation T1JS.1AL) were identified and characterized using genomic in situ hybridization (GISH) and fluorescent in situ hybridization (FISH). No background translocations between wheat genomes were observed. The involvement of five of the seven chromosomes and small terminal segments of Th. bessarabicum chromosome arm were important, contributing to both reduced linkage drag of the derived lines by minimizing agronomically deleterious genes from the alien species and high stability including transmission of the alien segment. All three wheat genomes were involved in the translocations with the alien chromosome, and GISH showed the Th. bessarabicum genome was more closely related to the D genome in wheat. All the introgression lines were disomic, stable, and with good morphological characters.
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2015-11-24
    Description: In a male mouse, meiosis markers of processed DNA double strand breaks (DSBs) such as DMC1 and RAD51 are regularly seen in the non-PAR region of the X chromosome; these disappear late in prophase prior to entry into the first meiotic metaphase. Marker evidence for DSBs occurring in the non-PAR region of the Y chromosome is limited. Nevertheless, historically it has been documented that recombination can occur within the mouse Y short arm (Yp) when an additional Yp segment is attached distal to the X and/or the Y pseudoautosomal region (PAR). A number of recombinants identified among offsprings involved unequal exchanges involving repeated DNA segments; however, equal exchanges will have frequently been missed because of the paucity of markers to differentiate between the two Yp segments. Here, we discuss this historical data and present extensive additional data obtained for two mouse models with Yp additions to the X PAR. PCR genotyping enabled identification of a wider range of potential recombinants; the proportions of Yp exchanges identified among the recombinants were 9.7 and 22.4 %. The frequency of these exchanges suggests that the Yp segment attached to the X PAR is subject to the elevated level of recombinational DSBs that characterizes the PAR.
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2016-07-15
    Description: Acipenseriformes is an order of ray-finned fishes, comprising 27 extant species of sturgeons and paddlefishes inhabiting waters of the Northern Hemisphere. The order has a basal position within Actinopteri (ray-finned fish minus polypterids) and is characterized by many specific morphological and genomic features, including high diploid chromosome numbers, various levels of ploidy between species, unclear sex determination, and propensity to interspecific hybridization. Recent advances in molecular genetics, genomics, and comparative cytogenetics produced novel data on different aspects of acipenseriform biology, including improved phylogenetic reconstructions and better understanding of genome structure. Here, we discuss the cytogenetic and genomic traits of acipenseriforms and their connection with polyploidization and tolerance to interspecific hybridization.
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2016-06-22
    Description: Eukaryotic replication origins are highly variable in their activity and replication timing. The nature and role of cis-acting regulatory sequences that control chromosomal replication timing is not well defined. In the fission yeast, Schizosaccharomyces pombe , a 200-bp late-replication-enforcing element (LRE), has been shown to enforce late replication of ARS elements in plasmids. Here, we show that a short (133-bp) fragment of the LRE (shLRE) is required for causing late replication of adjoining origins in its native as well as in an ectopic early-replicating chromosomal location. Active from both sides of an early-replicating origin, the shLRE is a bona fide cis -acting regulatory element that imposes late replication timing in the chromosome.
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2016-05-09
    Description: Genlisea margaretae , subgenus Genlisea , section Recurvatae (184 Mbp/1C), belongs to a plant genus with a 25-fold genome size difference and an extreme genome plasticity. Its 19 chromosome pairs could be distinguished individually by an approach combining optimized probe pooling and consecutive rounds of multicolor fluorescence in situ hybridization (mcFISH) with bacterial artificial chromosomes (BACs) selected for repeat-free inserts. Fifty-one BACs were assigned to 18 chromosome pairs. They provide a tool for future assignment of genomic sequence contigs to distinct chromosomes as well as for identification of homeologous chromosome regions in other species of the carnivorous Lentibulariaceae family, and potentially of chromosome rearrangements, in cases where more than one BAC per chromosome pair was identified.
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2016-05-11
    Description: Meiosis is a critical phase in the life cycle of sexually reproducing organisms. Chromosome numbers are halved during meiosis, which requires meiosis-specific modification of chromosome behaviour. Furthermore, suppression of transposons is particularly important during meiosis to allow the transmission of undamaged genomic information between generations. Correspondingly, specialized genome defence mechanisms and nuclear structures characterize the germ line during meiosis. Survival of mammalian spermatocytes requires that the sex chromosomes form a distinct silenced chromatin domain, called the sex body. An enigmatic spherical DNA-negative structure, called the meiotic dense body, forms in association with the sex body. The dense body contains small non-coding RNAs including microRNAs and PIWI-associated RNAs. These observations gave rise to speculations that the dense body may be involved in sex body formation and or small non-coding RNA functions, e.g. the silencing of transposons. Nevertheless, the function of the dense body has remained mysterious because no protein essential for dense body formation has been reported yet. We discovered that the polycomb-related sex comb on midleg-like 1 (SCML1) is a meiosis-specific protein and is an essential component of the meiotic dense body. Despite abolished dense body formation, Scml1- deficient mice are fertile and proficient in sex body formation, transposon silencing and in timely progression through meiosis and gametogenesis. Thus, we conclude that dense body formation is not an essential component of the gametogenetic program in the mammalian germ line.
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2016-05-03
    Description: Recent data suggest that insulators organize chromatin architecture in the nucleus. The best characterized Drosophila insulator, found in the gypsy retrotransposon, contains 12 binding sites for the Su(Hw) protein. Enhancer blocking, along with Su(Hw), requires BTB/POZ domain proteins, Mod(mdg4)-67.2 and CP190. Inactivation of Mod(mdg4)-67.2 leads to a direct repression of the yellow gene promoter by the gypsy insulator. Here, we have shown that such repression is regulated by the level of the EAST protein, which is an essential component of the interchromatin compartment. Deletion of the EAST C-terminal domain suppresses Su(Hw)-mediated repression. Partial inactivation of EAST by mutations in the east gene suppresses the enhancer-blocking activity of the gypsy insulator. The binding of insulator proteins to chromatin is highly sensitive to the level of EAST expression. These results suggest that EAST, one of the main components of the interchromatin compartment, can regulate the activity of chromatin insulators.
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-09-16
    Description: Rapid chromosome movement during prophase of the first meiotic division has been observed in many organisms. It is generally concomitant with formation of the “meiotic chromosome bouquet,” a special chromosome configuration in which one or both chromosome ends attach to the nuclear envelope and become concentrated within a limited area. The precise function of the chromosomal bouquet is still not fully understood. Chromosome mobility is implicated in homologous chromosome pairing, synaptonemal complex formation, recombination, and resolution of chromosome entanglements. The basic mechanistic module through which forces are exerted on chromosomes is widely conserved; however, phenotypic differences have been reported among various model organisms once movement is abrogated. Movements are transmitted to the chromosome ends by the nuclear membrane-bridging SUN/KASH complex and are dependent on cytoskeletal filaments and motor proteins located in the cytoplasm. Here we review the recent findings on chromosome mobility during meiosis in an animal model system: the Caenorhabditis elegans nematode.
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-10-04
    Description: The ultimate goal of cell division is equal transmission of the duplicated genome to two new daughter cells. Multiple surveillance systems exist that monitor proper execution of the cell division program and as such ensure stability of our genome. One widely studied protein complex essential for proper chromosome segregation and execution of cytoplasmic division (cytokinesis) is the chromosomal passenger complex (CPC). This highly conserved complex consists of Borealin, Survivin, INCENP, and Aurora B kinase, and has a dynamic localization pattern during mitosis and cytokinesis. Not surprisingly, it also performs various functions during these phases of the cell cycle. In this review, we will give an overview of the latest insights into the regulation of CPC localization and discuss if and how specific localization impacts its diverse functions in the dividing cell.
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-09-11
    Description: All organisms sense and respond to conditions that stress their homeostasis by downregulating the synthesis of rRNA and ribosome biogenesis, thus designating the nucleolus as the central hub in coordinating the cellular stress response. One of the most intriguing roles of the nucleolus, long regarded as a mere ribosome-producing factory, is its participation in monitoring cellular stress signals and transmitting them to the RNA polymerase I (Pol I) transcription machinery. As rRNA synthesis is a most energy-consuming process, switching off transcription of rRNA genes is an effective way of saving the energy required to maintain cellular homeostasis during acute stress. The Pol I transcription machinery is the key convergence point that collects and integrates a vast array of information from cellular signaling cascades to regulate ribosome production which, in turn, guides cell growth and proliferation. This review focuses on the mechanisms that link cell physiology to rDNA silencing, a prerequisite for nucleolar integrity and cell survival.
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-06-10
    Description: Bacterial artificial chromosomes (BACs) are widely used in transgenesis, particularly for the humanization of animal models. Moreover, due to their extensive capacity, BACs provide attractive tools to study distal regulatory elements associated with large gene loci. However, despite their widespread use, little is known about the integration dynamics of these large transgenes in mammalian cells. Here, we investigate the post-integration structure of a ~260 kb BAC carrying the cystic fibrosis transmembrane conductance regulator ( CFTR ) locus following delivery by bacterial invasion and compare this to the outcome of a more routine lipid-based delivery method. We find substantial variability in integrated copy number and expression levels of the BAC CFTR transgene after bacterial invasion-mediated delivery. Furthermore, we frequently observed variation in the representation of different regions of the CFTR transgene within individual cell clones, indicative of BAC fragmentation. Finally, using fluorescence in situ hybridization, we observed that the integrated BAC forms extended megabase-scale structures in some clones that are apparently stably maintained at cell division. These data demonstrate that the utility of large BACs to investigate cis -regulatory elements in the genomic context may be limited by recombination events that complicate their use.
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-04-10
    Description: Maintaining genome stability is essential for the accurate transmission of genetic material. Genetic instability is associated with human genome disorders and is a near-universal hallmark of cancer cells. Genetic variation is also the driving force of evolution, and a genome must therefore display adequate plasticity to evolve while remaining sufficiently stable to prevent mutations and chromosome rearrangements leading to a fitness disadvantage. A primary source of genome instability are errors that occur during chromosome replication. More specifically, obstacles to the movement of replication forks are known to underlie many of the gross chromosomal rearrangements seen both in human cells and in model organisms. Obstacles to replication fork progression destabilize the replisome (replication protein complex) and impact on the integrity of forked DNA structures. Therefore, to ensure the successful progression of a replication fork along with its associated replisome, several distinct strategies have evolved. First, there are well-orchestrated mechanisms that promote continued movement of forks through potential obstacles. Second, dedicated replisome and fork DNA stabilization pathways prevent the dysfunction of the replisome if its progress is halted. Third, should stabilisation fail, there are mechanisms to ensure damaged forks are accurately fused with a converging fork or, when necessary, re-associated with the replication proteins to continue replication. Here, we review what is known about potential barriers to replication fork progression, how these are tolerated and their impact on genome instability.
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2013-04-10
    Description: The CMG (Cdc45–MCM–GINS) complex is the eukaryotic replicative helicase, the enzyme that unwinds double-stranded DNA at replication forks. All three components of the CMG complex are essential for its function, but only in the case of MCM, the molecular motor that harnesses the energy of ATP hydrolysis to catalyse strand separation, is that function clear. Here, we review current knowledge of the three-dimensional structure of the CMG complex and its components and highlight recent advances in our understanding of its evolutionary origins.
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-04-10
    Description: Drosophila SUUR (Suppressor of UnderReplication) protein was shown to regulate the DNA replication elongation process in endocycling cells. This protein is also known to be the component of silent chromatin in polyploid and diploid cells. To mark the different cell cycle stages, we used immunostaining patterns of PCNA, the main structural component of replication fork. We demonstrate that SUUR chromatin binding is dynamic throughout the endocyle in Drosophila salivary glands. We observed that SUUR chromosomal localization changed along with PCNA pattern and these proteins largely co-localized during the late S-phase in salivary glands. The hypothesized interaction between SUUR and PCNA was confirmed by co-immunoprecipitation from embryonic nuclear extracts. Our findings support the idea that the effect of SUUR on replication elongation depends on the cell cycle stage and can be mediated through its physical interaction with replication fork.
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2013-04-10
    Description: Nuclear intermediate filament networks formed by A- and B-type lamins are major components of the nucleoskeleton that are required for nuclear structure and function, with many links to human physiology. Mutations in lamins cause diverse human diseases (‘laminopathies’). At least 54 partners interact with human A-type lamins directly or indirectly. The less studied human lamins B1 and B2 have 23 and seven reported partners, respectively. These interactions are likely to be regulated at least in part by lamin post-translational modifications. This review summarizes the binding partners and post-translational modifications of human lamins and discusses their known or potential implications for lamin function.
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-04-10
    Description: Estrogen receptor (ER) is a hormone-regulated transcription factor that controls cell division and differentiation in the ovary, breast, and uterus. The expression of ER is a common feature of the majority of breast cancers, which is used as a therapeutic target. Recent genetic studies have shown that ER binding occurs in regions distant to the promoters of estrogen target genes. These studies have also demonstrated that ER binding is accompanied with the binding of other transcription factors, which regulate the function of ER and response to anti-estrogen therapies. In this review, we explain how these factors influence the interaction of ER to chromatin and their cooperation for ER transcriptional activity. Moreover, we describe how the expression of these factors dictates the response to anti-estrogen therapies. Finally, we discuss how cytoplasmatic signaling pathways may modulate the function of ER and its cooperating transcription factors.
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-09-08
    Description: Sister chromatid cohesion is regulated by cohesin complexes and topoisomerase IIα. Although relevant studies have shed some light on the relationship between these two mechanisms of cohesion during mammalian mitosis, their interplay during mammalian meiosis remains unknown. In the present study, we have studied the dynamics of topoisomerase IIα in relation to that of the cohesin subunits RAD21 and REC8, the shugoshin-like 2 ( Schizosaccharomyces pombe ) (SGOL2) and the polo-like kinase 1-interacting checkpoint helicase (PICH), during both male mouse meiotic divisions. Our results strikingly show that topoisomerase IIα appears at stretched strands connecting the sister kinetochores of segregating early anaphase II chromatids, once the cohesin complexes have been removed from the centromeres. Moreover, the number and length of these topoisomerase IIα-connecting strands increase between lagging chromatids at anaphase II after the chemical inhibition of the enzymatic activity of topoisomerase IIα by etoposide. Our results also show that the etoposide-induced inhibition of topoisomerase IIα is not able to rescue the loss of centromere cohesion promoted by the absence of the shugoshin SGOL2 during anaphase I. Taking into account our results, we propose a two-step model for the sequential release of centromeric cohesion during male mammalian meiosis II. We suggest that the cohesin removal is a prerequisite for the posterior topoisomerase IIα-mediated resolution of persisting catenations between segregating chromatids during anaphase II.
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2015-05-07
    Description: Actin’s presence in the nucleus is a subject that has ignited a lot of controversy in the past. With our review, we attempt to reach out not only to the specialists but also to a broader audience that might be skeptical in light of the controversies. We take a rather conservative approach to build an argument that recent studies provide multiple independent lines of evidence substantiating actin’s diverse nuclear functions, especially in its monomeric state. We then particularly focus on how the concentration of monomeric actin, and potentially of specific polymerized forms of actin, can be used by the cell as indicators of cellular state and how this information can be transduced into the nucleus by transcriptional regulators, eliciting a response. We also provide examples that in specific cell types and specific physiological conditions, actin is functional in the nucleus in its polymeric form. However, we also discuss that in many instances, the presence of actin regulators in the nucleus, which is often seen as proof of their function within this compartment, may simply reflect an additional means of their regulation by compartmentalization.
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2015-05-07
    Description: The Smc5/6 complex, along with cohesin and condensin, is a member of the structural maintenance of chromosome (SMC) family, large ring-like protein complexes that are essential for chromatin structure and function. Thanks to numerous studies of the mitotic cell cycle, Smc5/6 has been implicated to have roles in homologous recombination, restart of stalled replication forks, maintenance of ribosomal DNA (rDNA) and heterochromatin, telomerase-independent telomere elongation, and regulation of chromosome topology. The nature of these functions implies that the Smc5/6 complex also contributes to the profound chromatin changes, including meiotic recombination, that characterize meiosis. Only recently, studies in diverse model organisms have focused on the potential meiotic roles of the Smc5/6 complex. Indeed, Smc5/6 appears to be essential for meiotic recombination. However, due to both the complexity of the process of meiosis and the versatility of the Smc5/6 complex, many additional meiotic functions have been described. In this review, we provide a clear overview of the multiple functions found so far for the Smc5/6 complex in meiosis. Additionally, we compare these meiotic functions with the known mitotic functions in an attempt to find a common denominator and thereby create clarity in the field of Smc5/6 research.
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2015-05-16
    Description: Approximately half of the mammalian genome is composed of repetitive elements, including LINE-1 (L1) elements. Because of their potential ability to transpose and integrate into other regions of the genome, their activation represents a threat to genome stability. Molecular pathways have emerged to tightly regulate and repress their transcriptional activity, including DNA methylation, histone modifications, and RNA pathways. It has become evident that Line-L1 elements are evolutionary diverse and dedicated repression pathways have been recently uncovered that discriminate between evolutionary old and young elements, with RNA-directed silencing mechanisms playing a prominent role. During periods of epigenetic reprogramming in development, specific classes of repetitive elements are upregulated, presumably due to the loss of most heterochromatic marks in this process. While we have learnt a lot on the molecular mechanisms that regulate Line-L1 expression over the last years, it is still unclear whether reactivation of Line-L1 after fertilization serves a functional purpose or it is a simple side effect of reprogramming.
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2015-01-23
    Description: Sex chromosomes have evolved many times from morphologically identical autosome pairs, most often presenting several recombination suppression events, followed by accumulation of repetitive DNA sequences. In Orthoptera, most species have an X0♂ sex chromosome system. However, in the subfamily Melanoplinae, derived variants of neo-sex chromosomes (neo-XY♂ or neo-X1X2Y♂) emerged several times. Here, we examined the differentiation of neo-sex chromosomes in a Melanoplinae species with a neo-XY♂/XX♀ system, Ronderosia bergi , using several approaches: (i) classical cytogenetic analysis, (ii) mapping via fluorescent in situ hybridization of some selected repetitive DNA sequences and microdissected sex chromosomes, and (iii) immunolocalization of distinct histone modifications. The microdissected sex chromosomes were also used as sources for Polymerase chain reaction (PCR) amplification of RNA-coding multigene families, to study variants related to the sex chromosomes. Our data suggest that the R. bergi neo-Y has become differentiated after its formation by a Robertsonian translocation and inversions, and has accumulated repetitive DNA sequences. Interestingly, the ex autosomes incorporated into the neo-sex chromosomes retain some autosomal post-translational histone modifications, at least in metaphase I, suggesting that the establishment of functional modifications in neo-sex chromosomes is slower than their sequence differentiation.
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2015-04-07
    Description: Mutations in the MCPH1 gene result in primary microcephaly in combination with a unique cellular phenotype of defective chromosome condensation. MCPH1 patient cells display premature chromosome condensation in G2 phase of the cell cycle and delayed decondensation in early G1 phase, observable as an increased proportion of cells with prophase-like appearance. MCPH1 deficiency thus appears to uncouple the chromosome cycle from the coordinated series of events that take place during mitosis such as some phases of the centrosome cycle and nuclear envelope breakdown. Here, we provide a further characterization of the effects of MCPH1 loss-of-function on chromosome morphology. In comparison to healthy controls, chromosomes of MCPH1 patients are shorter and display a pronounced coiling of their central chromatid axes. In addition, a substantial fraction of metaphase chromosomes shows apparently unresolved chromatids with twisted appearance. The patient chromosomes also showed signs of defective centromeric cohesion, which become more apparent and pronounced after harsh hypotonic conditions. Taking together, the observed alterations indicate additional so far unknown functions of MCPH1 during chromosome shaping and dynamics.
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2015-04-21
    Description: During meiotic and mitotic cell divisions, numerous chromosomal processes are essential for the faithful transmission of the genetic material. Pch2 TRIP13 , a generally conserved member of the AAA + ATPase (AAA + — A TPases a ssociated with diverse cellular a ctivities) family of ATPases, is rapidly emerging as a key regulator of specific chromosomal events. During the meiotic program, it is involved in controlling G2/prophase processes such as DNA break formation and recombination, checkpoint signaling, and chromosome synapsis. Excitingly, recent work has also implicated a role for Pch2 TRIP13 in wiring of the checkpoint that guards the metaphase-to-anaphase transition. For several of these functions, the Hop1, Rev7, and Mad2 (HORMA) domain-containing proteins Hop1 HORMAD , Mad2, and p31 COMET are important downstream clients or cofactors of Pch2 TRIP13 . Here, I will discuss our current understanding of the function of Pch2 TRIP13 during meiotic and mitotic cell divisions, with a focus on its enzymatic role towards HORMA domain-containing clients.
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2015-12-29
    Description: We have shown that E-type cyclins are key regulators of mammalian male meiosis. Depletion of cyclin E2 reduced fertility in male mice due to meiotic defects, involving abnormal pairing and synapsis, unrepaired DNA, and loss of telomere structure. These defects were exacerbated by additional loss of cyclin E1, and complete absence of both E-type cyclins produces a meiotic catastrophe. Here, we investigated the involvement of E-type cyclins in maintaining telomere integrity in male meiosis. Spermatocytes lacking cyclin E2 and one E1 allele ( E1+/-E2-/- ) displayed a high rate of telomere abnormalities but can progress to pachytene and diplotene stages. We show that their telomeres exhibited an aberrant DNA damage repair response during pachynema and that the shelterin complex proteins TRF2 and RAP2 were significantly decreased in the proximal telomeres. Moreover, the insufficient level of these proteins correlated with an increase of γ-H2AX foci in the affected telomeres and resulted in telomere associations involving TRF1 and telomere detachment in later prophase-I stages. These results suggest that E-type cyclins are key modulators of telomere integrity during meiosis by, at least in part, maintaining the balance of shelterin complex proteins, and uncover a novel role of E-type cyclins in regulating chromosome structure during male meiosis.
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2015-12-29
    Description: During mammalian meiotic prophase I, surveillance mechanisms exist to ensure that germ cells with defective synapsis or recombination are eliminated, thereby preventing the generation of aneuploid gametes and embryos. Meiosis in females is more error-prone than in males, and this is in part because the prophase I surveillance mechanisms are less efficient in females. A mechanistic understanding of this sexual dimorphism is currently lacking. In both sexes, asynapsed chromosomes are transcriptionally inactivated by ATR-dependent phosphorylation of histone H2AFX. This process, termed meiotic silencing, has been proposed to perform an important prophase I surveillance role. While the transcriptional effects of meiotic silencing at individual genes are well described in the male germ line, analogous studies in the female germ line have not been performed. Here we apply single- and multigene RNA fluorescence in situ hybridization (RNA FISH) to oocytes from chromosomally abnormal mouse models to uncover potential sex differences in the silencing response. Notably, we find that meiotic silencing in females is less efficient than in males. Within individual oocytes, genes located on the same asynapsed chromosome are silenced to differing extents, thereby generating mosaicism in gene expression profiles across oocyte populations. Analysis of sex-reversed XY female mice reveals that the sexual dimorphism in silencing is determined by gonadal sex rather than sex chromosome constitution. We propose that sex differences in meiotic silencing impact on the sexually dimorphic prophase I response to asynapsis.
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2015-12-31
    Description: The Y and W chromosomes of mammals and birds are known to be small because most of their genetic content degenerated and were lost due to absence of recombination with the X or Z, respectively. Thus, a picture has emerged of ever-shrinking Ys and Ws that may finally even fade into disappearance. We review here the large amount of literature on sex chromosomes in vertebrate species and find by taking a closer look, particularly at the sex chromosomes of fishes, amphibians and reptiles where several groups have evolutionary younger chromosomes than those of mammals and birds, that the perception of sex chromosomes being doomed to size reduction is incomplete. Here, sex-determining mechanisms show a high turnover and new sex chromosomes appear repeatedly. In many species, Ys and Ws are larger than their X and Z counterparts. This brings up intriguing perspectives regarding the evolutionary dynamics of sex chromosomes. It can be concluded that, due to accumulation of repetitive DNA and transposons, the Y and W chromosomes can increase in size during the initial phase of their differentiation.
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2016-01-05
    Description: Histone modifications regulate key processes of eukaryotic genomes. Misregulation of the enzymes that place these modifications can lead to disease. An example of this is DOT1L, the enzyme that can mono-, di-, and trimethylate the nucleosome core on lysine 79 of histone H3 (H3K79). DOT1L plays a role in development and its misregulation has been implicated in several cancers, most notably leukemias caused by a rearrangement of the MLL gene. A DOT1L inhibitor is in clinical trials for these leukemias and shows promising results, yet we are only beginning to understand DOT1L’s function and regulation in the cell. Here, we review what happens upstream and downstream of H3K79 methylation. H3K79 methylation levels are highest in transcribed genes, where H2B ubiquitination can promote DOT1L activity. In addition, DOT1L can be targeted to transcribed regions of the genome by several of its interaction partners. Although methylation levels strongly correlate with transcription, the mechanistic link between the two is unclear and probably context-dependent. Methylation of H3K79 may act through recruiting or repelling effector proteins, but we do not yet know which effectors mediate DOT1L’s functions. Understanding DOT1L biology better will help us to understand the effects of DOT1L inhibitors and may allow the development of alternative strategies to target the DOT1L pathway.
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2016-01-13
    Description: Whole genome duplication is a prominent feature of many highly evolved organisms, especially plants. When duplications occur within species, they yield genomes comprising multiple identical or very similar copies of each chromosome (“autopolyploids”). Such genomes face special challenges during meiosis, the specialized cellular program that underlies gamete formation for sexual reproduction. Comparisons between newly formed (neo)-autotetraploids and fully evolved autotetraploids suggest that these challenges are solved by specific restrictions on the positions of crossover recombination events and, thus, the positions of chiasmata, which govern the segregation of homologs at the first meiotic division. We propose that a critical feature in the evolution of these more effective chiasma patterns is an increase in the effective distance of meiotic crossover interference, which plays a central role in crossover positioning. We discuss the findings in several organisms, including the recent identification of relevant genes in Arabidopsis arenosa , that support this hypothesis.
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2016-03-23
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2016-03-23
    Description: Anoles are a clade of iguanian lizards that underwent an extensive radiation between 125 and 65 million years ago. Their karyotypes show wide variation in diploid number spanning from 26 ( Anolis evermanni ) to 44 ( A. insolitus ). This chromosomal variation involves their sex chromosomes, ranging from simple systems (XX/XY), with heterochromosomes represented by either micro- or macrochromosomes, to multiple systems (X 1 X 1 X 2 X 2 /X 1 X 2 Y). Here, for the first time, the homology relationships of sex chromosomes have been investigated in nine anole lizards at the whole chromosome level. Cross-species chromosome painting using sex chromosome paints from A. carolinensis , Ctenonotus pogus and Norops sagrei and gene mapping of X-linked genes demonstrated that the anole ancestral sex chromosome system constituted by microchromosomes is retained in all the species with the ancestral karyotype (2n = 36, 12 macro- and 24 microchromosomes). On the contrary, species with a derived karyotype, namely those belonging to genera Ctenonotus and Norops , show a series of rearrangements (fusions/fissions) involving autosomes/microchromosomes that led to the formation of their current sex chromosome systems. These results demonstrate that different autosomes were involved in translocations with sex chromosomes in closely related lineages of anole lizards and that several sequential microautosome/sex chromosome fusions lead to a remarkable increase in size of Norops sagrei sex chromosomes.
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2015-12-14
    Description: Nematodes of the genus Strongyloides are important parasites of vertebrates including man. Currently, little is known about their germline organization or reproductive biology and how this influences their parasitic life strategies. Here, we analyze the structure of the germline in several Strongyloides and closely related species and uncover striking differences in the development, germline organization, and fluid dynamics compared to the model organism Caenorhabditis elegans . With a focus on Strongyloides ratti , we reveal that the proliferation of germ cells is restricted to early and mid-larval development, thus limiting the number of progeny. In order to understand key germline events (specifically germ cell progression and the transcriptional status of the germline), we monitored conserved histone modifications, in particular H3Pser10 and H3K4me3. The evolutionary significance of these events is subsequently highlighted through comparisons with six other nematode species, revealing underlying complexities and variations in the development of the germline among nematodes.
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2015-12-16
    Description: Centromeres usually consist of hundreds of kilobases of repetitive sequence which renders them difficult to assemble. As a consequence, centromeres are often missing from assembled genomes and their locations on physical chromosome maps have to be inferred from flanking sequences via fluorescence in situ hybridization (FISH). Alternatively, centromere positions can be mapped using linkage analyses in accidentally triploid individuals formed by half-tetrads (resulting from the inheritance of two chromatids from a single meiosis). The current genome assembly of the zebra finch ( Taeniopygia guttata ) comprises 32 chromosomes, but only for the ten largest chromosomes centromere positions have been mapped using FISH. We here map the positions of most of the remaining centromeres using half-tetrad analyses. For this purpose, we genotyped 37 zebra finches that were triploid or tetraploid due to inheritance errors (and mostly died as embryos) together with their parents at 64 microsatellite markers (at least two per chromosome). Using the information on centromere positions on the ten largest chromosomes, we were able to identify 12 cases of non-disjunction in maternal meiosis I and 10 cases of non-disjunction in maternal meiosis II. These 22 informative cases allowed us to infer centromere positions on additional 19 microchromosomes in reference to the current genome assembly. This knowledge will be valuable for studies of chromosome evolution, meiotic drive and species divergence in the avian lineage.
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2016-01-08
    Description: In initial studies of the eutherian small Indian mongoose ( Herpestes auropunctatus ), the Y chromosome could not be identified in somatic cells. The male chromosome number is uniquely odd, 2 n  = 35, whereas that of females is 2 n  = 36. Previous reports indicated that this unique karyotype resulted from a translocation of the ancestral Y chromosome to an autosome. However, it has been difficult to identify the chromosomes that harbor the translocated Y chromosomal segment because it is an extremely small euchromatic region. Using a Southern blot analysis, we detected four conserved Y-linked genes, SRY , EIF2S3Y , KDM5D , and ZFY , in the male genome. We cloned homologues of these genes and determined their sequences, which showed high homology to genes in two carnivore species, cat and dog. To unambiguously identify the Y-bearing autosome, we performed immunostaining of pachytene spermatocytes using antibodies against SYCP3, γH2AX, and the centromere. We observed trivalent chromosomes, and the associations between the distal ends of the chromosomes were consistent with those of Y and X1 chromosomes. The centromere of the Y chromosome was located on the ancestral Y chromosomal segment. We mapped the complementary DNA (cDNA) clones of these genes to the male chromosomes using fluorescence in situ hybridization (FISH), and the linear localization of all genes was confirmed by two-colored FISH. These Y-linked genes were localized to the proximal region of the long arm of a single telomeric chromosome, and we successfully identified the chromosome harboring the ancestral Y chromosomal segment.
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2016-03-30
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Sirtuins are NAD〈sup〉+〈/sup〉-dependent protein deacylases and ADP-ribosyltransferases that are involved in a wide range of cellular processes including genome homeostasis and metabolism. Sirtuins are expressed in human and mouse oocytes yet their role during female gamete development are not fully understood. Here, we investigated the role of a mammalian sirtuin member, SIRT7, in oocytes using a mouse knockout (KO) model. 〈em〉Sirt7〈/em〉 KO females have compromised fecundity characterized by a rapid fertility decline with age, suggesting the existence of a diminished oocyte pool. Accordingly, 〈em〉Sirt7〈/em〉 KO females produced fewer oocytes and ovulated fewer eggs. Because of the documented role of SIRT7 in DNA repair, we investigated whether SIRT7 regulates prophase I when meiotic recombination occurs. 〈em〉Sirt7〈/em〉 KO pachynema-like staged oocytes had approximately twofold increased γH2AX signals associated with regions with unsynapsed chromosomes. Consistent with the presence of asynaptic chromosome regions, 〈em〉Sirt7〈/em〉 KO oocytes had fewer MLH1 foci (~one less), a mark of crossover-mediated repair, than WT oocytes. Moreover, this reduced level of crossing over is consistent with an observed twofold increased incidence of aneuploidy in Metaphase II eggs. In addition, we found that acetylated lysine 18 of histone H3 (H3K18ac), an established SIRT7 substrate, was increased at asynaptic chromosome regions suggesting a functional relationship between this epigenetic mark and chromosome synapsis. Taken together, our findings demonstrate a pivotal role for SIRT7 in oocyte meiosis by promoting chromosome synapsis and have unveiled the importance of SIRT7 as novel regulator of the reproductive lifespan.〈/p〉
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Eutherian mammals have an extremely conserved sex-determining system controlled by highly differentiated sex chromosomes. Females are XX and males XY, and any deviation generally leads to infertility, mainly due to meiosis disruption. The African pygmy mouse (〈em〉Mus minutoides〈/em〉) presents an atypical sex determination system with three sex chromosomes: the classical X and Y chromosomes and a feminizing X chromosome variant, called X*. Thus, three types of females coexist (XX, XX*, and X*Y) that all show normal fertility. Moreover, the three chromosomes (X and Y on one side and X* on the other side) are fused to different autosomes, which results in the inclusion of the sex chromosomes in a quadrivalent in XX* and X*Y females at meiotic prophase. Here, we characterized the configurations adopted by these sex chromosome quadrivalents during meiotic prophase. The XX* quadrivalent displayed a closed structure in which all homologous chromosome arms were fully synapsed and with sufficient crossovers to ensure the reductional segregation of all chromosomes at the first meiotic division. Conversely, the X*Y quadrivalents adopted either a closed configuration with non-homologous synapsis of the X* and Y chromosomes or an open chain configuration in which X* and Y remained asynapsed and possibly transcriptionally silenced. Moreover, the number of crossovers was insufficient to ensure chromosome segregation in a significant fraction of nuclei. Together, these findings raise questions about the mechanisms allowing X*Y females to have a level of fertility as good as that of XX and XX* females, if not higher.〈/p〉
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉The 〈em〉Ph1〈/em〉 gene is the principal regulator of homoeologous chromosome pairing control (HECP) that ensures the diploid-like meiotic chromosome pairing behavior of polyploid wheat. The HECP control was speculated to have evolved after the first event of polyploidization. With the objective to accurately understand the evolution of the HECP control, wild emmer wheat accessions previously known to differ for HECP control were characterized for the structure and expression of the candidate 〈em〉Ph1〈/em〉 gene, 〈em〉C-Ph1〈/em〉. The 〈em〉C-TdPh1-5A〈/em〉 and 〈em〉5B〈/em〉 gene copies of emmer wheat showed 98 and 99% DNA sequence similarity respectively with the corresponding hexaploid wheat copies. Further, the 〈em〉C-TdPh1-5B〈/em〉 carried the 〈em〉C-Ph1-5B〈/em〉 specific structural changes and transcribed three splice variants as observed in the hexaploid wheat. Further, single nucleotide changes differentiating accessions varying for HECP control were identified. Analyzed by quantitative expression analysis, the wild emmer accessions with HECP control showed ~ 10,000-fold higher transcript abundance of the 〈em〉C-TdPh1-5B〈/em〉 copy during prophase-I compared to accessions lacking the control. Differential transcriptional regulation of 〈em〉C-TdPh1-5B〈/em〉 splice variants further revealed that 〈em〉C-Ph1-5B〈/em〉〈sup〉〈em〉alt1〈/em〉〈/sup〉 variant is mainly responsible for differential accumulation of 〈em〉C-Ph1-5B〈/em〉 copy in accessions with HECP control. Taken together, these results showed that the HECP control evolved via transcriptional regulation of splice variants during meiosis.〈/p〉
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Meiosis is the special division that produces haploid gametes, such as sperm and eggs. It involves a complex series of events that integrate large structural changes at the chromosome scale with fine regulation of recombination events in localized regions. To evaluate the complexity of these processes, the meiosis field covers a variety of disciplines and model organisms, making it an exciting and rapidly changing area of research. The field as a whole highlights both the conserved aspects of meiosis, as well as the marked diversity of the means taken to ensure that, ultimately, gametes will contain a balanced number of chromosomes and genetic diversity will have been produced. Studying meiosis is also critically important for the improvement of our human condition as errors of meiosis are a leading cause of infertility, miscarriage, and developmental disabilities. Finally, the complex chromosome behavior of meiosis is a genetically tractable paradigm, the study of which improves our understanding of many fundamental cellular processes including DNA repair, genome stability, cancer etiology, chromatin structure, and chromosome dynamics.〈/p〉 〈p〉This special issue on meiosis contains twenty-two papers, of which five are in-depth reviews that complement and put in context the experimental data presented in the seventeen original research articles. The content of this issue illustrates the diversity of topics covered by researchers in the field, ranging from the effects of environment and external factors on the success of meiosis, the cell cycle actors that control the meiotic divisions, the mechanism of chromosome segregation, and the mechanisms that ensure proper homologous chromosome pairing, recombination, and synapsis. Multiple organisms are covered. Also evident is the fact that more and more studies use multicellular organisms as a model system, in large part due to the increased availability of tools that were previously restricted to studies in budding and fission yeasts.〈/p〉
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Mammalian female fertility relies on the proper development of follicles. Right after birth in the mouse, oocytes associate with somatic ovarian cells to form follicles. These follicles grow during the adult lifetime to produce viable gametes. In this study, we analyzed the role of the ATM and rad3-related (ATR) kinase in mouse oogenesis and folliculogenesis using a hypomorphic mutation of the 〈em〉Atr〈/em〉 gene (Murga et al. 〈span〉2009〈/span〉). Female mice homozygotes for this allele have been reported to be sterile. Our data show that female meiotic prophase is not grossly altered when ATR levels are reduced. However, follicle development is substantially compromised, since 〈em〉Atr〈/em〉 mutant ovaries present a decrease of growing follicles. Comprehensive analysis of follicular cell death and proliferation suggest that wild-type levels of ATR are required to achieve optimal follicular development. Altogether, these findings suggest that reduced ATR expression causes sterility due to defects in follicular progression rather than in meiotic recombination. We discuss the implications of these findings for the use of ATR inhibitors such as anti-cancer drugs and its possible side-effects on female fertility.〈/p〉
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Obesity is increasing globally, and maternal obesity has adverse effects on pregnancy outcomes and the long-term health of offspring. Maternal obesity has been associated with pregnancy failure through impaired oogenesis and embryogenesis. However, whether maternal obesity causes chromosome abnormalities in oocytes has remained unclear. Here we show that chromosome abnormalities are increased in the oocytes of obese mice fed a high-fat diet and identify weakened sister-chromatid cohesion as the likely cause. Numbers of full-grown follicles retrieved from obese mice were the same as controls and the efficiency of in vitro oocyte maturation remained high. However, chromosome abnormalities presenting in both metaphase-I and metaphase-II were elevated, most prominently the premature separation of sister chromatids. Weakened sister-chromatid cohesion in oocytes from obese mice was manifested both as the terminalization of chiasmata in metaphase-I and as increased separation of sister centromeres in metaphase II. Obesity-associated abnormalities were elevated in older mice implying that maternal obesity exacerbates the deterioration of cohesion seen with advancing age.〈/p〉
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉During meiosis, DNA double-strand breaks are initiated by the topoisomerase-like enzyme SPO11 and are repaired by inter-sister chromatid and inter-homologue DNA repair pathways. Genome-wide maps of initiating DNA double-strand breaks and inter-homologue repair events are now available for a number of mammalian, fungal and plant species. In mammals, PRDM9 specifies the location of meiotic recombination initiation via recognition of specific DNA sequence motifs by its C2H2 zinc finger array. In fungi and plants, meiotic recombination appears to be initiated less discriminately in accessible chromatin, including at gene promoters. Generally, meiotic crossover is suppressed in highly repetitive genomic regions that are made up of transposable elements (TEs), to prevent deleterious non-allelic homologous recombination events. However, recent and older studies have revealed intriguing relationships between meiotic recombination initiation and repair, and transposable elements. For instance, gene conversion events have been detected in maize centromeric retroelements, mouse 〈em〉MULE-MuDR〈/em〉 DNA transposons undergo substantial meiotic recombination initiation, 〈em〉Arabidopsis Helitron〈/em〉 TEs are among the hottest of recombination initiation hotspots, and human TE sequences can modify the crossover rate at adjacent PRDM9 motifs in 〈em〉cis〈/em〉. Here, we summarize the relationship between meiotic recombination and TEs, discuss recent insights from highly divergent eukaryotes and highlight outstanding questions in the field.〈/p〉
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2018
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Many genes are required for the assembly of the mitotic apparatus and for proper chromosome behavior during mitosis and meiosis. A fruitful approach to elucidate the mechanisms underlying cell division is the accurate phenotypic characterization of mutations in these genes. Here, we report the identification and characterization of 〈em〉diamond〈/em〉 (〈em〉dind〈/em〉), an essential 〈em〉Drosophila〈/em〉 gene required both for mitosis of larval brain cells and for male meiosis. Larvae homozygous for any of the five EMS-induced mutations die in the third-instar stage and exhibit multiple mitotic defects. Mutant brain cells exhibit poorly condensed chromosomes and frequent chromosome breaks and rearrangements; they also show centriole fragmentation, disorganized mitotic spindles, defective chromosome segregation, endoreduplicated metaphases, and hyperploid and polyploid cells. Comparable phenotypes occur in mutant spermatogonia and spermatocytes. The 〈em〉dind〈/em〉 gene encodes a non-conserved protein with no known functional motifs. Although the Dind protein exhibits a rather diffuse localization in both interphase and mitotic cells, fractionation experiments indicate that some Dind is tightly associated with the chromatin. Collectively, these results suggest that loss of Dind affects chromatin organization leading to defects in chromosome condensation and integrity, which in turn affect centriole stability and spindle assembly. However, our results do not exclude the possibility that Dind directly affects some behaviors of the spindle and centrosomes.〈/p〉
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2018
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Recombination, synapsis, chromosome segregation and gene expression are co-ordinately regulated during meiosis to ensure successful execution of this specialised cell division. Studies with multiple mutant mouse lines have shown that mouse spermatocytes possess quality control checkpoints that eliminate cells with persistent defects in chromosome synapsis. In addition, studies on 〈em〉Trip13〈/em〉〈sup〉〈em〉mod/mod〈/em〉〈/sup〉 mice suggest that pachytene spermatocytes that successfully complete chromosome synapsis can undergo meiotic arrest in response to defects in recombination. Here, we present additional support for a meiotic recombination-dependent checkpoint using a different mutant mouse line, 〈em〉Tex19.1〈/em〉〈sup〉〈em〉−/−〈/em〉〈/sup〉. The appearance of early recombination foci is delayed in 〈em〉Tex19.1〈/em〉〈sup〉〈em〉−/−〈/em〉〈/sup〉 spermatocytes during leptotene/zygotene, but some 〈em〉Tex19.1〈/em〉〈sup〉〈em〉−/−〈/em〉〈/sup〉 spermatocytes still successfully synapse their chromosomes and we show that these spermatocytes are enriched for early recombination foci. Furthermore, we show that patterns of axis elongation, chromatin modifications and histone H1t expression are also all co-ordinately skewed towards earlier substages of pachytene in these autosomally synapsed 〈em〉Tex19.1〈/em〉〈sup〉〈em〉−/−〈/em〉〈/sup〉 spermatocytes. We also show that this skew towards earlier pachytene substages occurs in the absence of elevated spermatocyte death in the population, that spermatocytes with features of early pachytene are present in late stage 〈em〉Tex19.1〈/em〉〈sup〉〈em〉−/−〈/em〉〈/sup〉 testis tubules and that the delay in histone H1t expression in response to loss of 〈em〉Tex19.1〈/em〉 does not occur in a 〈em〉Spo11〈/em〉 mutant background. Taken together, these data suggest that a recombination-dependent checkpoint may be able to modulate pachytene progression in mouse spermatocytes to accommodate some types of recombination defect.〈/p〉
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2018
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Border cell (BC) migration during 〈em〉Drosophila〈/em〉 oogenesis is an excellent model for the analysis of the migratory and invasive cell behavior. Most studies on BC migration have exploited a 〈em〉slbo〈/em〉-Gal4 driver to regulate gene expression in these cells or to mark them. Here, we report that the 〈em〉slbo〈/em〉-Gal4 transgene present in the line #6458 from the Bloomington Stock Center is inserted within 〈em〉chickadee〈/em〉 (〈em〉chic〈/em〉), a gene encoding the actin-binding protein Profilin, which promotes actin polymerization and is known to be involved in cell migration. The 〈em〉chic〈/em〉〈sup〉〈em〉6458〈/em〉〈/sup〉 mutation caused by the transgene insertion behaves as a null 〈em〉chic〈/em〉 allele and is homozygous lethal. To evaluate possible effects of 〈em〉chic〈/em〉〈sup〉〈em〉6458〈/em〉〈/sup〉 on the assessment of BC behavior, we generated new lines bearing the 〈em〉slbo-〈/em〉Gal4 transgene inserted into different second chromosome loci that do not appear to be involved in cell migration. Using these new lines and the 〈em〉slbo〈/em〉-Gal4-〈em〉chic〈/em〉〈sup〉〈em〉6458〈/em〉〈/sup〉 line, we defined the functional relationships between the 〈em〉twinfilin〈/em〉 (〈em〉twf〈/em〉) and 〈em〉chic〈/em〉 in BC migration. Migration of BCs is substantially reduced by mutations in 〈em〉twf〈/em〉, which encodes an actin-binding protein that inhibits actin filament assembly. The defects caused by 〈em〉twf〈/em〉 mutations are significantly suppressed when the 〈em〉slbo〈/em〉-Gal4-〈em〉chic〈/em〉〈sup〉〈em〉6458〈/em〉〈/sup〉, but not the new 〈em〉slbo〈/em〉-Gal4 drivers were used. These findings indicate 〈em〉twf〈/em〉 and 〈em〉chic〈/em〉 interact and function antagonistically during BC migration in 〈em〉Drosophila〈/em〉 oogenesis.〈/p〉
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2018
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Analysis of chromosome pairing has been an important tool to assess the genetic similarity of homologous and homoeologous chromosomes in polyploids. However, it is technically challenging to monitor the pairing of specific chromosomes in polyploid species, especially for plant species with a large number of small chromosomes. We developed oligonucleotide-based painting probes for four different potato chromosomes. We demonstrate that these probes are robust enough to monitor a single chromosome throughout the prophase I of meiosis in polyploid 〈em〉Solanum〈/em〉 species. Cultivated potato (〈em〉Solanum tuberosum〈/em〉, 2n = 4x = 48) is an autotetraploid. We demonstrate that the four copies of each potato chromosome pair as a quadrivalent in 66–78% of the meiotic cells at the pachytene stage. 〈em〉Solanum demissum〈/em〉 (2n = 6x = 72) is a hexaploid and has been controversial regarding its nature as an autopolyploid or allopolyploid. Interestingly, no hexavalent pairing was observed in meiosis. Instead, we observed three independent bivalents in 83–98% of the meiotic cells at late diakinesis and early metaphase I for the four chromosomes. These results suggest that 〈em〉S. demissum〈/em〉 has evolved into a cytologically stable state with predominantly bivalent pairing in meiosis.〈/p〉
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2018
    Description: 〈h3〉Abstract〈/h3〉 〈p〉In order to understand its diverse functions, we have studied cohesin in the evolutionarily distant ciliate model organism 〈em〉Tetrahymena thermophila〈/em〉. In this binucleate cell, the heritable germline genome is maintained separately from the transcriptionally active somatic genome. In a previous study, we showed that a minimal cohesin complex in 〈em〉Tetrahymena〈/em〉 consisted of homologs of Smc1, Smc3, and Rec8, which are present only in the germline nucleus, where they are needed for normal chromosome segregation as well as meiotic DNA repair. In this study, we confirm that a putative homolog of Scc3 is a member of this complex. In the absence of Scc3, Smc1 and Rec8 fail to localize to germline nuclei, Rec8 is hypo-phosphorylated, and cells show phenotypes similar to depletion of Smc1 and Rec8. We also identify a homolog of Scc2, which in other organisms is part of a heterodimeric complex (Scc2/Scc4) that helps load cohesin onto chromatin. In 〈em〉Tetrahymena〈/em〉, Scc2 interacts with Rec8 and Scc3, and its absence causes defects in mitotic and meiotic divisions. Scc2 is not required for chromosomal association of cohesin, but Rec8 is hypo-phosphorylated in its absence. Moreover, we did not identify a homolog of the cohesin loader Scc4, and no evidence was found of auxiliary factors, such as Eco1, Pds5, or WAPL. We propose that in 〈em〉Tetrahymena〈/em〉, a single, minimal cohesin complex performs all necessary functions for germline mitosis and meiosis, but is dispensable for transcription regulation and chromatin organization of the somatic genome.〈/p〉
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2018
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Nuclear bodies are relatively immobile organelles. Here, we investigated the mechanisms underlying their movement using experimentally induced interphase prenucleolar bodies (iPNBs). Most iPNBs demonstrated constrained diffusion, exhibiting infrequent fusions with other iPNBs and nucleoli. Fusion events were actin-independent and appeared to be the consequence of stochastic collisions between iPNBs. Most iPNBs were surrounded by condensed chromatin, while fusing iPNBs were usually found in a single heterochromatin-delimited compartment (“cage”). The experimentally induced over-condensation of chromatin significantly decreased the frequency of iPNB fusion. Thus, the data obtained indicate that the mobility of nuclear bodies is restricted by heterochromatin.〈/p〉
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉The reduction in chromosome number during meiosis is essential for the production of haploid germ cells and thereby fertility. To achieve this, homologous chromosomes are first synapsed together by a protein assembly, the synaptonemal complex (SC), which permits genetic exchange by crossing over and the subsequent accurate segregation of homologues. The mammalian SC is formed of a zipper-like array of SYCP1 molecules that bind together homologous chromosomes through self-assembly in the midline that is structurally supported by the central element. The SC central element contains five proteins—SYCE1, SYCE3, SIX6OS1, and SYCE2-TEX12—that permit SYCP1 assembly to extend along the chromosome length to achieve full synapsis. Here, we report the structure of human SYCE1 through solution biophysical methods including multi-angle light scattering and small-angle X-ray scattering. The structural core of SYCE1 is formed by amino acids 25–179, within the N-terminal half of the protein, which mediates SYCE1 dimerization. This α-helical core adopts a curved coiled-coil structure of 20-nm length in which the two chains are arranged in an anti-parallel configuration. This structure is retained within full-length SYCE1, in which long C-termini adopt extended conformations to achieve an elongated molecule of over 50 nm in length. The SYCE1 structure is compatible with it functioning as a physical strut that tethers other components to achieve structural stability of the SC central element.〈/p〉
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Meiosis is a conserved cell division process that is used by sexually reproducing organisms to generate haploid gametes. Males and females produce different end products of meiosis: eggs (females) and sperm (males). In addition, these unique end products demonstrate sex-specific differences that occur throughout meiosis to produce the final genetic material that is packaged into distinct gametes with unique extracellular morphologies and nuclear sizes. These sexually dimorphic features of meiosis include the meiotic chromosome architecture, in which both the lengths of the chromosomes and the requirement for specific meiotic axis proteins being different between the sexes. Moreover, these changes likely cause sex-specific changes in the recombination landscape with the sex that has the longer chromosomes usually obtaining more crossovers. Additionally, epigenetic regulation of meiosis may contribute to sexually dimorphic recombination landscapes. Here we explore the sexually dimorphic features of both the chromosome axis and crossing over for each stage of meiotic prophase I in 〈em〉Mus musculus〈/em〉, 〈em〉Caenorhabditis elegans〈/em〉, and 〈em〉Arabidopsis thaliana〈/em〉. Furthermore, we consider how sex-specific changes in the meiotic chromosome axes and the epigenetic landscape may function together to regulate crossing over in each sex, indicating that the mechanisms controlling crossing over may be different in oogenesis and spermatogenesis.〈/p〉
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Chromosome pairing in meiosis usually starts in the vicinity of the telomere attachment to the nuclear membrane and congregation of telomeres in the leptotene bouquet is believed responsible for bringing homologue pairs together. In a heterozygote for an inversion of a rye (〈em〉Secale cereale〈/em〉 L.) chromosome arm in wheat, a distal segment of the normal homologue is capable of chiasmate pairing with its counterpart in the inverted arm, located near the centromere. Using 3D imaging confocal microscopy, we observed that some telomeres failed to be incorporated into the bouquet and occupied various positions throughout the entire volume of the nucleus, including the centromere pole. Rye telomeres appeared ca. 21 times more likely to fail to be included in the telomere bouquet than wheat telomeres. The frequency of the out-of-bouquet rye telomere position in leptotene was virtually identical to the frequency of telomeres deviating from Rabl’s orientation in the nuclei of somatic cells, and was similar to the frequency of synapsis of the normal and inverted chromosome arms, but lower than the MI pairing frequency of segments of these two arms normally positioned across the volume of the nucleus. Out-of-position placement of the rye telomeres may be responsible for reduced MI pairing of rye chromosomes in hybrids with wheat and their disproportionate contribution to aneuploidy, but appears responsible for initiating chiasmate pairing of distantly positioned segments of homology in an inversion heterozygote.〈/p〉
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉The synaptonemal complex is an evolutionarily conserved, supramolecular structure that holds the homologous chromosomes together during the pachytene stage of the first meiotic prophase. Among vertebrates, synaptonemal complex dynamics has been analyzed in mouse spermatocytes following the assembly of its components from leptotene to pachytene stages. With few exceptions, a detailed study of the disassembly of SCs and the behavior of SC components at recombination sites at the onset of diplotene has not been accomplished. Here, we describe for the first time the progressive disassembly of the SC in chicken oocytes during the initial steps of desynapsis using immunolocalization of specific SC proteins and super-resolution microscopy. We found that transverse filament protein SYCP1 and central element component SYCE3 remain associated with the lateral elements at the beginning of chromosomal axis separation. As the separation between lateral elements widens, these proteins eventually disappear, without any evidence of subsequent association. Our observations support the idea that post-translational modifications of the central region components have a role at the initial phases of the SC disassembly. At the crossover sites, signaled by persistent MLH1 foci, the central region proteins are no longer detected when the SYCP3-positive lateral elements are widely separated. These findings are indicative that SC disassembly follows a general pattern along the desynaptic bivalents. The present work shows that the use of avian oocytes at prophase I provides a valuable model to explore the time course and chromosomal localization of SC proteins and its relationship with local changes along meiotic bivalents.〈/p〉
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉The structure and organization of a species genome at a karyotypic level, and in interphase nuclei, have broad functional significance. Although regular sized chromosomes are studied extensively in this regard, microchromosomes, which are present in many terrestrial vertebrates, remain poorly explored. Birds have more cytologically indistinguishable microchromosomes (~ 30 pairs) than other vertebrates; however, the degree to which genome organization patterns at a karyotypic and interphase level differ between species is unknown. In species where microchromosomes have fused to other chromosomes, they retain genomic features such as gene density and GC content; however, the extent to which they retain a central nuclear position has not been investigated. In studying 22 avian species from 10 orders, we established that, other than in species where microchromosomal fusion is obvious (〈em〉Falconiformes〈/em〉 and 〈em〉Psittaciformes〈/em〉), there was no evidence of microchromosomal rearrangement, suggesting an evolutionarily stable avian genome (karyotypic) organization. Moreover, in species where microchromosomal fusion has occurred, they retain a central nuclear location, suggesting that the nuclear position of microchromosomes is a function of their genomic features rather than their physical size.〈/p〉
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...