ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (4,309)
  • Oxford University Press  (4,309)
  • American Geophysical Union
  • International Union of Crystallography
  • Journal of Petrology  (514)
  • 2319
  • Geosciences  (4,309)
Collection
  • Journals
  • Articles  (4,309)
Publisher
  • Oxford University Press  (4,309)
  • American Geophysical Union
  • International Union of Crystallography
Journal
Topic
  • Geosciences  (4,309)
  • 1
    Publication Date: 2021-07-01
    Description: The Lafaye orbicular body was emplaced in the Villatange tonalite-granodiorite unit of the Guéret magmatic complex (Massif Central, France). It consists of plagioclasic orbicules (4–35 cm diameter) embedded in homogeneous cordierite granodiorite. Orbicule cores consist mostly of residual metasedimentary xenoliths or autolithic plagioclasic cumulates. Rims (0.7–8 cm thickness) are single- or multi-layered; layers, mostly comb-textured, comprise alternating sheets dominated by cordierite (XFe = 0.32–0.37) or plagioclase (mostly An25–30). Additional mineral phases are minor biotite (XFe = 0.52; AlVI = 0.58–0.92 atoms per formula unit) and interstitial quartz. Plagioclase and cordierite morphologies (needle-like, skeletal, branching or fan-shaped) indicate growth under high initial supersaturation. However, the final polyhedral shapes and primary zoning of many individual plagioclase crystals, as well as evidence of partial recrystallization, imply significant textural maturation. Whole-rock major and trace element data (A/CNK = 1.12–1.46) and Sr and Nd isotopic compositions (εNd(355 Ma)  = −8.6 to −7.4; 87Sr/86Sr(355 Ma) = 0.7110–0.7147) suggest that the parental magma of the orbicules resulted from bulk assimilation of aluminous metasediments by a Villatange-type granodioritic magma. Heterogeneous nucleation and growth of plagioclase and cordierite around xenoliths/autoliths are interpreted in terms of (1) adiabatic decompression of magma pulses ascending in dykes leading to superheating and resorption of early solids, and (2) volatile exsolution, inducing undercooling, supersaturation, and rim crystallization. The variability of layers (number, thickness, mineral distribution, and texture) is considered to result from oscillatory crystallization combined with variable plagioclase growth rates linked to changes in the degree of supersaturation as a function of the extent of melt degassing, itself linked to magma transfer dynamics.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-05-28
    Description: La Réunion Island includes two major volcanic systems. About 0·5 Myr ago, Piton des Neiges volcano declined, while Piton de la Fournaise volcano grew on its flank. Since then the Piton de la Fournaise shield volcano has produced homogeneous lavas with chemical compositions transitional between alkali and tholeiitic basalts. In April 2007, the volcano emitted a very small volume of trachytic pumice during its largest historical eruption. We conducted a comprehensive petrological and geochemical study of the pumice to understand the occurrence of such silicic melt in the feeding system of this highly active basaltic volcano. Isotopes of Sr, Nd, Pb and O, together with trace elements, indicate that the trachyte is genetically related to the La Réunion mantle plume and derives from crystallization of a typical basalt. The trachyte chemistry records a long and complex history of differentiation and outgassing. The extensive depletion of moderately volatile elements (F, Cl, B, Cs, Cu, Li) and less volatile uranium is consistent with exsolution of dense fluids at depths of several kilometres. Lithium isotopes point to closed-system degassing during the very late stages of crystallization. U-series isotopes and radiogenic 208Pb*/206Pb* constrain the age of U loss to between 0·4 and 2·1 Ma. This age is as old as or older than the Piton de la Fournaise shield edifice. The 2007 trachyte could thus be a liquid remnant of an extinct volcano, such as Piton des Neiges or Les Alizés (Piton de la Fournaise proto-volcano). It could also result from partial melting of an old syenite intrusion or remobilization of interstitial melts not fully solidified. Thermal modelling indicates that the sustained heat flux from hot basaltic magmas rising from the mantle can maintain temperatures above 800 °C in the central feeding system, and prevent total solidification of magmas trapped in this hot core.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-26
    Description: Volcán Quizapu, Chile, is an under-monitored volcano that was the site of two historical eruptions: an effusive eruption in 1846-1847 and a Plinian eruption in 1932, both of which discharged ∼5 km3 (DRE) of lava and/or tephra. The majority of material erupted in both cases is trachydacite, nearly identical for each event. We present H2O-saturated, phase equilibrium experiments on this end-member dacite magma, using a pumice sample from the 1932 eruption as the main starting material. At an oxygen fugacity (fO2) of ∼NNO+0.2, the phase assemblage of An25-30 plagioclase + amphibole + orthopyroxene, without biotite, is stable at 865±10 °C and 110±20 MPa H2O pressure (PH2O), corresponding to ∼4 km depth. At these conditions, experiments also reproduce the quenched glass composition of the starting pumice. At slightly higher PH2O and below 860 °C, biotite joins the equilibrium assemblage. Because biotite is not part of the observed Quizapu phase assemblage, its presence places an upper limit on PH2O. At the determined storage PH2O of ∼110 MPa, H2O undersaturation of the magma with XH20fluid==0.87 would align Ptotal to mineral-based geobarometry estimates of ∼130 MPa. However, XH20fluid=1〈 1 is not required to reproduce the Quizapu dacite phase assemblage and compositions. A second suite of experiments at lower fO2 shows that the stability fields of the hydrous silicates (amphibole and biotite) are significantly restricted at NNO-2 relative to NNO+0.2. Additional observations of Quizapu lava and pumice samples support the existing hypothesis that rapid pre-eruptive heating drove the effusive 1846-1847 eruption, with important refinements. We demonstrate that microlites in the end-member dacite lavas are consistent with in situ crystallization (during ascent), rather than transfer from an andesite. In one end-member dacite lava, newly identified reverse zoning in orthopyroxene and incipient destabilization of amphibole are consistent with small degrees of heating. Our work articulates a clear direction for future Quizapu studies, which are warranted given the active nature of the Cerro Azul-Descabezado Grande volcanic axis.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-03-31
    Description: In the Southern Ribeira Belt (Brazil), the Itatins Complex, composed of ortho- and para-derived migmatites record granulite-facies metamorphism. Our work focuses on the ortho-derived migmatite, which displays features indicative of partial melting ranging from in-situ melting (cm-thick lenses and veins) to accumulations of melt as leucosomes and patches of diatexite. The unit comprises a biotite felsic granulite (metagranodiorite) with a residual neosome and a leucocratic neosome, generally referred to as leucosome. Phase equilibrium modelling using a modified bulk composition from the geochemical standard JG-1 (granodiorite) was carried out to evaluate whether a protolith of granodiorite bulk composition could produce the mineral assemblages observed in the residual neosome and the compositions of melt and residue produced by the partial melting. Isopleth thermobarometry of plagioclase, biotite and orthopyroxene points to P-T conditions of 0.7-1.0 GPa and 845-872 ºC. The modified granodiorite bulk composition generated just 10 mol % melt at these conditions, far lower than the amount estimated from outcrops (around 32 %). A T-XH2O pseudosection shows that increasing H2O content enhances the fertility of the bulk composition and it can become capable of producing melt volumes similar to that observed in outcrop. The melt compositions determined for partial melting of the modified granodiorite bulk composition in open- and closed-systems using THERMOCALC are granitic, and peraluminous. The melts have SiO2 contents between 52.02 mol % and 77.27 mol. % and show XFe values of 0.68 and 0.86. In K2O vs. Na2O+CaO, K2O vs. XFe and K2O-(FeO+MgO)-(Na2O+CaO) space natural samples (5 from the residual neosome and 2 from leucosome) from the Itatins Complex plot in the direction of the trends for melt and residue compositions obtained from modelling of the modified granodiorite bulk composition. The differences between modeled compositions and real rocks are interpreted to result from the interaction of melt with its residual counterpart. Chondrite-normalized REE patterns from the residual neosome show considerably greater depletion of HREE than geochemical standard JG-1 (granodiorite), and the two analyzed leucosomes show lower HREE contents. Zircon rims have REE patterns interpreted to indicate metamorphic recrystallization. U-Pb zircon Concordia ages indicate that the protolith formed during the Paleoproterozoic (2137 Ma) but that metamorphic recrystallization is Neoproterozoic (between 632 and 601 Ma). The metamorphic age pre-dates the intense granitic magmatism that affected the Southern Ribeira Belt between 600 and 570 Ma.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-03-20
    Description: The mantle-crust boundary beneath oceanic spreading centres is a major chemical and thermal interface on Earth. Observations in ophiolites reveal that it is underlined by a dunitic transition zone (DTZ) that can reach a few hundred meters in thickness and hosting abundant chromitite ore bodies. The dunites have been deciphered as essentially mantle-derived in most ophiolitic massifs, i.e. reactional residues of interactions between peridotite and percolating melt(s). Although both dunite and chromitite in ophiolites have been the focus of many studies, the reasons of their systematic association remain unclear. In this study we have explored the inclusion content of the chromite grains disseminated in the dunites from the DTZ exposed in the Maqsad area of the Oman ophiolite where a former asthenospheric diapir is exposed. Similarly to chromite in chromitite ore bodies, disseminated chromite grains in dunites contain a great diversity of silicate inclusions. Based on the major and minor element composition of 1794 single silicate inclusions in chromites from 285 samples of dunite and associated rocks in the DTZ, we infer that the disseminated chromites formed by a similar “metallogenic” process to the chromitites, and that, as a whole, dunites from the DTZ actually represent the low grade endmember of a single, giant ore body. The nature of the silicate inclusions (amphibole and mica among others) enclosed in chromite grains in dunites from the Maqsad DTZ precludes their crystallization from an anhydrous primitive basaltic melt, and rather calls for a crystallization from a melt hybrid between common mafic melts and more exotic Si-, Na- and volatile-rich fluids. The hybrid parent medium of both dunites and chromitites results from the interaction between an asthenospheric diapir (the MORB source), and a colder, altered lithospheric lid and hydrothermal fluids responsible for this alteration. The excess silica in the hybrid melt is provided by the incongruent dissolution of enstatite from mantle harzburgite and/or from moderate degree of partial melting of the altered gabbroic crust. The chemical composition of the silicate inclusions is more variable when enclosed in the disseminated chromites than in the chromitites, suggesting a greater variability of melts and/or fluids fractions involved in the genesis of dunites than of chromite ores. Finally, the DTZ can be viewed as a metamorphic contact aureole between episodically rising asthenospheric diapirs and formerly accreted axial lithospheric lids. Our conclusion about the chicken and egg dilemma linking dunites and chromitites beneath oceanic spreading centres (i.e. Do the chromitites form in response to the formation of dunites or conversely?) is that the mantle dunitization itself is a potential way for the release of Cr and its re-concentration as chromite ores, and that in turn the competition between orthopyroxene (+/- plagioclase) and chromite fractionation during this fluid/melt/peridotite reactional process is responsible of the great mineralogical and chemical variability of the DTZ dunites.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-03-13
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-03-16
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-03-18
    Description: A large compilation of quality-curated major and trace element data has been assembled to investigate how trace element patterns of mafic and ultramafic magmas have varied with time through particular settings from the Archean to the Phanerozoic, the primary objective being to recognise at what times particular patterns of variation emerge, and how similar these are to baseline data sets representing tectonic settings in the modern Earth. The most informative element combinations involve Nb, Th and the REE, where REE are represented by “lambda” parameters describing slope and shape of patterns. Combinations of the ratios of Th, Nb, La and lambda values from Archean and early Proterozoic basalts and komatiites reveal a distinctive pattern that is common in most well-sampled terranes, defining a roughly linear trend in multi-dimensional space from compositions intermediate between modern n-MORB and primitive mantle at one end, towards compositions approximating middle-to-upper continental crust at the other. We ascribe this “Variable Th/Nb” trend in most instances to varying degrees of crustal contamination of magmas with similar compositions to modern oceanic plateau basalts. Komatiites had slightly more depleted sources than basalts, consistent with the hypothesis of derivation from plume tails and heads, respectively. The most significant difference between Precambrian and Phanerozoic plume-derived basalts is that the distinctive OIB-like enriched source component appears to be largely missing from the Archean and Proterozoic geologic record, although isolated examples of OIB-like trace element characteristics are evident in datasets from even the oldest preserved greenstones. Phanerozoic intra-cratonic LIPs, such as the 260 Ma Emeishan in China, have fundamentally different geochemical characteristics to Archean and Paleoproterozoic assemblages; the oldest Proterozoic LIP we have identified that has this type of “modern” signal is the Midcontinent Rift at 1100 Ma. The data are consistent with plume tail sources having changed from being dominantly depleted in the Archean Earth to dominantly enriched in the Phanerozoic Earth, while plume head sources have hardly changed at all. Trace element patterns considered to be diagnostic of subduction are locally present but rare in Archean terranes and become more prevalent through the Proterozoic, although this conclusion is tempered by the large degree of overlap in compositional space between continental arc magmas and continental flood basalts. This overlap reflects the difficulty of distinguishing the effects of supra-subduction metasomatism and flux melting from those of crustal contamination. Additional factors must also be borne in mind, particularly that trace element partitioning systematics may have been different in all environments in a hotter planet, and large-scale asthenospheric overturns might have been predominant over modern-style plumes in the Archean Earth. Some basaltic suites in particular Archean terranes, notably the western parts of both the Yilgarn and Pilbara cratons in Western Australia and parts of the Superior Craton, have restricted but locally predominant suites of basalts with characteristics akin to modern oceanic arcs, suggesting that some process similar to modern subduction was preserved in these particular belts. Ferropicrite magmas with distinctive characteristics typical of modern OIBs and some continental LIPs (notably Emeishan) are rare but locally predominant in some Archean and early Proterozoic terranes, implying that plume sources were beginning to be fertilised by enriched, probably subducted, components as far back as the Mesoarchean. We see no evidence for discontinuous secular changes in mantle-derived magmatism with time that could be ascribed to major mantle reorganisation events. The Archean-Proterozoic transition appears to be entirely gradational from this standpoint. The transition from Archean-style to Phanerozoic-style plume magmatism took place somewhere between 1900 Ma (age of the Circum-Superior komatiitic basalts suites) and 1100 Ma (age of the Midcontinent Rift LIP).
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-03-20
    Description: Intraplate basaltic volcanism commonly exhibits wide compositional ranges from silica-undersaturated alkaline basalts to silica-saturated tholeiitic basalts. Possible mechanisms for the compositional transition involve variable degrees of partial melting of a same source, decompression melting at different mantle depths (so-called “lid effect”), and melt-peridotite interaction. To discriminate between these mechanisms, here we investigated major-trace elemental and Sr-Nd-Mg-Zn isotopic compositions of a suite of intraplate alkaline and tholeiitic basalts from the Datong volcanic field in eastern China. Specifically, we employed Mg and Zn isotope systematics to assess whether the silica-undersaturated melts originated from a carbonated mantle source. The alkaline basalts have young HIMU-like Sr and Nd isotopic compositions, lower δ26Mg (-0.42‰ to -0.38‰) and higher δ66Zn (0.40‰ to 0.46‰) values relative to the mantle. These characteristics were attributable to an asthenospheric mantle source hybridized by carbonated melts derived from the stagnant Pacific slab in the mantle transition zone. From alkaline to tholeiitic basalts, δ26Mg gradually increases from -0.42‰ to -0.28‰ and δ66Zn decreases from 0.46‰ to 0.28‰ with decreasing alkalinity and incompatible trace element abundances (e.g. Rb, Nb, Th and Zr). The Mg and Zn isotopic variations are significantly beyond the magnitude (
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-02-10
    Description: Previous studies have concluded that dehydration of serpentinites in subduction zones produces oxidizing fluids that are the cause of oxidized arc magmas. Here, observations of natural samples and settings are combined with thermodynamic models to explore some of the factors that complicate interpretation of the observations that form the basis of this conclusion. These factors include: the variability of serpentinite protoliths; the roles of carbon and sulfur in serpentinite evolution; variability in serpentinization in different tectonic settings; changes in the bulk compositions of ultramafic rocks during serpentinization; fundamental differences between serpentinization and deserpentinization; and the absence of precise geothermobarometers for ultramafic rocks. The capacity of serpentinite-derived fluids to oxidize sub-arc magma is also examined. These fluids can transport redox budget as carbon-, sulfur-, and iron-bearing species. Iron- and carbon-bearing species might be present in sufficient concentrations to transport redox budget deep within subduction zones, but are not viable transporters of redox budget at the temperatures of antigorite breakdown, which produces the largest proportion of fluid released by serpentinite dehydration. Sulfur-bearing species can carry significant redox budget, and calculations using the Deep Earth Water (DEW) model show that these species might be stable during antigorite breakdown. However, oxygen fugacities of ∼ΔFMQ +3 (where FMQ refers to the fayalite–magnetite–quartz buffer, and ΔFMQ is Log fO2 – Log fO2,FMQ), which is close to, or above, the hematite–magnetite buffer at the conditions of interest, are required to stabilize oxidized sulfur-bearing species. Pseudosection calculations indicate that these conditions might be attained at the conditions of antigorite breakdown if the starting serpentinites are sufficiently oxidized, but further work is required to assess the variability of serpentinite protoliths, metamorphic pressures and temperatures, and to confirm the relative positions of the mineral buffers with relation to changes in fluid speciation.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2021-02-09
    Description: The Quaternary Tarosero volcano is situated in the East African Rift of northern Tanzania and mainly consists of trachyte lavas and some trachytic tuffs. In addition, there are minor occurrences of extrusive basalts, andesites, latites, as well as peralkaline trachytes, olivine trachytes and phonolites. Some of the peralkaline phonolites contain interstitial eudialyte, making Tarosero one of the few known occurrences for extrusive agpaitic rocks. This study investigates the genetic relationships between the various rock types and focuses on the peculiar formation conditions of the extrusive agpaitic rocks using a combination of whole-rock geochemistry, mineral chemistry, petrography, thermodynamic calculations, as well as major and trace element modelling. The Tarosero rocks formed at redox conditions around or below the fayalite-magnetite-quartz buffer (FMQ). During multi-level magmatic fractionation at depths between ∼40 km and the shallow crust, temperature decreased from 〉 1100 °C at near-liquidus conditions in the basalts to ∼ 700 °C in the peralkaline residue. Fractional crystallization models and trace element characteristics do not indicate a simple genetic relationship between the trachytes and the other rock types at Tarosero. However, the genetic relationships between the primitive basalts and the intermediate latites can be explained by high pressure fractional crystallization of olivine + clinopyroxene + magnetite + plagioclase + apatite. Further fractionation of these mineral phases in addition to amphibole and minor ilmenite led to the evolution towards the peralkaline trachytes and phonolites. The eudialyte-bearing varieties of the peralkaline phonolites required additional low-pressure fractionation of alkali feldspar and minor magnetite, amphibole and apatite. In contrast to the peralkaline trachytes and phonolites, the peralkaline olivine trachytes contain olivine instead of amphibole, thus indicating a magma evolution at even lower pressure conditions. They can be modelled as a derivation from the latites by fractional crystallization of plagioclase, clinopyroxene, magnetite and olivine. In general, agpaitic magmas evolve under closed system conditions which impedes the escape of volatile phases. In case of the extrusive agpaitic rocks at Tarosero, the early exsolution of fluids and halogens was prevented by a low water activity. This resulted in high concentrations of Rare Earth Elements (REE) and other High Field Strength Elements (HFSE) and the formation of eudialyte in the most evolved peralkaline phonolites. Within the peralkaline rock suite, the peralkaline olivine trachytes contain the lowest HFSE and REE concentrations, consistent with mineralogical evidence for a formation at a relatively high water activity. The lack of amphibole fractionation, which can act as a water buffer of the melt, as well as the evolution at relatively low pressure conditions caused the early exsolution of fluids and loss of water-soluble elements. This prevented a strong enrichment of HFSE and REE before the magma finally extruded.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2021-02-18
    Description: There are more than 90 porphyry (or skarn) Mo deposits in northeastern China with Jurassic or Cretaceous ages. These are thought to have formed mainly in a continental arc setting related to the subduction of the Paleo-Pacific oceanic plate in the Jurassic and subsequent slab rollback in the early Cretaceous. The Jurassic Daheishan porphyry Mo deposit is one of the largest Mo deposits in NE China, which contains 1.09 Mt Mo with an average Mo grade of 0.07%. To better understand the factors that could have controlled Mo mineralization at Daheishan, and potentially in other similar porphyry Mo deposits in NE China, the geochemical and isotopic compositions of the ore-related granite porphyry and biotite granodiorite, and the magmatic accessory minerals apatite, titanite and zircon from the Daheishan intrusions, were investigated so as to evaluate the potential roles that magma oxidation states, water contents, sulfur and metal concentrations could have played in the formation of the deposit. Magmatic apatite and titanite from the causative intrusions show similar εNd(t) values from -1.1 to 1.4, corresponding to TDM2 ages ranging from 1040 to 840 Ma, which could be accounted for by a mixing model through the interaction of mantle-derived basaltic melts with the Precambrian lower crust. The Ce and Eu anomalies of the magmatic accessory minerals have been used as proxies for magma redox state, and the results suggest that the ore-forming magmas are highly oxidized, with an estimated ΔFMQ range of + 1.8 to + 4.1 (+2.7 in average). This is also consistent with the high whole-rock Fe2O3/FeO ratios (1.3–26.4). The Daheishan intrusions display negligible Eu anomalies (Eu/Eu* = 0.7–1.1) and have relatively high Sr/Y ratios (40–94) with adakitic signatures; they also have relatively high Sr/Y ratios in apatite and titanite. These suggest that the fractionation of amphibole rather than plagioclase is dominant during the crystallization of the ore-related magmas, which further indicates a high magmatic water content (e.g., 〉5 wt%). The magmatic sulfur concentrations were calculated using available partitioning models for apatite from granitoids, and the results (9–125 ppm) are indistinguishable from other mineralized, subeconomic and barren intrusions. Furthermore, Monte Carlo modelling has been conducted to simulate the magmatic processes associated with the formation of the Daheishan Mo deposit, and the result reveals that a magma volume of ∼280 km3 with ∼10 ppm Mo was required to form the Mo ores containing 1.09 Mt Mo in Daheishan. The present study suggests that a relatively large volume of parental magmas with high oxygen fugacities and high water contents is essential for the generation of a giant porphyry Mo deposit like Daheishan, whereas a specific magma composition (e.g., with unusually high Mo and/or S concentrations), might be less critical.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-02-12
    Description: Aillikites are carbonate-rich ultramafic lamprophyres often associated with carbonatites. Despite their common field relationships, the petrogenetic links, if any, between aillikites and carbonatites remain controversial. To address this question, this study reports the results of a detailed geochemical and isotopic examination of the Permian Wajilitag aillikites in the northwestern Tarim large igneous province, including bulk-rock major-, trace-element and Sr-Nd isotope compositions, olivine major- and trace-element and (in-situ secondary ion mass spectrometry) oxygen isotope compositions, oxygen isotope data for clinopyroxene separates, and bulk-carbonate C-O isotopic analyses. Olivine in the aillikites occurs in two textural types: (i) microcrysts, 0.3-5 mm; and (ii) macrocrysts, 0.5-2.5 cm. The microcrysts exhibit well-defined linear correlations between Fo (79-89), minor and trace elements (e.g., Ni = 1304-3764 μg/g and Mn = 1363-3042 μg/g). In contrast, the olivine macrocrysts show low Fo79-81, Ni (5.3-442 μg/g) and Ca (477-1018 μg/g) and very high Mn (3418-5123 μg/g) contents, and are displaced from the compositional trend of the microcrysts. The microcrysts are phenocrysts crystallized from the host aillikite magmas. Conversely, the lack of mantle-derived xenoliths in these aillikites suggests that the macrocrysts probably represent cognate crystals (i.e., antecrysts) that formed from earlier, evolved aillikite melts. Olivine phenocrysts in the more primitive aillikite dykes (Dyke 1) have relatively higher Fo82-89 and mantle-like oxygen isotope values, whereas those in the more evolved dykes (Dyke 2 and 3) exhibit lower Fo79-86 and oxygen isotope values that trend toward lower than mantle δ18O values. The decreasing δ13C values of carbonate from Dyke 1 through to Dyke 2 and 3, coupled with the indistinguishable Sr-Nd isotopes of these dykes, suggest that the low δ18O values of olivine phenocrysts in Dyke 2 and 3 resulted from carbonate melt/fluid exsolution from a common progenitor melt. These lines of evidence combined with the overlapping emplacement ages and Sr-Nd isotope compositions of the aillikites and carbonatites in this area suggest that these exsolved carbonate melts probably contributed to the formation of the Tarim carbonatites thus supporting a close petrogenetic relationship between aillikites and carbonatites.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-02-05
    Description: The role of subducting oceanic crust-derived fluids in generating mafic arc magmatism has been widely documented. However, the subducting oceanic crust is generally composed of basaltic igneous crust and seafloor sediment, which may give rise to different compositions of liquid phases causing metasomatism of the mantle wedge. Because of the similarity in enrichment of fluid-mobile incompatible elements in the two sources of subduction zone fluids, it has been a challenge to distinguish between them when studying the products of mafic arc magmatism. This difficulty is overcome by a combined study of whole-rock Li isotopes and zircon O isotopes in addition to whole-rock major-trace elements and Sr-Nd-Hf isotopes in Late Paleozoic mafic igneous rocks from southwestern Tianshan in western China. Zircon U-Pb dating yields consistent ages of 313±3 Ma to 305±1 Ma for magma crystallization. The mafic igneous rocks exhibit arc-like trace element distribution patterns and depleted whole-rock Nd-Hf isotopes but slightly high (87Sr/86Sr)i ratios of 0.7039 to 0.7056. They also show positive zircon εHf(t) values and slightly higher zircon δ18O values of 5.2-7.6‰. There are covariations of whole-rock Sr isotopes with Th/La and Rb/Nb ratios, indicating a contribution from terrigenous sediment-derived fluids to their mantle source in addition to basaltic igneous crust-derived fluids. Based on the slightly higher zircon δ18O values but variably lower whole-rock δ7Li values of -0.8 to 3.5‰ for the target rocks than those of mantle respectively, both altered oceanic basalt- and terrigenous sediment-derived fluids are identified in the mantle source of these mafic igneous rocks. Model calculations for trace elements and Sr-Nd-Li isotopes further confirm that the geochemical compositions of these mafic igneous rocks can be explained by chemical reaction of depleted MORB mantle peridotite with the mixed fluids to generate ultramafic metasomatites at subarc depths. Therefore, chemical metasomatism of the mantle wedge is a key mechanism for the incorporation of crustal components into the source of arc-like mafic igneous rocks above oceanic subduction zones.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2021-01-02
    Description: Drilling related to development of the platinum-group element deposit of the J-M Reef of the Stillwater Complex returned samples of a rare chromitite seam between anorthosite and norite in a discordant anorthositic body. Plagioclase core An concentrations are marginally higher and modestly reversely zoned on the norite side (average Ancore = 83.8; average Ancore-Anrim = -1.1) as compared with the anorthosite side (Average Ancore 82.5; Average Ancore-Anrim = +1.0). The anorthosites are also characterized by a slightly smaller average plagioclase grain size than plagioclase in the norite (1.41 mm and 1.54 mm, respectively). The chromite can contain single and polyphase inclusions of orthopyroxene, plagioclase, amphibole, biotite and Cl-rich apatite. These and other compositional and textural features, as well as inference from other discordant anorthositic bodies in the Banded series, are all consistent with a chromatographic model of chromite precipitation at a reaction front as a norite protolith reacts with a Cl-rich aqueous fluid saturated in plagioclase alone. Chromitite seam formation is modeled using an infiltration metasomatic model, in which a fluid becomes progressively undersaturated in pyroxene as it rises into the hotter part of the crystal pile. As this pyroxene-undersaturated fluid moves through a noritic protolith, it dissolves the Cr-bearing orthopyroxene to produce an anorthosite. Chromite precipitates at the reaction front between the anorthosite and the norite owing to liberation of Mg and Cr from pyroxene. Continuous redissolution and reprecipitation of chromite occurs as the pyroxene dissolution front moves in direction of fluid flow, collecting the Cr lost from the anorthosite. Owing to Cr dissolved mainly as a neutral divalent cation complex, (CrCl(OH)0, in the solution, but incorporated as a trivalent cation in chromite, the required redox reaction can involve concurrent precipitation of sulfide with chromite. This mechanism differs from some recent models in that the anorthosites are themselves replacement bodies and are not original precipitates from a magma nor formed by loss of mafic material by partial melting. The results show the need for experimental mineral solubility data at T and P conditions appropriate to upper crustal mafic/ultramafic intrusions.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-01-02
    Description: The Paleoproterozoic Bushveld Complex, including the world’s largest layered intrusion and host to world-class stratiform chromium, platinum group element, and vanadium deposits, is a remarkable natural laboratory for investigating the timescales of magmatic processes in the Earth’s crust. A framework for the emplacement, crystallization, and cooling of the Bushveld Complex based on integrated U-Pb zircon-baddeleyite-titanite-rutile geochronology is presented for samples of different rock types from the Bushveld Complex, including ultramafic and mafic cumulates, mineralized horizons, granitic rocks from the roof, and a carbonatite from the nearby alkaline Phalaborwa Complex. The results indicate that (1) the Bushveld Complex was built incrementally over a ∼5 million-year interval from 2060 Ma to 2055 Ma with a peak in magma flux at c.2055–2056 Ma, (2) U-Pb zircon crystallization ages do not decrease in an uninterrupted systematic manner from the base to the top of the intrusion indicating that the Bushveld Complex does not represent the crystallized products of a single progressively filled and cooled magma chamber, and (3) U-Pb rutile dates constrain cooling of the intrusion at the level of the Critical Zone through ∼500 °C by 2053 Ma. The c.2060 Ma Phalaborwa Complex (pyroxenite, syenite, carbonatite + Cu-Fe-phosphate-vermiculite deposits) represents one of the earliest manifestations of widespread Bushveld-related magmatism in the northern Kaapvaal craton. The extended range and out-of-sequence U-Pb zircon dates determined for a harzburgite from the Lower Zone (c.2056 Ma), an orthopyroxenite from the Lower Critical Zone (c.2057 Ma), and orthopyroxenites from the Upper Critical Zone (c.2057–2060 Ma) are interpreted to indicate that the lower part of the Bushveld Complex developed through successive intrusions and accretion of sheet-like intrusions (sills), some intruded at different stratigraphic levels. Crystallization of the main volume of the Bushveld Complex, as represented by the thick gabbroic sequences of the Main Zone and Upper Zone, is constrained to a relatively narrow interval of time (∼1 million years) at c.2055–2056 Ma. Granites and granophyres in the roof, and a diorite in the uppermost Upper Zone, constitute the youngest igneous activity in the Bushveld Complex at c.2055 Ma. Collectively, these results contribute to an emerging paradigm shift for the assembly of some ultramafic-mafic magmatic systems from the conventional “big tank” model to an “amalgamated sill” model. The volume-duration relationship determined for magmatism in the Bushveld Complex, when compared to timescales established for the assembly of other layered intrusions and more silica-rich plutonic-volcanic systems worldwide, is distinct and equivalent to those determined for Phanerozoic continental and oceanic flood basalts that constitute large igneous provinces. Emplacement of the 2055–2060 Ma Bushveld Complex corresponds to the end of the Lomagundi-Jatuli Event, the largest magnitude positive carbon isotope excursion in Earth history, and this temporal correlation suggests that there may have been a contribution from voluminous Bushveld ultramafic-mafic-silicic magmatism to disruptions in the global paleoenvironment.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2021-04-09
    Description: The early Mesozoic evolution of the Lhasa terrane, which represents a major component of the Himalayan-Tibetan orogen, remains highly controversial. In particular, geological units and events documented either side of the eastern Himalayan syntaxis (EHS) are poorly correlated. Here, we report new petrological, geochemical and geochronological data for co-genetic peraluminous S-type granites and metamorphic rocks (gneiss and schist) from the Motuo–Bomi–Chayu region of the eastern Lhasa terrane, located on the eastern flank of the EHS. Zircon U–Pb dating indicates that these units record both Late Triassic magmatic (216–206 Ma) and metamorphic (209–198 Ma) episodes. The granites were derived from a Paleoproterozoic crustal source with negative zircon εHf(t) values (–5.5 to –16.6) and TDM2 model ages of 1.51–1.99 Ga, and are interpreted to have formed by crustal anatexis of nearby metasediments during collisional orogeny and crustal thickening. The gneisses and schists experienced similar upper amphibolite-facies peak metamorphism and associated partial melting, followed by decompressional cooling and retrograde metamorphism. These rocks were buried to lower-crustal depths and then exhumated to the surface in a collisional orogenic setting during plate convergence. From comparison of these data to other metamorphic belts with similar grades and ages, and association of coeval granitic magmatism widespread in the central-east Lhasa terrane, we propose that the studied co-genetic magmatism and metamorphism in the Motuo–Bomi–Chayu region records Late Triassic accretion of the North Lhasa and South Lhasa terranes, which represents the first evidence of the Paleo-Tethys ocean (PTO) closure in this part of Asia. These data provide new constraints on the spatial and temporal evolution of the Paleo-Tethyan Wilson Cycle and provide a ‘missing link’ to correlate the geology and tectonic history of the Lhasa terrane continental crust on either side of the EHS.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2021-04-23
    Description: Mafic intrusions on the NE shoulder of the Midcontinent Rift (Keweenawan LIP), including Cu–PGE mineralized gabbros within the Coldwell Complex (CC), and rift parallel or radial dykes outside the CC are correlated based on characteristic trace element patterns. In the Coldwell Complex, mafic rocks are subdivided into four groups: (1) early metabasalt; (2) Marathon Series; (3) Layered Series; (4) Geordie–Wolfcamp Series. The Marathon Series are correlated with the rift radial Abitibi dykes (1140 Ma), and the Geordie–Wolfcamp Series with the rift parallel Pukaskwa and Copper Island dykes. U–Pb ages determined for five gabbros from the Layered and Marathon Series are between 1107·7 and 1106·0 Ma. Radiogenic isotope ratios show near chondritic (CHUR) εNd(1106 Ma) and 87Sr/86Sri values that range from –0·38 to +1·13 and 0·702537 to 0·703944, respectively. Distinctive geochemical properties of the Marathon Series and Abitibi dykes, such as Ba/La (14–37), Th/Nb (0·06–0·12), La/Sm (3·8–7·7), Sr/Nd (21–96) and Zr/Sm (9–19), are very different from those of the Geordie–Wolfcamp Series and a subset of Copper Island and Pukaskwa dykes with Ba/La (8·7–11), Th/Nb (0·12–0·13), La/Sm (6·7–7·9), Sr/Nd (5–7·8) and Zr/Sm (18–24). Each unit exhibits covariation between incompatible element ratios such as Zr/Sm and Nb/La or Gd/Yb, Sr/Nd and Ba/La, and Nb/Y and Zr/Y, which are consistent with mixing relationship between two or more mantle domains. These characteristics are unlike those of intrusions on the NW shoulder of the MCR, but resemble those of mafic rocks occurring in the East Kenya Rift. The results imply that an unusual and long-lived mantle source was present in the NE MCR for at least 34 Myr (spanning the 1140 Ma Abitibi dykes and the 1106 Ma Marathon series) and indicate potential for Cu–PGE mineralization in an area much larger than was previously recognized.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2021-03-15
    Description: Miocene magmatic rocks are exposed as lava flows (OKV group), subvolcanic rocks (SRG group), and as lavas interbedded with shallow-basin sedimentary layers (TVN group) in the Takab area, NW Iran. Zircon U–Pb dating yields ages of 18 to 15 Ma. Whole-rock chemistry shows that most of the Early Miocene magmatic rocks are andesite with subordinate dacite. The magmatic rocks have low contents of MgO, Ni, Cr, Ti, Nb and Ta, and high concentrations of Li, large ion lithophile elements such as Rb, K and Ba, and light rare earth elements. The OKV and SRG groups have similar initial 87Sr/86Sr ratios (0·70557–0·70768) and εNd(t) values (+1·0 to +2·2). The TVN group show larger variations of 87Sr/86Sr(i) ratios from 0·70628 to 0·71033 and εNd(t) values from –3·8 to +1·6. This implies a greater role of involvement of supra-crustal domains in the evolution of the TVN group relative to the SRG and OKV groups. Early Miocene magmatic rocks in the Takab area are situated between the Sanandaj–Saqqez Cretaceous calc-alkaline andesite in the SW and the Late Eocene–Oligocene (35–27 Ma) ocean island basalt-like Mianeh–Hashtrood magmatic belt of possible back-arc affinity in the NE. In addition, Late Eocene (40–37 Ma) syn-collision granites in the Baneh–Marivan area along the Zagros suture zone along the west side of the Sanandaj–Saqqez Cretaceous calc-alkaline andesite body indicate that collision of the Arabian Plate and the NW Iran Block occurred in the Late Eocene. These observations support the idea that Early Miocene andesites (18–15 Ma) in the Takab area were generated after collision, which was also associated with doubling of the thickness of the continental crust in the Zagros suture zone, thinning of continental crust far from the Zagros suture zone, and development of shallow-basin sedimentary rocks in NW Iran. Partial melting of mafic calc-alkaline bodies at depth or highly metasomatized fossil mantle owing to thinning of continental crust and asthenospheric upwelling may represent possible sources for the Late Miocene andesite. We conclude that andesitic rocks, even with typical arc signatures, are not always generated in an active margin and that some were probably generated in a post-collision tectonic regime. Misinterpretation of the arc signature can result in erroneous assumptions as to the geodynamic regime, and in the particular case of NW Iran, the timing of collision of the Arabian and Iranian plates.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2021-04-06
    Description: Abundant silica-undersaturated potassic lavas are found in the centre of the Turkish–Iranian plateau (NW Iran) as flows, pillows and dykes. They display abundant zoned clinopyroxene macrocrysts and xenoliths of igneous cumulates. We determined four types of zoned crystals (Type-I, -II, -III and -IV) on the basis of their composition and zoning patterns. Use of in situ compositional data, together with whole-rock major and trace elements and the isotopic signatures of the host lavas provided evidence for the derivation of the different types of zoned clinopyroxenes from at least two contrasting parental melts. Our findings are consistent with an origin of the ultrapotassic and sodic alkaline melts from the deep-seated compaction pockets inferred from our previous studies of the alkaline magmatism throughout the Turkish–Iranian plateau. The ultrapotassic melt, which accumulated at the top of the compaction pockets, eventually ponded close to the spinel–garnet mantle transition and generated colourless antecrysts (Type-I and Type-II) and clinopyroxenite cumulates. When the compaction pocket impinged on the continental lithosphere, interstitial melts segregated and flowed inside dykes where grass green antecrysts (Type-III) and zoned phenocrysts (Type-IVa) crystallized from a melt having a geochemical signature of sodic alkaline melt. Later, at the crustal level, melt crystallization processes produced Type-IVb zoned phenocrysts. Our results are at odds with the paradigm of potassic magmas in NW Iran being derived strictly from a single mantle source.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2021-09-14
    Description: Phase equilibria and trace-element modeling using two previously reported basaltic bulk-rock compositions (samples D11 and 104-16), were carried out in this study, in order to better understand mechanism of low-pressure (LP) partial melting of mafic rocks and associated melt compositions. The T–MH2O pseudosections for both samples at three pressures (i.e. 0.5, 1.0 and 2.0 kbar) display that the H2O-stability field gradually increased with decreasing pressure within the T–MH2O range of 600–1100 °C and 0–12 mol.%. The H2O contents of 10, 5.0, and 0.5 mol.% were selected on the basis of the T–MH2O pseudosections to calculate P–T pseudosections over a P–T window of 0.1–3 kbar and 600–1100 °C, so that the reactions of both the H2O-fluxed and -absent meltings at LP conditions can be investigated. The solidus displays a negative or near-vertical P–T slope, and occurs between 710 and 900 °C at pressure between 0.1 and 3.0 kbar. LP melting of metabasites is attributed to the reactions of the hydrous mineral (hornblende and/or biotite) melting and anhydrous mineral (plagioclase, orthopyroxene, and augite) melting. The hydrous mineral melting is gradually replaced by anhydrous mineral melting as pressure decreasing, as the stability of hornblende decreases with falling pressure. With increasing temperature at a given pressure, the modeled melt compositions are expressed as progressions of the granite-granodiorite-gabbroic diorite fields for sample D11and granite-quartz monzonite-monzonite-gabbroic diorite fields for sample 104-16 on the total alkali–silica diagram. The modeled melts produced through the H2O-fluxed melting display higher Al2O3, CaO, MgO, and lower SiO2 and K2O than those formed by H2O-absent melting at the same P–T conditions. Furthermore, the modeled melts formed by H2O-absent melting, become richer in Al2O3, CaO, MgO, FeO, Na2O, but poorer in SiO2 and K2O as increasing water content. The results of trace-element modeling suggests that the nearly flat REE patterns of modeled bulk-rock composition are inherited by all the modeled melts, and the negative Eu anomalies and Sr depletion of the modeled melts gradually decrease as melting degree increases. Combined with the geochemical characteristics of natural oceanic plagiogranites, which have low K2O contents and flat or slightly LREE-depleted REE patterns, our results imply that a bulk-rock composition with low K2O (
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
  • 23
    Publication Date: 2021-09-15
    Description: Garnet commonly accommodates high contents of Mn+Y+H (heavy)-REEs (rare earth elements) that follow Rayleigh fractionation during garnet early growth, with the exception of overstepping nucleation (late crystallization due to reaction overstepping). Because of this, as the garnet porphyroblasts form mostly in equilibrium with the surrounding matrix, the concentration of these elements continuously decreases towards the porphyroblast rims. Yet, rapid changes in the reaction progress of a rock during garnet growth, namely the resorption–dissolution of minerals with high concentrations of Y+REEs, may create an anomaly or peak in the mantle or rim parts of garnet grains. In this study we present an example of the resorption of garnet cores and formation of atoll garnet textures in eclogite from the Krušné hory Mountains (in the Saxothuringian tectonic zone of the Bohemian Massif). Based on textural relations, we show that the atoll garnet grains in the studied rocks were formed during the prograde stage from blueschist to eclogite facies metamorphism. Preliminary observations showed that the full (non-atoll) garnet grains had compositionally different cores (interior, or garnet I) and rims (ring, or garnet II) that were separated by a Y+H(M, or medium) REEs concentration peak. The ring garnet II indicated an elevated concentration of Mn in comparison to the marginal parts of the interior garnet I. Therefore, minor elements that were less vulnerable to diffusion than major elements and strongly sensitive to the broad spectrum of geochemical processes, such as Y+REEs, were used to track possible mineral reactions during the whole garnet growth path. Thermodynamic modelling indicated the formation of garnet by the breakdown of chlorite and lawsonite/zoisite, and peak-pressure phases were represented by garnet, omphacite, quartz, amphibole, rutile, and talc. To quantify the sources of high Mn concentrations in garnet II and of the Y+H(M)REEs sharp peaks, the sequences of mineral reactions and dissolution of garnet I leading to the formation of the atoll structure were investigated. In addition to thermodynamic modelling and pressure–temperature path constraints, mass-balance calculations of trace elements were also performed. The results combined with the observed compositional and textural relations indicate that the concentrations of Mn+Y+H(M)REEs in garnet II and the concentration peaks at the interface of the two garnet types were controlled by a complex mechanism that included the dissolution of garnet I during the formation of the atoll texture, stepwise growth of garnet during increasing pressure and temperature, and decomposition of phases with high concentrations of trace elements, such as zoisite/epidote or lawsonite.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2021-09-14
    Description: Reconstructed whole-rock and mineral major- and trace-element compositions, as well as new oxygen isotope data, for 22 mantle eclogite xenoliths from the Catoca pipe (Kasai Craton) were used to constrain their genesis and evolution. On the basis of mineralogical and major-element compositions, the Catoca eclogites can be divided into three groups: high-alumina (high-Al) (kyanite-bearing), low-magnesian (low-Mg#), and high-magnesian (high-Mg#) eclogites. The high-Al Catoca eclogites contain kyanite and corundum; high Al2O3 contents in rock-forming minerals; rare earth element (REE) patterns in garnets showing depleted LREEs, positive Eu anomalies (1.03–1.66), and near-flat HREEs; and high Sr contents in garnets and whole-rock REE compositions. All of these features point to a plagioclase-rich protolith (probably gabbro). Reconstructed whole-rock compositions (major elements, MREEs, HREEs, Li, V, Hf, Y, Zr, and Pb) and δ18O of 5.5–7.4‰ of the low-Mg# Catoca eclogites are in good agreement with the compositions of picrite basalts and average mid-ocean ridge basalt (MORB). The depleted LREEs and NMORB-normalised Nd/Yb values of 0.07–0.41 indicate that the degree of partial melting for the majority of the low-Mg# eclogites protolith was ≥30%. The narrow δ18O range of 5.5–7.4‰ near the ‘gabbro–basalt’ boundary (6‰) obtained for the high-Al and low-Mg# Catoca eclogites reflects the influence of subduction-related processes. This case shows that mantle eclogites represented by two different lithologies and originating from different protoliths — plagioclase-rich precursor, presumably gabbro (for high-Al eclogites), and basalt (low-Mg# eclogites) — can provide similar and overlapping δ18O signatures on account of the influence of subduction-related processes. Chemical compositions of the high-Mg# eclogites indicate a complicated petrogenesis, and textural signatures reveal recrystallisation. The presence of Nb-rich rutile (8–12 wt% of Nb2O5) enriched with HFSE (Zr/Hf of 72.6–75.6) and multiple trace-element signatures (including reconstructed whole-rock NMORB-normalised Ce/Yb of 3.9–10.6 and Sr/Y of 5.8–9.6, MgO contents of 15.7–17.9 wt%, and high Ba and Sr) provide strong evidence for deep metasomatic alteration. High Cr contents in clinopyroxene (800–3740 ppm), garnet (430–1400 ppm), and accessory rutile (700–2530 ppm), together with extremely low Li contents of 1.0–2.4 ppm in clinopyroxene, may indicate hybridisation of the eclogites with peridotite. Comparison of the chemical compositions (major and trace elements) of (1) unaltered fresh cores of coarse-grained garnets from the low-Mg# eclogites, (2) secondary garnet rims (ubiquitous in the low-Mg# eclogites), (3) proto-cores in the coarse-grained garnet (high-Mg# eclogites), and (4) homogeneous recrystallised fine-grained garnets (high-Mg# eclogites) suggests that the high-Mg# eclogites formed through recrystallisation of low-Mg# eclogite in the presence of an external fluid in the mantle. Four of the five high-Mg# samples show that mantle metasomatism inside the Kasai craton mantle beneath the Catoca pipe occurred at a depth range of 145–160 km (4.5–4.8 GPa).
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2021-05-27
    Description: The cratonic lithosphere–asthenosphere boundary is commonly invoked as the site of sheared peridotite and megacryst formation, a well-recognized petrological assemblage whose genetic relationships—if any—remain poorly understood. We have undertaken a comprehensive petrology and Sr–Nd–Hf–Ca isotope study of sheared peridotite xenoliths and clinopyroxene megacrysts from the c. 1150 Ma Premier kimberlite pipe on the central Kaapvaal craton in South Africa. New textural and mineral trace element evidence suggests that strong tectonic and magmatic overprinting affected the lower cratonic mantle over a vertical distance of ≥50 km from the lithosphere–asthenosphere boundary located at ∼200–225 km depth. Although modification of the central Kaapvaal cratonic mantle is commonly linked to the c. 2056 Ma Bushveld large igneous event, our thermobarometry, mantle redox, and Sr–Nd–Hf–Ca isotope data support a model in which volatile-rich low-volume melts and associated high-density fluids refertilized the lithosphere base shortly before or during asthenosphere-derived kimberlite and carbonatite magmatism at around 1150 Ma. This episode of lithospheric mantle enrichment was facilitated by exceptionally strong shear movements, as are recorded in the plastically deformed peridotites. We argue that stress-driven segregation of percolating carbonated melts contributed to megacryst formation along, or in close proximity to, shear zones within the cratonic mantle lithosphere. Integration of our results from the Kaapvaal craton and modern petrological concepts allows for the identification of a lithosphere–asthenosphere transition zone between ∼150 and 225 km depth. This horizon is defined by intersections of the ∼40–42 mW m–2 Premier paleogeotherm with (1) CO2–H2O-present solidus curves for peridotite (upper bound), and (2) typical mantle adiabats with potential temperatures between 1315 and 1420 °C (lower bound). At Premier, the most strongly deformed sheared peridotites occur mainly between ∼160 and 185 km depth, firmly within the lithosphere–asthenosphere transition zone. Contrary to many previous models, we suggest that sheared peridotite formation occurs in localized deformation zones spaced out across the entire width of the lithosphere–asthenosphere transition zone, rather than being restricted to a single thin layer at the craton base where mantle flow causes viscous drag. Hence, plate-tectonic stresses acting on the lower cratonic lithosphere may be accommodated by extensive networks of shear zones, which provide transient pathways and sinks for percolating volatile-rich melts, linking the formation of megacrysts and sheared peridotites.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2021-07-10
    Description: The Bushmanland Subprovince of the Mesoproterozoic Namaqua-Natal orogenic belt in southern Africa hosts numerous occurrences of monazite-magnetite-(biotite-apatite-sulfide)-bearing veins and granitoid dykes, including the Steenkampskraal vein system, which is one of the highest-grade REE-Th ore deposits in the world. Here, we provide whole-rock geochemical data along with zircon and monazite U-Pb dates and monazite Sm-Nd isotope analyses of these REE-Th-rich veins and granitoid dykes. The U-Pb geochronology indicates that the monazite-rich veins and granitoid dykes formed between 1050 and 1010 Ma, contemporaneously with late-Namaqua granulite-facies metamorphism. They are also coeval with the Koperberg Suite mafic magmas at 1060–1020 Ma and the late stage of a major event of A-type granitoid magmatism that occurred from 1100 to 1030 Ma (i.e. the Spektakel Suite). Similar to the mafic intrusive rocks from the Koperberg Suite, monazite-rich veins and granitoid dykes, located in the southern part of the Bushmanland Subprovince, have more radiogenic Nd isotopic compositions (ɛNd(t) ∼ −1 to zero) than equivalent dykes and veins to the north (ɛNd(t) ∼ −12 to −6). Mafic rocks of the Koperberg Suite reach Th and La concentrations of 〉400 ppm that significantly exceed those of other rock types from the region, except for the monazite-rich veins and granitoid dykes, which suggests a genetic link between these rocks. Within veins and granitoid dykes, monazite, biotite and magnetite are commonly anhedral and occur interstitially between the felsic minerals; they are, thus, late crystallizing phases. The whole-rock REE-Th concentrations of the granitoid dykes increase with Fe-Mg contents. Therefore, their incompatible element enrichment is not linked to assimilation-fractional crystallization processes. The Nd isotopic signature as well as Fe-Mg- and REE-Th-rich character of the Koperberg Suite and monazite-rich granitoid dykes might reflect partial melting of lithospheric mantle domains, metasomatized during previous Namaqua subduction events, and the mixing of mantle-derived melts with REE-Th-rich metamorphic fluids during their ascent through the crust. We propose that the monazite-magnetite vein mineralizations represent Fe-P-rich immiscible liquids that exsolved from mantle-derived magmas with compositions similar to the most mafic and monazite-rich granitoid dykes. Within this petrogenetic model, conjugate silicate-rich immiscible liquids formed the more felsic granitoid dykes characterized by lower modal abundances of biotite, magnetite and monazite. Although they do not reach similarly high REE-Th concentrations, other A-type granitoids from the region, represented by the Spektakel Suite, also share geochemical affinities with mafic igneous rocks from the Koperberg Suite; they may have originated by melting of underplated equivalents of these late-orogenic mafic rocks.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2021-05-01
    Description: The Okataina Volcanic Centre (OVC), located in the Taupo Volcanic Zone, New Zealand, is a dominantly rhyolitic magmatic system in an arc setting, where eruptions are thought to be driven by mafic recharge. Here, Sr–Pb isotopes, and compositional and textural variations in plagioclase phenocrysts from 10 rhyolitic deposits (two caldera, one immediately post-caldera, four intra-caldera, and three extra-caldera) are used to investigate the OVC magmatic system and identify the sources and assimilants within this diverse mush zone. Plagioclase interiors exhibit normal and reverse zoning, and are commonly in disequilibrium with their accompanying glass, melt inclusions, and whole-rock compositions. This indicates that the crystals nucleated in melts that differed from their carrier magma. In contrast, the outermost rims of crystals exhibit normal zoning that is compositionally consistent with growth in cooling and fractionating melts just prior to eruption. At the intra-crystal scale, the total suite of 87Sr/86Sr ratios are highly variable (0·7042–0·7065 ± 0·0004 average 2SE); however, the majority (95 %) of the crystals are internally homogeneous within error. At whole-crystal scale (where better precision is obtained), 87Sr/86Sr ratios are much more homogeneous (0·70512–0·70543 ± 0·00001 average 2SE) and overlap with their host whole-rock Sr isotopic ratios. Whole-crystal Pb isotopic ratios also largely overlap with whole-rock Pb ratios. The plagioclase and whole-rock isotopic compositions indicate significant crustal assimilation (≥20 %) of Torlesse-like metasediments (local basement rock) by a depleted mid-ocean ridge mantle magma source, and Pb isotopes require variable fluid-dominant subduction flux. The new data support previous petrogenetic models for OVC magmas that require crystal growth in compositionally and thermally distinct magmas within a complex of disconnected melt-and-mush reservoirs. These reservoirs were rejuvenated by underplating basaltic magmas that serve as an eruption trigger. However, the outermost rims of the plagioclase imply that interaction between silicic melts and eruption-triggering mafic influx is largely limited to heat and volatile transfer, and results in rapid mobilization and syn-eruption mixing of rhyolitic melts. Finally, relatively uniform isotopic compositions of plagioclase indicate balanced contributions from the crust and mantle over the lifespan of the OVC magmatic system.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2021-04-20
    Description: Kimberlite-borne mantle eclogites represent an important diamond source rock. Although the origin and stability of diamond, as opposed to its low-pressure polymorph graphite, have been studied for decades, their relationship in rare natural samples where both polymorphs coexist remains poorly constrained. To shed new light on this issue, seven graphite–diamond-bearing eclogites from the kimberlite pipe Udachnaya, Siberian craton were comprehensively investigated with respect to their petrography, mineral chemical composition and omphacite 87Sr/86Sr, acquired in situ by laser ablation multicollector inductively coupled plasma mass spectrometry. The calculated P–T conditions for basaltic group eclogites (Eu/Eu* 〈 1) correspond to a pressure range of 4·8–6·5 GPa and temperatures of 1060–1130 °C, whereas gabbroic eclogites with positive Eu- and Sr-anomalies have a smaller pressure variation (4·8–5·8 GPa), but a larger range in temperature (990–1260 °C). Reconstructed bulk compositions for gabbroic eclogites indicate an oceanic crustal origin for their protoliths, with accumulation of plagioclase and olivine ± clinopyroxene (gabbronorite or olivine gabbro). The protoliths of basaltic eclogites probably formed from the complementary residual melt. The presence of coesite and low Mg# in basaltic eclogites suggest that their light rare earth element depletion was the result of
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2021-03-31
    Description: Unlike many Archean diorites and granitoids that arguably formed in different geodynamic settings, their post-Archean counterparts are commonly regarded to have formed at convergent margins, although in detail their petrogenesis remains contentious. Here we present new whole-rock data and zircon Hf–O isotope analyses from dioritic (750–730 Ma), granitic (810–790 Ma) and tonalite–trondhjemite–granodiorite (TTG)-like intrusions (800–740 Ma) from the Panxi and Hannan regions, which form part of an extensive Neoproterozoic convergent margin exposed in South China. The dioritic rocks from the Panxi region exhibit high zircon εHf(t) (+10.1 to +13.1) and sub-mantle to mantle-like δ18O (3.1–6.3 ‰) values, whereas those from the Hannan region preserve low εHf(t) (+4.1 to +8.1) and high δ18O values (5.9–6.6 ‰), indicating that the dioritic melts were derived from subduction-modified lithospheric mantle sources and experienced variable degrees of lower crustal contamination. Zircons within granite and TTG from the Panxi region show a narrow range of Hf isotopic compositions generally spanning 2–4 εHf units (+3.1 to +7.9 for most felsic intrusions). By contrast, those from the Hannan region show a much wider range of zircon εHf(t) values spanning almost 10 εHf units (+1.1 to +10.9). Based on their O–Hf–Nd isotopic signatures, we propose that the granite and TTG from both areas were derived through partial melting of hydrated basaltic rocks in the arc root, and that the isotopic variability between the intrusions mirrors spatial and temporal chemical variations in these deep crustal source rocks. In both regions, the granites, along with mantle-derived mafic–ultramafic and intermediate rocks, show a coupled evolution associated with increasing εNd(t) and εHf(t) and decreasing δ18O with decreasing ages, whereas the TTGs formed during late-stage arc magmatism and preserve relatively homogeneous Nd–Hf isotopes and mantle-like δ18O values. Combined, these data record continuous crustal thickening through underplating of juvenile magmas and a progressive increase in the depth of melting, along with a decrease in the degree of interaction between the melts and basement rocks within the arc root. Our results suggest that slab melting was not required to produce post-Archean TTG signatures. Further, we suggest that the variability in the Hf–O–Nd isotopic compositions of metaluminous (I-type) granites mostly does not reflect a heterogeneity in upper mantle signatures, and that there is no conclusive evidence for the involvement of partial melts of subducted sediment based on Hf–O isotope signatures in zircon.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2021-03-08
    Description: We provide new experimental data on monazite, xenotime and U–Th-bearing cheralite solubility in slightly peralkaline to peraluminous granitic melts using dissolution and reverse (i.e. recrystallization after dissolution) experiments in water-saturated and flux-bearing (P + F + Li) granitic melts, at 800 °C and 200 MPa. Although a positive correlation between rare earth element (REE) solubility and melt peralkalinity is confirmed, monazite solubilities reported here are much lower than the values previously published. We suggest that the presence of elevated phosphorus concentrations in our melts depresses monazite solubility, principally because phosphorus complexes with Al and alkali, which normally depolymerize the melt through the formation of non-bridging oxygens. The new solubility data provide an explanation for the very low REE concentrations generally encountered in phosphorus-bearing peraluminous granites and pegmatites. This accounts for the compatibility of REE in peraluminous systems, as the early crystallization of REE-bearing minerals (mainly monazite and zircon) leads to progressive REE depletion during liquid differentiation. In addition, dissolution and reverse experiments on U–Th-bearing cheralite–monazite display liquid–liquid immiscibility processes in our slightly peralkaline glass. The immiscible liquid forms droplets up to 10 µm in diameter and hosts on average 35 wt% P2O5, 25–30 wt% F, 22 wt% Al2O3, 4 wt% CaO, 5 wt% Na2O, 2 wt% La2O3, and 12 wt% ThO2 + UO2. We believe that the droplets formed during the runs and may have coalesced to larger droplets during quenching. We suggest that liquid–liquid immiscibility is a possible mechanism of REE concentration in highly fluxed melts and should be considered in natural systems where REE are extremely concentrated (up to thousands of µg g–1) in magmatic rocks.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2021-07-17
    Description: We present a detailed petrologic study of rhyolites from seven eruptions spanning the full (∼190 ky) history of rhyolitic volcanism at Krafla volcano, northeast Iceland. The eruptions vary widely in size and style, but all rhyolites are crystal-poor (
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2021-07-10
    Description: Post-collisional ultrapotassic rocks (UPRs) in the Tibetan Plateau exhibit extreme enrichment in incompatible elements and radiogenic isotopes. Such enrichment is considered to be either inherited from a mantle source or developed during crustal evolution. In this study, to solve this debate we combined mineral textures and in situ geochemical composition of clinopyroxene phenocrysts in UPRs from southern Tibet to reveal their crustal evolution, enrichment cause and constrain metasomatism in their mantle source. Results show that the UPRs experienced an array of crustal processes, i.e., fractional crystallization, mixing, and assimilation. Fractional crystallization is indicated by decreases in Mg# and Ni and enrichment in incompatible elements (e.g. rare earth element (REE), Sr, Zr) toward the rims of normally zoned clinopyroxene phenocrysts (type-I). Magma mixing is evidenced by the presence of some clinopyroxene phenocrysts (type-II, -III) showing disequilibrium textures (e.g. reversed and overgrowth zoning), but in situ Sr isotope and trace element analysis of those disequilibrium zones indicate that late-stage recharged mafic magmas are depleted (87Sr/86Sr: 0.70659–0.71977) compared with the primitive ultrapotassic magmas (87Sr/86Sr: 0.70929–0.72553). Assimilation is revealed by the common presence of crustal xenoliths in southern Tibetan UPRs. Considering the much lower 87Sr/86Sr values (0.707759–0.709718) and incompatible element contents of these crustal xenoliths relative to their host UPRs, assimilation should have resulted in geochemical depletion of southern Tibetan UPRs rather than enrichment. The diluting impact of both assimilation and mixing is also supported by the modeling results based on the EC-E′RAχFC model combining the growth history of clinopyroxene. Trace elements ratios in clinopyroxenes also imply that the mantle source of southern Tibetan UPRs suffered an enriched and carbonatite-dominated metasomatism. Thus, we conclude that enrichment of southern Tibetan UPRs was inherited from the mantle source.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2021-02-04
    Description: Oriented lamellar inclusions of pyroxene and rutile in mantle garnet often serve as evidence for majoritic and titaniferous precursor garnets, respectively. We investigated ten new such microstructure-bearing samples from six orogenic peridotite bodies in SW Norway, which originated in the E Greenland mantle lithosphere, petrologically and thermobarometrically. All pyroxenite (nine) and eclogite (one) samples have large (mainly porphyroclastic) garnet containing silicate and oxide inclusions with shape-preferred orientation relationship. These inclusions vary—dependent on their size—systematically in shape (acicular to subprismatic), width (∼50 μm to submicron size), spacing (several 100 to ∼10 μm) and phase (pyroxene to Ti-oxide ± pyroxene). Smaller inclusions can fill the space between larger inclusions, which support the idea of consecutive generations. The larger, early formed lamellae occur least frequent and are most poorly preserved. A younger generation of other inclusions decorates healed cracks cutting across cores but not rims of garnet. These inclusions comprise oxides, silicates, carbonates (aragonite, calcite, magnesite) and fluid components (N2, CO2, H2O). The older, homogeneously distributed inclusions comply texturally and stoichiometrically with an origin by exsolution from excess Si- and Ti-bearing garnet. Their microstructural systematic variation demonstrates a similar early evolution of pyroxenite and eclogite. The younger inclusions in planar structures are ascribed to a metasomatic environment that affected the subcratonic lithosphere. The microstructure-bearing garnets equilibrated at ∼3.7 GPa (840 °C) and ∼3.0 GPa (710 °C), at a cratonic geotherm related to 37–38 mW m−2 surface heat flow. Some associated porphyroclastic grains of Mg-rich pyroxene have exsolution lamellae of Ca-rich pyroxene and vice versa that indicate a preceding cooling event. Projected isobaric cooling paths intersect isopleths for excess Si in garnet at ∼1550 °C, if an internally consistent thermodynamic data set in the system Na2O–CaO–MgO–Al2O3–SiO2 (NCMAS) is applied (or ∼1600 °C if using CMAS). This temperature may confine the crystallisation of the unexsolved garnets at 100–120 km depths of the E Greenland subcratonic lithosphere. Tectonism is indicated in coastal and hinterland samples by porphyroclastic orthopyroxene with Al2O3 concentrations showing W-shaped profiles. Cores of associated large (〉200 μm) recrystallised grains have low Al2O3 contents (0.18–0.23 wt.%). Both characteristics typify relatively short intracrystalline Al diffusion lengths and a prograde metamorphism into the diamond stability field. We assign this event to subduction during the Scandian orogeny. Porphyroclastic orthopyroxene in other samples shows U-shaped Al2O3 concentration profiles paired with long Al diffusion lengths (several 100 μm) that exceed the radius of recrystallised grains. Their cores contain high Al2O3 contents (0.65–1.16 wt.%), consistent with a diffusional overprint that obliterated prograde and peak metamorphic records. Unlike Al2O3, the CaO content in porphyroclastic orthopyroxene cores is uniform suggesting that early exhumation was subparallel to Ca isopleths in pressure–temperature space. The depth of sample origin implies that rock bodies of Scandian ultra-high pressure metamorphism occur in nearly the entire area betweenNordfjord and Storfjord and from the coast towards ∼100 km in the hinterland, i.e. in a region much larger than anticipated from crustal eclogite.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2021-01-25
    Description: Hekla is an elongate volcano that lies at the intersection of the South Iceland Seismic Zone and the Eastern Volcanic Zone. We report major and trace element, oxygen isotopic, and H2O analyses on rocks, glass, melt inclusions, and minerals from almost all of the historical lavas and tephra deposits. This new dataset confirms the remarkable observation that not only are many eruptions compositionally zoned from felsic to mafic, but the extent of zoning relates directly to the length of repose since the previous eruption. Compositional data are consistent with the origin of the basaltic andesites and andesites by fractional crystallization, with no measurable crustal interaction once basaltic andesite has been produced. Although the 1104 CE Plinian rhyolite and 1158 CE dacite are also created by fractional crystallization, uranium–thorium isotopic disequilibria measured by others require that they evolved in a separate body, where magma is stored in a molten state for 〉104 years. Consistent trace element trends and ratios, as well as oxygenisotopic data, preclude significant crustal input into the evolving magma. The phenocryst assemblages are dominated by crystals that formed from their host melt; an exception is the 1158 CE dacite, which contains abundant crystals that formed from the 1104 CE rhyolite melt. A suite of thermobarometers indicates that most crystals formed in the lower crust at temperatures ranging from ∼1010 to 850 °C. Hekla’s unique and systematic petrological time series and geophysical activity are attributed to the unusual geometry of the magma body, which we propose to be a tabular, vertically elongate macrodike, extending from the lower to the upper crust. The vertical body is recharged with basaltic andesite magma at the end of each eruption, which then undergoes cooling and crystallization until the subsequent eruption. The entire system is supplied by a lower-crustal body of basaltic andesite, which is produced by fractional crystallization of basaltic magma in a reservoir that is thermochemically buffered to ∼1010 °C. Cooling and crystallization of recharged basaltic andesite magma in a background geothermal gradient from the lower to the shallow crust accounts for the systematic relationship between repose and composition.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2021-05-29
    Description: We present microbeam major- and trace-element data from 14 monzodiorites collected from the Malaspina Pluton (Fiordland, New Zealand) with the goal of evaluating processes involved in the production of andesites in lower arc crust. We focus on relict igneous assemblages consisting of plagioclase and amphibole with lesser amounts of clinopyroxene, orthopyroxene, biotite and quartz. These relict igneous assemblages are heterogeneously preserved in the lower crust within sheeted intrusions that display hypersolidus fabrics defined by alignment of unstrained plagioclase and amphibole. Trace-element data from relict igneous amphiboles in these rocks reveal two distinct groups: one relatively enriched in high field strength element concentrations and one relatively depleted. The enriched amphibole group has Zr values in the range of ∼25–110 ppm, Nb values of ∼5–32 ppm, and Th values up to 2·4 ppm. The depleted group, in contrast, shows Zr values
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2021-04-28
    Description: The southern part of the eastern branch of the East African Rift is characterized by extensive volcanic activity since the late Miocene. In the Crater Highlands, part of the North Tanzanian Divergence zone, effusive and pyroclastic rocks reflect nephelinitic and basaltic compositions that formed between 4·6 and 0·8 Ma. The former are best represented by the Sadiman volcano (4·6–4·0 Ma) and the latter occur in the giant Ngorongoro crater (2·3–2·0 Ma), the Lemagarut volcano (2·4–2·2 Ma) and as a small volcanic field in the Laetoli area (2·3 Ma), where basaltic rocks known as Ogol lavas were erupted through fissures and several cinder cones. Compositionally, they are alkaline basalts with 46·0–47·9 wt% SiO2, 3·0–4·3 wt% of Na2O + K2O, Mg# of 61 to 55, and high Cr and Ni content (450–975 and 165–222 ppm respectively). Detailed textural and compositional analysis of the major minerals (olivine, clinopyroxene, plagioclase and spinel-group minerals) reveals the heterogeneity of the rocks. The primary mineral assemblage that crystallized from the Ogol magmas comprises macro- and microcrysts of olivine (Fo89·5–84·2), Cr-bearing diopside to augite, magnesiochromite–chromitess, magnetite–ulvöspinelss, andesine–oligoclasess and fluorapatite, with glass of phonolitic composition in the groundmass. All samples contain appreciable proportions of xenocrystic minerals of macro- and microcryst size, with large variations in both concentration and mineral populations between samples. Xenocrysts include olivine with reverse zonation (Fo84·1–72·5), rounded and embayed clinopyroxene cores of variable composition, anhedral Cr-free magnetite–ulvöspinelss and embayed oligoclase. These xenocrysts as well as variations in major and trace element contents, 87Sr/86Sr(i) (0·70377–0·70470) and 143Nd/144Nd(i) (0·51246–0·51261) ratios provide evidence of multi-stage magma mixing and mingling between Ogol and adjacent Lemagarut volcano basaltic melts with only very minor contamination by Precambrian granite–gneisses. Elevated alkalinity of Ogol lavas, which positively correlates with isotope ratios, and the presence of xenocrystic green core clinopyroxene, perovskite, schorlomite and titanite indicate additional mixing and mingling with evolved nephelinitic magmas and/or assimilation of nephelinitic Laetolil tuffs or foidolitic rocks related to the Sadiman volcano. Owing to their heterogeneity, estimates on the crystallization conditions for the Ogol rocks are difficult. Nevertheless, clinopyroxene–liquid thermobarometry indicates crystallization temperatures of around 1150–1220 °C and records upper-crustal depths of 3–12 km (1–4 kbar). Despite the fact that Ogol basalts are hybrid rocks that formed under open-system conditions with well-documented mixing and mingling processes, they seem to be the best examples closest to primary basaltic melts within the Crater Highlands.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2021-10-22
    Description: The Bishop Tuff (BT), erupted from the Long Valley caldera in California, displays two types of geochemical gradients with temperature: one is related to magma mixing, whereas the other is found in the high-SiO2 rhyolite portion of the Bishop Tuff and is characterized by ≤ twofold concentration variations in minor and trace elements that are strongly correlated with temperature. It is proposed that the latter zonation, which preceded phenocryst growth, developed due to mineral–melt partitioning between interstitial melt and surrounding crystals in a parental mush, from which variable melt fractions were segregated. To test this hypothesis, trends of increasing vs. decreasing element concentrations with temperature (proxy for melt fraction), obtained from published data on single-clast pumice samples from the high-SiO2 rhyolite portion of the Bishop Tuff, were used to infer their relative degrees of incompatibility vs. compatibility between crystals and melt in the parental mush. Relative compatibility values (RCVi) for all elements, defined as the concentration slope with temperature divided by average concentration, are shown to be linearly correlated with their respective bulk partition coefficients (bulk Di). Mineral–melt partition coefficients from the literature were used to constrain the average stoichiometry of the crystallization/melting reaction in the parental mush: 32% quartz + 34% plagioclase + 31% K-feldspar + 1.60% biotite + 0.42% titanomagnetite + 0.34% ilmenite + 0.093% allanite + 0.024% zircon + 0.025% apatite = 100% liquid. The proportions of tectosilicates in the reaction (i.e., location of eutectic) are consistent with depths of melt segregation of ~400–550 MPa and an activity of H2O of ~0.4–0.6. Temperatures of
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2021-10-25
    Description: Peridotites from the Tonga Trench are some of the deepest-derived and freshest ever obtained from the seafloor. This study reports new bulk-rock major-, trace-, highly siderophile-element (HSE) abundance and 187Os/188Os data, as well as major- and trace-element abundances of mineral phases for NOVA88D dredge peridotites. The samples are harzburgites that experienced varying degrees of serpentinisation, recorded in their loss on ignition values, from zero to 16.7%. Degree of serpentinisation in samples is correlated with Na, B, K, Sr, Ca, Rb and U, and weakly correlated with W, Fe, Pb, Cs and Li abundances, but is uncorrelated with other lithophile elements, most especially the rare earth elements. Serpentinisation had no systematic effect on the HSE abundances or 187Os/188Os compositions in the harzburgites. NOVA88D harzburgites record 〉18% melt depletion which has resulted in heterogenous distribution of the HSE within the rocks, likely due to retention of these elements within sub-micron sized alloy or sulphide phases. Time of rhenium depletion (TRD) ages, recorded by Os isotopes, average ~0.7 ±0.4 Ga and can be as ancient as 1.5 Ga. Some harzburgite compositions are consistent with minor melt infiltration processes modifying incompatible trace element compositions and Re abundances, with a possible melt infiltration event at ~120 Ma based on 187Re-188Os, prior to the inception of subduction at the Tonga Trench at ~52 Ma. Evidence for ancient melt depletion, combined with limited melt processing since inception of subduction suggests that NOVA88D harzburgites represent melt residues incorporated into the Tonga arc, rather than their geochemical signatures being produced beneath the recent arc. Estimates of fO2 (~-0.4 ±0.4 ΔFMQ) and olivine-spinel equilibration temperatures for the Tonga Trench samples (830 ±120 ̊C) are similar to abyssal peridotites and some Izu-Mariana-Bonin peridotites. These values are unlikely to relate directly to recorded degrees of melt depletion and melt depletion ages in the rocks. Refractory residues from prior melt depletion events are probably common in the convecting mantle, and those with high degrees of melt depletion (〉18%) and relatively ancient melt depletion ages (
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2021-10-26
    Description: This paper explores the unusual sulphide-graphite association of a selection of Beni Bousera garnet clinopyroxenites that initially equilibrated within the diamond stability field. Compared to common graphite-free garnet pyroxenites analysed so far, these rocks display tenfold S enrichment with concentrations up to 5550 μg/g. Fe-Ni-Cu sulphides (up to 1.5 wt.%) consist of large (up to 3 mm across), low-Ni pyrrrhotite (
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2021-10-27
    Description: The origin of the eclogites that reside in cratonic mantle roots has long been debated. In the classic Roberts Victor kimberlite locality in South Africa, the strongly contrasting textural and geochemical features of two types of eclogites have led to different genetic models. We studied a new suite of 63 eclogite xenoliths from the former Roberts Victor Mine. In addition to major- and trace-element compositions for all new samples, we determined 18O/16O for garnet from 34 eclogites. Based on geochemical and textural characteristics we identify a large suite of Type I eclogites (n = 53) consistent with previous interpretations that these rocks originate from metamorphosed basaltic-picritic lavas or gabbroic cumulates from oceanic crust, crystallised from melts of depleted MORB mantle. We identify a smaller set of Type II eclogites (n = 10) based on geochemical and textural similarity to eclogites in published literature. We infer their range to very low δ18O values combined with their varied, often very low Zr/Hf ratios and LREE-depleted nature to indicate a protolith origin via low-pressure clinopyroxene-bearing oceanic cumulates formed from melts that were more depleted in incompatible elements than N-MORB. These compositions are indicative of derivation from a residual mantle source that experienced preferential extraction of incompatible elements and fractionation of Zr-Hf during previous melting.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2021-11-01
    Description: Fluid-rock interaction has profound effects on the dynamics of the lithosphere. This Perspectives article describes the catalytic effects of water on the kinetics of mineral reactions and on the strength of rocks in terms of coupled dissolution and precipitation mechanisms on a macro- and nano-scale. The length scale of coupling between the dissolution and precipitation steps depends on the fluid composition at the mineral-fluid interface and also on differential stress. Stress-induced mass transport, dependent on the generation of porosity by mineral reactions, results in dissolution-precipitation creep as the principal mechanism of rock deformation in the lithosphere. The heterogeneous distribution of fluid infiltration into dry, strong rocks in the deep crust leads to weak rocks within strong, stressed host rock and the possibility of significant local variations in pressure. Fluid-rock interaction mechanisms are discussed in terms of recrystallisation reactions whereby mass transport and the most favourable nucleation sites determine the distribution and texture of the resultant assemblages. Metamorphic differentiation is a natural consequence of dissolution-precipitation mechanisms under deviatoric stress and similar mechanisms may apply to general pattern formation in rocks.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2020-07-24
    Description: Transformation of refractory cratonic mantle into more fertile lithologies is the key to the fate of cratonic lithosphere. This process has been extensively studied in the eastern North China Craton (NCC) while that of its western part is still poorly constrained. A comprehensive study of newly-found pyroxenite xenoliths from the Langshan area, in the northwestern part of this craton is integrated with a regional synthesis of pyroxenite and peridotite xenoliths to constrain the petrogenesis of the pyroxenites and provide an overview of the processes involved in the modification of the deep lithosphere. The Langshan pyroxenites are of two types, high-Mg# [Mg2+/(Mg2++Fe2+)*100 = ∼ 90, atomic ratios] olivine-bearing websterites with high equilibration temperatures (880 ∼ 970 oC), and low-Mg# (70 ∼ 80) plagioclase-bearing websterites with low equilibration temperatures (550 ∼ 835 oC). The high-Mg# pyroxenites show trade-off abundances of olivine and orthopyroxene, highly depleted bulk Sr-Nd (ƐNd = +11.41, 87Sr/86Sr = ∼0.7034) and low clinopyroxene Sr isotopic ratios (mean 87Sr/86Sr = ∼0.703). They are considered to reflect the reaction of mantle peridotites with silica-rich silicate melts derived from the convective mantle. Their depletion in fusible components (e.g., FeO, TiO2 and Na2O) and progressive exhaustion of incompatible elements suggest melt extraction after their formation. The low-Mg# pyroxenites display layered structures, convex-upward rare earth element patterns, moderately enriched bulk Sr-Nd isotopic ratios (ƐNd = -14.20 ∼ -16.74, 87Sr/86Sr = 0.7070 ∼ 0.7078) and variable clinopyroxene Sr-isotope ratios (87Sr/86Sr = 0.706-0.711). They are interpreted to be crustal cumulates from hypersthene-normative melts generated by interaction between the asthenosphere and heterogeneous lithospheric mantle. Combined with studies on regional peridotite xenoliths, it is shown that the thinning and refertilization of the lithospheric mantle was accompanied by crustal rejuvenation and that such processes occurred ubiquitously in the northwestern part of the NCC. A geodynamic model is proposed for the evolution of the deep lithosphere, which includes long-term mass transfer through a mantle wedge into the deep crust from the Paleozoic to the Cenozoic, triggered by subduction of the Paleo-Asian ocean and the Late Mesozoic lithospheric extension of eastern Asia.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2020-07-10
    Description: The orogenic development after the continental collision between Laurussia and Gondwana, led to two contrasting associations of mantle-derived magmatic rocks on the territory of the Bohemian Massif: (i) a 340–310 Ma lamprophyre-lamproite orogenic association and (ii) a 300–275 Ma lamprophyre association of anorogenic affinity. Major types of potassic mantle-derived magmatic rocks recognised in the orogenic and anorogenic associations include: (i) calc-alkaline to alkaline lamprophyres, (ii) alkaline “orthopyroxene minettes” (and geochemically related rocks), and (iii) peralkaline lamproites. These three types significantly differ with respect to mineral, whole-rock and Sr–Nd–Pb–Li isotope composition, and spatial distribution. The calc-alkaline lamprophyres occur throughout the entire Saxo-Thuringian and Moldanubian zones, whereas the different types of malte-derived potassic rocks are spatially restricted to particular zones. Rocks of the Carboniferous lamprophyre-lamproite orogenic association are characterised by variable negative εNd(i) and variably radiogenic Sr(i), whereas the rocks of the Permian lamprophyre association of anorogenic affinity are characterised by positive εNd(i) and relatively young depleted-mantle Nd-model ages reflecting increasing input from upwelling asthenospheric mantle. The small variation in the Pb isotopic composition of post-collisional potassic mantle-derived magmatic rocks (of both the orogenic and anorogenic series) implies that the Pb budget of the mantle beneath the Bohemian Massif is dominated by the same crust-derived material, which itself may include material derived from several sources. The source rocks of “orthopyroxene minettes” are characterised by isotopically light (“eclogitic”) Li and strongly radiogenic (crustal) Sr and may have been metasomatised by high-pressure fluids along the edge of a subduction zone. In contrast, the strongly Al2O3 and CaO depleted mantle source of the lamproites is characterised by isotopically heavy Li and high SiO2 and extreme K2O contents. This mantle source may have been metasomatised predominantly by melts. The mantle source of the lamprophyres may have undergone metasomatism by both fluids and melts.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2020-07-14
    Description: The Lu–Hf isotope system and Sr–Nd–Hf–Os isotope systematics of mantle rocks are capable of unravelling the early processes in collision belts, especially in a hot subduction context where the Sm–Nd and U–Pb systems in crustal rocks are prone to resetting owing to high temperatures and interaction with melts during exhumation. To improve models of the Devonian–Carboniferous evolution of the Bohemian Massif, we investigated in detail mafic and ultramafic rocks (eclogite, pyroxenite, and peridotite) from the ultrahigh-pressure and ultrahigh-temperature Kutná Hora Crystalline Complex (KHCC: Úhrov, Bečváry, Doubrava, and Spačice localities). Petrography, multiphase solid inclusions, major and trace element compositions of rocks and minerals, and radiogenic isotopic data document contrasting sources and protoliths as well as effects of subduction-related processes for these rocks. The Úhrov peridotite has a depleted composition corresponding to the suboceanic asthenospheric mantle, whereas Bečváry and Doubrava peridotites represent lithospheric mantle that underwent melt refertilization by basaltic and SiO2-undersaturated melts, respectively. Multiphase solid inclusions enclosed in garnet from Úhrov and Bečváry peridotites represent trapped H2O ± CO2-bearing metasomatizing agents and Fe–Ti-rich melts. The KHCC eclogites either formed by high-pressure crystal accumulation from mantle-derived basaltic melts (Úhrov) or represent a fragment of mid-ocean ridge basalt-like gabbroic cumulate (Spačice) and crustal-derived material (Doubrava) both metamorphosed at high P–T conditions. The Lu–Hf age of 395 ± 23 Ma obtained for the Úhrov peridotite reflects garnet growth related to burial of the asthenospheric mantle during subduction of the oceanic slab. By contrast, Spačice and Doubrava eclogites yield younger Lu–Hf ages of ∼350 and 330 Ma, respectively, representing mixed ages as demonstrated by the strong granulite-facies overprint and trace element zoning in garnet grains. We propose a refined model for the Early Variscan evolution of the Bohemian Massif starting with the subduction of the oceanic crust (Saxothuringian ocean) and associated oceanic asthenospheric mantle (Úhrov) beneath the Teplá–Barrandian at ≥380 Ma, which was responsible for melt refertilization of the associated mantle wedge (Bečváry, Doubrava). This was followed by continental subduction (∼370–360 Ma?) accompanied by the oceanic slab break-off and incorporation of the upwelling asthenospheric mantle into the Moldanubian lithospheric mantle and subsequent coeval exhumation of mantle and crustal rocks at ∼350–330 Ma.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2020-07-11
    Description: The Changning–Menglian orogenic belt (CMOB) in the southeastern Tibetan Plateau is an important link between the Longmu Co–Shuanghu suture (LCSS) in the northern Tibetan Plateau and the Chiang Mai–Inthanon and Bentong–Raub sutures in Thailand and Peninsular Malaysia. These belts and sutures are generally regarded as containing the remnants of the oceanic crust of the Palaeo-Tethys that formed by seafloor spreading as a result of the separation of Gondwana- and Eurasia-derived blocks during the Middle Cambrian. In this paper we report the first discovery of abundant unaltered and retrograde eclogites that occur as irregular lenses and blocks in metasedimentary rocks of the CMOB, and these eclogites form an elongate and almost north–south-trending high-pressure (HP)–ultrahigh-pressure (UHP) metamorphic belt that is ∼200 km long and ∼50 km wide. The newly discovered phengite/talc/epidote–glaucophane eclogites, lawsonite–talc–phengite eclogites, dolomite/magnesite–kyanite eclogites and phengite–kyanite-bearing retrograde eclogites have enriched (E-) and normal mid-ocean ridge basalt (N-MORB)-like affinities and mainly positive as well as some negative whole-rock εNd values (–4·34 to +7·89), which suggest an enriched and depleted oceanic lithosphere source for their protoliths. Magmatic zircons separated from the epidote–glaucophane, magnesite–kyanite and (phengite–kyanite-bearing) retrograde eclogites gave protolith ages of 317–250 Ma, which fit well within the time frame of the opening of the Palaeo-Tethys during the Middle Cambrian and its closure during the Triassic. Abundant metamorphic zircons in the eclogites indicate a Triassic metamorphic event related to the subduction of the Palaeo-Tethys oceanic crust from 235 to 227 Ma. Taking into account previous isotopic age data, we now establish the periods of Early–Middle Triassic (246–227 Ma) and Late Triassic (222–209 Ma) as the ages of subduction and exhumation of the Palaeo-Tethyan oceanic crust, respectively. Thermodynamic modelling revealed that the eclogites record distinct HP–UHP peak metamorphic conditions of 23·0–25·5 kbar and 582–610 °C for the phengite–glaucophane eclogites, 24·0–25·5 kbar and 570–586 °C for the talc–glaucophane eclogites, 29·0–31·0 kbar and 675–712 °C for the dolomite–kyanite eclogites, and 30·0–32·0 kbar and 717–754 °C for the magnesite–kyanite eclogites. These P–T estimates and geochronological data indicate that the Palaeo-Tethys oceanic slab was subducted to different mantle depths from 75 km down to 95 km, forming distinct types of eclogite with a variety of peak eclogite-facies mineral assemblages. The eclogites consistently record clockwise metamorphic P–T–t paths characterized by a heating–compression prograde loop under a low geothermal gradient of 5–10 °C km–1, indicating the rapid subduction of cold oceanic crust at a rate of 4·5–6·0 km Ma–1, followed by isothermal or cooling–decompressive retrogression and exhumation at an average rate of 3·2–4·2 km Ma–1. The newly discovered eclogites of the CMOB with their signatures of ocean-crust subduction are petrologically, geochemically and geochronologically comparable with those of the LCSS, providing powerful support for the idea that a nearly 2000 km long HP–UHP eclogite belt extends from the northern Tibetan Plateau to the southeastern Tibetan Plateau, and that it represents the main boundary suture of the Palaeo-Tethyan domain. These results have far-reaching implications for the tectonic framework and complex metamorphic evolution of the Palaeo-Tethyan domain.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2020-07-10
    Description: Replacive symplectites (vermicular intergrowths of two or more minerals) are an important feature of layered igneous intrusions, recording evidence of late-stage reactions between interstitial liquid and crystals. They are common throughout the Layered Series of the 564 Ma Sept Iles layered intrusion in Quebec, Canada, and fall into three types: oxy-symplectites, ‘Type I’ symplectites, and ‘Type II’ symplectites. Oxy-symplectites are comprised of magnetite and orthopyroxene, nucleate on olivine primocrysts, and form via the reaction Olivine + O2 → Orthopyroxene + Magnetite; Type I symplectites (of which there are 3 distinct categories) are comprised of anorthitic plagioclase with pyroxene, amphibole, or olivine vermicules, grow from primocryst oxide grains, and replace primary plagioclase; and Type II symplectites (of which there are 2 distinct categories) are comprised of anorthitic plagioclase with orthopyroxene ± amphibole vermicules, grow from primocryst olivine grains, and replace primocryst plagioclase. Rare symplectites composed of biotite and plagioclase are also present. Symplectite growth occurred at 700-1030 °C with pressure constraints of 1-2 kbar. We propose that Type I symplectites, and some Type II symplectites, formed from interaction of primocrysts with residual Fe-rich liquid as a consequence of differential loss of an immiscible Si-rich liquid conjugate from the crystal mush. However, redistribution and concentration of hydrous fluids in incompletely solidified rock, or an increase in water activity of the interstitial melt, may be more plausible processes responsible for the formation of replacive symplectites comprising abundant hydrous mineral assemblages.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2020-05-07
    Description: The island of Pantelleria, located in the Sicily Channel Rift Zone (Italy), has been the site of violent peralkaline silicic magmatism alternating with minor effusive to low-intensity Strombolian eruptions of basaltic composition. The basaltic rock suites exposed on the island were sampled to investigate the plumbing system dynamics through the study of chemical stratigraphy and temporal records of olivine crystals. Our petrographic and geochemical observations, together with the compositional variability of olivine, suggest different evolutionary histories for basaltic magmas erupted over two major periods divided by the ∼45 ka Green Tuff (GT) eruption. Core-to-rim compositional traverses across olivine crystals document different types of zoning. We recognized olivine zones affected by Fo oscillations at very fine scales in the inner cores, rims and/or in intermediate portions of crystals and used them to reconstruct the residence and passage of crystals through different magmatic environments, with P–T–ƒO2 and compositional characteristics constrained by thermodynamic modeling. The sequence of magmatic environments evidenced by olivine zoning indicate that the pre-GT volcanic period was dominated by injection at shallow crustal levels (∼300–200 MPa) of primitive melts, initially moving from a deep storage zone at the crust-mantle boundary. Supply of this magma significantly decreased after the GT eruption, while the dynamics of magma transfer within the upper portion of the plumbing system were greatly enhanced. The diffusive relaxation of olivine zoning provided the timing of storage and migration of a crystal through different environments. For magmas feeding the ancient (〉45 ka) basaltic activity we retrieved transfer histories that are much longer (up to ∼3 years) if compared with those calculated for the post-GT basalts (1–9 months). The compositional and temporal dataset presented in this study supports the idea that the GT eruption and the subsequent collapse of the volcanic edifice could have caused major changes to the internal structural setting of Pantelleria, creating more favorable conditions for the migration of magmas in the upper portions of the plumbing system.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2020-05-06
    Description: Volcanism following the initiation of subduction is vital to our understanding of this specific magma-generation environment. This setting is represented by the first development of the Izu–Bonin–Mariana arc system as subduction commenced along the Western Pacific margin in the Eocene. A new collection of volcanic rocks recovered from the islands and exposed crustal sections of the Bonin Ridge spans the first 10 Myr of arc evolution. An elemental and radiogenic isotope dataset from this material is presented in conjuction with new 40Ar/39Ar ages and a stratigraphic framework developed by a detailed mapping campaign through the volcanic sections of the Bonin Islands. The dating results reveal that both the locus and type of magmatism systematically changed with time in response to the progressive sinking of the slab until the establishment of steady-state subduction at around 7–8 Ma. Following initial mid-ocean ridge basalt (MORB)-like spreading-related basalt magmatism, volcanic centres migrated away from the trench and changed from high-Si boninite to low-Si boninite or high-Mg andesite, then finally tholeiitic or calcalkaline arc magma. Subducting pelagic sediment combined with Pacific-type igneous ocean crust dominates the slab input to the shallow source of high-Si boninites at 49 Ma, but high-precision Pb isotope data show that this sediment varies in composition along the subducting plate. At around 45 Ma, volcanism switched to low-Si boninite and the pelagic sediment signature was almost entirely replaced by volcanic or volcaniclastic material originating from a HIMU ocean island source. These low-Si boninites are isotopically consistent with a slab component comprising variable proportions of HIMU volcaniclastic rocks and Pacific MORB. In turn, this signature was replaced by a Pacific MORB-dominated flux in the post 45 Ma tholeiite and calcalkaline volcanic rocks. Notably, each change in slab-derived flux coincided with a change in the magma type. Fluctuations in the slab-derived geochemical signature were superimposed on a change in the mantle wedge source from highly depleted harzburgite to a depleted MORB-type mantle-type source. In turn, this may correspond to the increasing depth of the leading edge of the slab through this 5 Myr period.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2020-05-13
    Description: High-pressure (〉15 kbar) melts of intermediate–felsic materials have been well studied by experiments, whereas their existence in nature, especially in orogenic belts, is rarely examined. With the aim of identifying and characterizing high-pressure partial melts of intermediate–felsic continental crusts, this study presents comprehensive geochemical and geochronological data for 47 Jurassic granites (166∼157 Ma) from the Sulu orogen. These Sulu Jurassic granites (SJG) consist of quartz, K-feldspar and plagioclase with minor mineral assemblages of biotite ± muscovite ± garnet ± epidote ± allanite. Their low mafic mineral abundance, high SiO2 and Al2O3, and low FeOt + MgO contents show leucogranite-like affinities. They have low Mg#, low Rb/Sr, and mildly peraluminous features, collectively suggesting an intermediate–felsic orthogneissic source. Whole-rock Zr saturation thermometry and Ti-in-zircon thermometry together suggest initial magma temperatures between 695 ± 32 °C and 751 ± 27 °C (1 standard deviation), indicating derivation from water-present melting. The SJG notably feature high Sr contents (average 792 ppm), high Sr/CaO ratios (average 476) as well as inter-correlated low REE concentrations (average ΣREE 87 ppm), low Th concentrations (average 5·1 ppm) and positive Eu anomalies (Eu/Eu* up to 2·94). These characteristics are best explained by partial melting of intermediate–felsic sources under high pressure (〉15 kbar), leaving residuum where feldspar is sparse or absent and allanite is present. Inherited zircon age spectra and Sr–Nd–Pb isotopic compositions suggest that their source components could be mainly the Triassic orthogneisses whose protoliths are from the northern margin of the South China Block, probably in a wedge structure where the exhumed felsic slabs were wedged into the crust of the North China Block in the middle–late Jurassic and formed a stacked thickened crust. The wedge structure was most probably driven by synchronous large-scale strike-slip of the Tanlu fault, as a far-field effect of the oblique subduction of the paleo-Pacific plate. The characteristic chemical features observed in this study may be applied to identifying partial melts with similar petrogenesis elsewhere.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2020-05-15
    Description: Both equilibrium and dynamic crystallization experiments have been performed on a hydrous haplogranitic melt at 200 MPa to model nucleation and growth mechanisms and simulate pegmatite textures. The equilibrium results provide a reference frame (phase assemblages and compositions, liquidus and solidus temperatures and dependence with the melt H2O concentration) to parametrize the kinetic experiments. The seven H2O-saturated dynamic crystallization experiments followed a specific time-temperature path. After a pre-conditioning step at 800°C, charges were cooled between 3·5 and 7°C/min to 700, 660 and 600°C corresponding to ΔT of 20, 60 and 120°C. Dwell times ranged from 42 up to 1440h. Variable mineral assemblages and textures, and two types of polymineralic assemblages were obtained depending on ΔT and t. For ΔT = 120°C, crystallization is sequential and includes graphic quartz–alkali-feldspar intergrowths characteristic of pegmatite textures. The crystallization sequence reflects nucleation and growth of kinetically-favoured metastable phases and solid solution compositions from the supercooled melt. Early alkali-feldspars are more K-rich than expected at equilibrium and late albites more Na-rich. The K-rich graphic texture progressively evolves to a Na-rich intergrowth texture. Melts also follow a progressive though limited sodic evolution with time. At the interface of growing alkali-feldspars, melts are enriched in SiO2 and depleted in Al2O3, Na2O and, to a lesser extent, K2O. H2O accumulates at the interface reaching concentration levels higher (by 1–2 wt %) than the saturation. Rejection of SiO2 and H2O at the interface controls the effective undercooling in the local melt and promotes rapid textural changes toward larger grain sizes at the front of graphic zones. Textural ripening takes place contemporaneously to sequential crystallization. Growth rates for quartz and alkali-feldspar are tightly grouped, between 7·3 x 10-11 and 1·6 x 10-12 m s-1. Textures from the dynamic crystallization experiments closely resemble natural pegmatites, but layered aplite units have not been reproduced. Our results confirm and strengthen the importance of liquidus undercooling to generate pegmatite textures.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2020-05-12
    Description: The rock type most commonly associated with komatiite throughout Earth’s history is tholeiitic basalt. Despite this well-known association, the link between komatiite and basalt formation is still debated. Two models have been suggested: that tholeiitic basalts represent the products of extensive fractional crystallization of komatiite, or that basalts are formed by lower degrees of mantle melting than komatiites in the cooler portions of a zoned plume. We present major and trace element data for tholeiitic basalts (∼7·5 wt% MgO) and dunites (46–48 wt% MgO) from the Palaeoproterozoic Winnipegosis Komatiite Belt (WKB), which, along with previous data for WKB komatiites (17–26 wt% MgO), are utilized to explore the potential links between komatiite and basalt via crystallization processes. The dunites are interpreted as olivine + chromite cumulates that were pervasively serpentinized during metamorphism. Their major and immobile trace element relationships indicate that the accumulating olivine was highly magnesian (Mg# = 0·91–0·92), and that small amounts (4–7 wt% on average) of intercumulus melt were trapped during their formation. These high inferred olivine Mg# values suggest that the dunites are derived from crystallization of komatiite. The tholeiitic basalts have undergone greenschist-facies metamorphism and have typical geochemical characteristics for Palaeoproterozoic basalts, with the exception of high FeO contents. Their REE patterns are similar to Winnipegosis komatiites, although absolute concentrations are higher by a factor of ∼2·5. The ability of thermodynamic modelling with MELTS software to reproduce komatiite liquid lines of descent (LLD) is evaluated by comparison with the crystallization sequence and mineral compositions observed for Winnipegosis komatiites. With minor caveats, MELTS is able to successfully reproduce the LLD. This modelling is extended to higher pressures to simulate crystallization of komatiitic melt in an upper crustal magma chamber. All major and rare earth element characteristics of the tholeiitic basalts can be reproduced by ∼60 % crystallization of a Winnipegosis komatiite-like parental melt at pressures of ∼1·5–2·5 kbar at oxygen fugacities between QFM − 1 and QFM + 1, where QFM is the quartz–fayalite–magnetite buffer. Winnipegosis basalts have low Mg# values that are not in equilibrium with mantle peridotite. They therefore cannot represent primary mantle melts derived from cooler mantle than the komatiites, and require fractional crystallization processes in their formation. Furthermore, their trace element characteristics indicate a depth of melting indistinguishable from that of the Winnipegosis komatiites, and derivation from an identical depleted mantle source. All geochemical and geological evidence is therefore consistent with their derivation from a komatiitic melt, and the presence of a large komatiite-derived dunite body in the WKB provides evidence of extensive fractionation of komatiite in the upper crust. The observed uniform basalt compositions are interpreted as the result of a density minimum in the evolving komatiitic melt at temperatures between clinopyroxene and plagioclase saturation, with efficient extraction of melt from a mixture containing ∼60 % crystals. We conclude that the WKB basalts formed by fractional crystallization of a komatiitic parental melt, and suggest that this model may be more broadly applicable to other localities where komatiites and associated basalts show similar geochemical or isotopic characteristics.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2020-05-20
    Description: Most genetic models for magmatic-hydrothermal ore deposits are based on the prerequisite that the parental magmas associated with mineralization are enriched in water (〉 ∼4 wt%). However, it has been recognized that a number of magmatic-hydrothermal ore deposits also formed within tectono-magmatic settings that produce initially water-poor magmas such as Climax-type porphyry deposits. Here, we present a detailed reconstruction of the Tieshan magma plumbing system related to skarn-porphyry Cu–Fe–Au mineralization in the Edong district, in which primitive magmas typically show water-poor features. Applications of multiple thermodynamic calibrations on various magmatic units from the Tieshan and Tonglushan deposits provide a wealth of information regarding the structure and evolution of the transcrustal magmatic system. Petrographic observations and clinopyroxene-liquid thermobarometry calculations indicate that the Tieshan magmatic-hydrothermal system was fed by a deep crustal magma reservoir. An accurate picture of the evolution of H2O within the magma plumbing system is presented using the plagioclase-liquid hygrometer in combination with the amphibole hygrometer. Three critical stages during the evolution of water within the plumbing system have been recognized, associated with H2O contents of 0.8–1.7 wt%, 2.1–2.8 wt% and 3.2–4.6 wt%, respectively. The first enrichment of water in the magmas can be attributed to the separation and transfer of evolved melts from the deep magma reservoir to the shallow crust. Continuous cooling and solidification of the shallow magma body gave rise to the second enrichment of H2O in residual melts, leading to magmas that were fertile for the formation of ore deposits. The detailed chemical evolution of the magma plumbing system was investigated using mineral trace element compositions in combination with the partition coefficients predicted by the lattice strain model. The earliest equilibrium melts are characterized by high Sr contents (the average = 658 ± 64 ppm), suggesting that high Sr/Y signatures were likely derived from their magma sources or fractionation at deeper levels in initially water-poor environments. Variations of some particular geochemical fingerprints in equilibrium melts such as, Dy/Dy* and Eu/Eu*, also provide fundamental information on the evolution of the magma plumbing system. Our study confirms the critical role of a deep crustal magma reservoir on the formation of magmatic-hydrothermal ore deposits. The fertility of magmas with respect to ore deposit formation was enhanced by the extraction and transfer of evolved magmas from the deep reservoir to shallower levels, particularly due to the enrichment of magmatic water contents. In addition, the presence of a deep magma reservoir also sustains the incremental growth of shallow magma chambers, which provide ore-forming fluids.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2020-05-20
    Description: We report experimental data for Y, La, Lu and Hf diffusion in garnet, in which diffusant concentrations and silica activity have been systematically varied. Experiments were conducted at 950 and 1050 °C, at 1 atm. pressure and oxygen fugacity corresponding to the quartz-fayalite-magnetite buffer. At Y and REE concentrations below several hundred ppm we observe both slow and fast diffusion mechanisms, which operate simultaneously and correspond to relatively high and low concentrations, respectively. Diffusivity of Y and REEs is independent of silica activity over the studied range. General formulae for REE diffusion in garnet, incorporating data from this and previous studies, are: log10DREEfm2/s=-10.24±0.21-221057(±4284)2.303RT(K) for the ‘fast’ REE diffusion mechanism at 1 atm. pressure, and log10DREEsm2/s=-9.28±0.65-265200±38540+10800(±2600)·P(GPa)2.303RT(K) for the ‘slow’ REE diffusion mechanism. These slow and fast diffusion mechanisms are in agreement with previous, apparently conflicting, datasets for REE diffusion in garnet. Comparison with high-pressure experiments suggests that at high pressures (〉 ∼1 GPa minimum) the fast diffusion mechanism no longer operates to a significant degree. When Y and/or REE surface concentrations are greater than several hundred ppm, complex concentration profiles develop. These profiles are consistent with a multi-site diffusion-reaction model, whereby Y and REE cations diffuse through, and exchange between, different crystallographic sites. Diffusion profiles of Hf do not exhibit any of the complexities observed for Y and REE profiles, and can be modeled using a standard (i.e. single mechanism) solution to the diffusion equation. Hafnium diffusion in garnet shows a negative dependence on silica activity, and is described by log10DHfm2/s=-8.85±0.38-299344±15136+12500±900·PGPa2.303RTK-0.52(±0.09)·log10aSiO2 In many natural garnets, diffusion of both Lu and Hf would be sufficiently slow that the Lu-Hf system can be reliably used to date garnet growth. In cases in which significant Lu diffusion does occur, preferential retention of 176Hf/177Hf relative to 176Lu/177Hf will skew isochron relationships such that their apparent ages may not correspond to anything meaningful (e.g., garnet growth, peak temperature or the closure temperature of Lu or Hf). Late-stage reheating events are capable of causing larger degrees of preferential retention of 176Hf/177Hf relative to 176Lu/177Hf and partial to full resetting of the Sm-Nd system within garnet, thus increasing the separation between garnet Lu-Hf and Sm-Nd isochron dates, due to the fact that these systems are more significantly disturbed through diffusion as more radiogenic 176Hf and 143Nd have accumulated.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2020-04-16
    Description: Silicic calderas can evacuate 100 to 〉1000 km3 of rhyolitic products in a matter of days to months, leading to questions on pre-eruptive melt generation and accumulation. Whereas silicic plutonic units may provide information on the igneous evolution of crystal-mush bodies, their connection with volcanic units remains enigmatic. In the Ivrea–Verbano Zone of the southern Alps, the plumbing system of a Permian rhyolitic caldera is exposed to a depth of about 25 km in tilted crustal blocks. The upper-crustal segment of this magmatic system (also known as the Sesia Magmatic System) is represented by the Valle Mosso pluton (VMP). The VMP is an ∼260 km3 composite silicic intrusion ranging from quartz-monzonite to high-silica leucogranite (∼67–77 wt% SiO2), which intrudes into roughly coeval rhyolitic products of the 〉15 km diameter Sesia Caldera. In the caldera field, the emplacement of a large, crystal-rich rhyolite ignimbrite(s) (〉400 km3) is followed by eruption of minor volumes (1–10 km3) of crystal-poor rhyolite. Here, we compare silicic plutonic and volcanic units of the Sesia Magmatic System through a combination of geochemical (X-ray fluorescence, inductively coupled plasma mass spectrometry and electron microprobe analyses) and petrological (rhyolite-MELTS, trace element and diffusion modeling) tools to explore their connection. Textural and compositional features shared by both VMP and crystal-rich ignimbrites imply thermal rejuvenation of crystal-mush as the mechanism to create large volumes of eruptible rhyolitic magma. Bulk-rock composition of crystal-rich rhyolite erupted during the caldera collapse overlaps that of the bulk VMP. Quartz and plagioclase from these two units show resorbed cores and inverse zoning, with Ti- and anorthite-rich rims, respectively. This indicates crystallization temperatures in rims 〉60 °C higher than in cores (780–820 versus ∼720 °C), if temperature is the sole parameter responsible for zonation, suggesting heating and partial dissolution of the crystal-framework. Decrease in crystallinity associated with thermal energy input was calculated through rhyolite-MELTS and indicates lowering of the mush crystal fraction below the rheological lock-up threshold, which probably promoted eruptive activity. Also, after the climatic eruption, Si-rich melts in the Sesia Magmatic System were produced by extraction of interstitial melt from un-erupted, largely crystalline mush. Regarding both textures and chemical variations, we interpret the deep quartz-monzonite unit of the VMP as a compacted silicic cumulate. Fractionated melts extracted from this unit were emplaced as a leucogranite cupola atop the VMP, generating the final internal architecture of the silicic intrusion, or alternatively erupted as minor post-caldera, crystal-poor rhyolite. Ti-in-quartz diffusion profiles in thermally rejuvenated units of the Sesia Magmatic System demonstrate that the process of reheating, mobilization and eruption of crystal-mush took place rapidly (c. 101–102 years). A protracted cooling history is instead recorded in the diffusion timescales of quartz from the silicic cumulate units (c. 104–106 years). These longer timescales encompass the duration of evolved melt extraction from the cumulate residue. We argue that the VMP preserves a complex record of pre-eruptive processes, which span mechanisms and timescales universally identified in volcanic systems and are consistent with recently proposed numerical models.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2020-04-01
    Description: Linking mineral growth and time is required to unravel the evolution of metamorphic rocks. However, dating early metamorphic stages is a challenge due to subsequent retrograde overprinting. A fresh eclogite and a former eclogite retrogressed under amphibolite facies from the southern French Massif Central (Lévézou massif, Variscan belt) were investigated with a large panel of geochronometers (U–Pb in zircon, rutile and apatite, Lu–Hf and Sm–Nd in garnet) in a petrological context tightly constrained by petrographic observations, trace element analyses and phase equilibrium modelling. Both samples recorded similar HP conditions at 18–23 kbar and 680–800°C, whereas the retrogressed eclogite later equilibrated at 8–9·5 kbar and c.600°C. In the retrogressed sample, most of the zircon grains are characterized by negative Eu anomalies and HREE enrichment, and yield an Ordovician U–Pb date of 472·3 ± 1·7 Ma, interpreted as the emplacement age of the mafic protolith. In agreement with other data available for the Variscan belt, and based on zircon trace element record and whole-rock geochemistry, this age is considered to represent the magmatism associated with the extreme thinning of the continental margins during the Ordovician. In the same sample, a few zircon rims show a weaker HREE enrichment and yield a date of 378 ± 5·7 Ma, interpreted as a prograde pre-eclogitic age. Lu–Hf garnet dating from both samples yields identical dates of 357 ± 13 Ma and 358·0 ± 1·5 Ma inferred to approximate the age of the high-pressure metamorphic peak. Fresh and retrogressed samples yield respectively 350·4 ± 7·7 Ma and 352 ± 20 Ma dates for Sm–Nd garnet dating, and 367·8 ± 9·1 Ma and 354·9 ± 9·5 Ma for U–Pb rutile dating. Apatite grains from the retrogressed sample give a mean age of 351·8 ± 2·8 Ma. The similarity between all recorded ages from distinct chronometers and radiometric methods (U–Pb, rutile, apatite; Lu–Hf, garnet; Sm–Nd, garnet) combined with P–T estimations from high-pressure metamorphic rocks equilibrated under different conditions testifies to very fast processes that occurred during the Variscan orogeny, highlighting a major decompression of 15–8·5 kbar in less than 7 Myr, and suggesting mean exhumation rates in excess of 6·3 mm/yr.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2020-05-27
    Description: U–Pb ages, trace element content and oxygen isotope ratios of single zircons from five plagiogranite intrusions of the Troodos ophiolite were measured to determine their crystallization age and assess the importance of fractional crystallization versus crustal anatexis in their petrogenesis. The results indicate that oceanic magmatism in Troodos took place at 94·3 ± 0·5 Ma, about 3 Myr earlier than previously recognized. Later hydrothermal alteration has affected most of the Troodos plagiogranitic rocks, resulting in growth of new zircon and/or partial alteration of zircon domains, causing slightly younger apparent crystallization ages. The new age inferred for seafloor spreading and ocean crust accretion in Troodos nearly overlaps that of the Semail ophiolite in Oman (95–96 Ma), strengthening previous indications for simultaneous evolution of both ophiolites in similar tectonic settings. Average δ18O(Zrn) values in the Troodos plagiogranites range between 4·2 and 4·8 ‰. The lower values in this range are lower than those expected in equilibrium with mantle-derived melt (5·3 ± 0·6 ‰), indicating variable contribution from hydrothermally altered, deep-seated oceanic crust in most of the Troodos plagiogranite intrusions. The inferred substantial involvement of crustal component is consistent with the existence of a shallow axial magma chamber, typical of fast-spreading mid-ocean ridge settings, within the Troodos slow-spreading ridge environment. This apparent contradiction may be reconciled by episodically intense magmatism within an otherwise slow, magmatically deprived spreading axis.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2020-04-01
    Description: Crystal size distribution analysis is a non-destructive, quantitative method providing insights into the crystallization histories of magmas. Traditional crystal size distribution data collection requires the manual tracing of crystal boundaries within a sample from a digital image. Although this manual method requires minimal equipment to perform, the process is often time-intensive. In this study we investigate the feasibility of using the Quantitative Evaluation of Minerals by SCANing electron microscopy (QEMSCAN) software for semi-automated crystal size distribution analysis. Four Apollo 15 mare basalt thin sections were analysed using both manual and QEMSCAN crystal size distribution data collection methods. In most cases we observe an offset between the crystal size distribution plots produced by QEMSCAN methods compared with the manual data, leading to differences in calculated crystal residence times and nucleation densities. The source of the discrepancy is two-fold: (1) the touching particles processor in the QEMSCAN software is prone to segmenting overlapping elongate crystals into multiple smaller crystals; (2) this segmentation of elongate crystals causes estimates of true 3D crystal habit to vary between QEMSCAN and manual data. The reliability of the QESMCAN data appears to be a function of the crystal texture and average crystal shape, both of which influence the performance of the touching particles processor. Despite these limitations, QEMSCAN is able to produce broadly similar overall trends in crystal size distribution plots to the manual approach, in a considerably shorter time frame. If an accurate crystal size distribution is required to calculate crystal residence time or nucleation density, we recommend that QEMSCAN should only be used after careful consideration of the suitability of the sample texture and average crystal shape.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2020-04-01
    Description: Magma–carbonate interaction is an increasingly recognized process occurring at active volcanoes worldwide, with implications for the magmatic evolution of the host volcanic systems, their eruptive behaviour, volcanic CO2 budgets, and economic mineralization. Abundant calc-silicate skarn xenoliths are found at Merapi volcano, Indonesia. We identify two distinct xenolith types: magmatic skarn xenoliths, which contain evidence of formation within the magma; and exoskarn xenoliths, which more likely represent fragments of crystalline metamorphosed wall rocks. The magmatic skarn xenoliths comprise distinct compositional and mineralogical zones with abundant Ca-enriched glass (up to 10 wt % relative to lava groundmass), mineralogically dominated by clinopyroxene (En15-43Fs14-36Wo41-51) + plagioclase (An37-100) ± magnetite in the outer zones towards the lava contact, and by wollastonite ± clinopyroxene (En17-38Fs8-34Wo49-59) ± plagioclase (An46-100) ± garnet (Grs0-65Adr24-75Sch0-76) ± quartz in the xenolith cores. These zones are controlled by Ca transfer from the limestone protolith to the magma and by the transfer of magma-derived elements in the opposite direction. In contrast, the exoskarn xenoliths are unzoned and essentially glass-free, representing equilibration at sub-solidus conditions. The major mineral assemblage in the exoskarn xenoliths is wollastonite + garnet (Grs73-97Adr3-24) + Ca-Al-rich clinopyroxene (CaTs0-38) + anorthite ± quartz, with variable amounts of either quartz or melilite (Geh42-91) + spinel. Thermobarometric calculations, fluid-inclusion microthermometry and newly calibrated oxybarometry based on Fe3+/ΣFe in clinopyroxene indicate magmatic skarn xenolith formation conditions of ∼850 ± 45°C, 〈 100 MPa and at an oxygen fugacity between the NNO (nickel–nickel oxide) and HM (hematite-magnetite) buffer. The exoskarn xenoliths, in turn, formed at 510–910°C under oxygen-fugacity conditions between NNO and air. These high oxygen fugacities are likely imposed by the large volumes of CO2 liberated from the carbonate. Halogen- and sulphur-rich mineral phases in the xenoliths testify to infiltration by a magmatic brine. In some xenoliths, this is associated with the precipitation of copper-bearing mineral phases by sulphur dissociation into sulphide and sulphate, indicating potential mineralization in the skarn system below Merapi. The compositions of many xenolith clinopyroxene and plagioclase crystals overlap with that of magmatic minerals, suggesting that the crystal cargo in Merapi magmas may contain a larger proportion of skarn-derived xenocrysts than previously recognized. Assessment of xenolith formation timescales demonstrates that magma–carbonate interaction and associated CO2 release could affect eruption intensity, as recently suggested for Merapi and similar carbonate-hosted volcanoes elsewhere.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2020-06-22
    Description: The Jemez Mountains volcanic field is the site of the two voluminous, caldera-forming members of the Bandelier Tuff, erupted at 1.60 and 1.25 Ma, following a long and continuous pre-caldera volcanic history (∼10 m.y.) in this region. Previous investigations utilizing whole rock geochemistry identified complex magmatic processes in the two major pulses of pre-caldera magmatism including assimilation-fractional crystallization (AFC) and magma mixing. Here we extend petrologic investigation of the pre-caldera volcanic rocks into the micro-realm and use mineral chemistry and textural information to refine magma evolution models. The results show an increasing diversity of mineral populations as the volcanic field evolved. A range of plagioclase textures (e.g. sieved cores and rims) indicate disequilibrium conditions in almost all pre-caldera magmas ranging from andesite to rhyolite, reflecting plagioclase dissolution and regrowth. Coarsely sieved or dissolved plagioclase cores are explained by resorption via water-undersaturated decompression during upward migration from a deep MASH (melting, assimilation, storage and homogenization) zone. Plagioclase crystals with sieved rims are almost ubiquitous in dacite-dominated magmatism (La Grulla Plateau andesite and dacite erupted at ∼8-7 Ma, as well as Tschicoma Formation andesite, dacite and rhyolite at ∼5-2 Ma), reflecting heating induced by magma mixing. These plagioclase crystals often have An-poor cores that are chemically distinct from their An-rich rims. The existence of different plagioclase populations is consistent with two distinct amphibole groups that co-crystallized with plagioclase: a low-Al, low-temperature, high-fO2 group, and a high-Al, high-temperature, low-fO2 group. Calculation of melt Sr, Ba, La, and Ce concentrations from plagioclase core and rim compositions suggests these chemical variations are largely produced by magma mixing. Multiple mafic endmembers were identified that may be connected by AFC processes in the MASH zone in the middle to lower crust. The silicic component in an early andesite-dominated magmatic system (Paliza Canyon andesite, dacite and rhyolite, 10-7 Ma) is represented by contemporaneous early rhyolite (Canovas Canyon Rhyolite). A silicic mush zone in the shallow crust is inferred as both the silicic endmember involved in the dacite-dominant magmatic systems and source of the late low-temperature rhyolite (Bearhead Rhyolite, 7-6 Ma). Recharging of the silicic mush by mafic melts can explain observed diversity in both mineral disequilibrium textures and compositions in the dacitic magmas. Overall, the pre-caldera JMVF magmatic system evolved towards cooler and more oxidized conditions with time, indicating gradual thermal maturation of local crust, building up to a transcrustal magmatic system, which culminated in “super-scale” silicic volcanism. Such conditioning of crust with heat and mass by early magmatism might be common in other long-lived volcanic fields.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2020-07-18
    Description: To assess whether magma ascent rates control the style of volcanic eruption, we have studied the petrography, geochemistry and size distribution of microlites of plagioclase and pyroxene from historical eruptions from Tongariro, Ruapehu and Ngauruhoe volcanoes located in the southern Taupo Volcanic Zone, New Zealand. The studied deposits represent glassy andesitic and dacitic tephra shards from the Mangamate, Mangatawai, Tufa Trig and the Ngauruhoe tephra formations, ranging in age from 11,000 years BP to 1996 AD. Covering a range in eruption styles and sizes from Strombolian to Plinian, these samples provide an excellent opportunity to explore fundamental volcanic processes such as pre-eruptive magma ascent processes. Our quantitative petrographic analysis shows that larger microlites (〉 30 µm) display complex growth zoning, and only the smallest crystals (〈 30 µm) have formed during magma ascent in the conduit. Using a combination of orthopyroxene geothermometry, plagioclase hygrometry, and MELTS modelling, we show that these microlites nucleated at maximum pressures of 550 MPa (c. 16.5 km) from hot andesitic magmas (1010-1130 ˚C) with low H2O content (0-1.5 wt%). Size distributions of a total of 〉 60,000 microlites, involving 22 tephras and 99 glass shards, yield concave-up curves, and the slopes of the pyroxene microlite size distributions, in combination with well-constrained orthopyroxene crystal growth rates from one studied tephra, indicate microlite population growth times of ∼3 ± 1 days, irrespective of eruption style. These data imply that microlites form in response to cooling of melts ascending at velocities of 
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2020-07-18
    Description: The generation of continental crust, its bulk composition and temporal evolution provide important records of plate tectonics and associated magma generating processes. However, the long-term integrated effects of repeated magmatic events on crustal growth, composition and differentiation and therefore, on crustal evolution are rarely considered. Here, we examine long-term (∼350 Myr) temporal compositional trends of granitic magmatism within a limited (∼200 x 100 km) area in the Northern New England Orogen of Queensland, Australia to avoid lateral crustal variations in order to understand how temporal-compositional variations of silicic igneous rocks record crustal evolution. Long-term temporal compositional variations are tracked using whole-rock chemistry, zircon chronochemistry and zircon Hf isotopic compositions. We particularly focus on whole-rock U, Th and K abundances and calculated heat production values as proxies for crustal evolution, and tracking crustal sources involved in granitic magmatism. We identified two major compositional groupings within the study area that were repeatedly produced over time: Compositional Group 1 comprises voluminous I-type igneous rocks emplaced during the Permo-Carboniferous and Early Cretaceous; and Group 2 represents mainly lower volume A-type igneous rocks of Triassic, Middle Cretaceous and Tertiary age. Importantly, these compositional groupings alternate over the 350 Myr history of granitic magmatism within the study area. Heat production values over time exhibit a zig-zag pattern and mirror zircon Hf isotopic signatures where rocks with elevated heat production values exhibit unradiogenic (crustal) Hf isotopic compositions. We identify the composition of crustal sources, level of the crust undergoing partial melting, scale of magmatism and source crustal volume as important factors in understanding the compositional diversity of silicic igneous rocks. We interpret the two chemical groupings to reflect the following magma generating conditions: Group 1 igneous rocks record large-scale magmatic systems triggered by extensive crustal melting of multiple lower to middle crustal sources which produce more compositionally and isotopically uniform magma compositions that approach bulk crustal compositions. In contrast, Group 2 igneous rocks reflect smaller-scale magmatic systems generated from smaller scale partial melting events of the middle to upper crust that produced A-type magmas. Over the long-term, the successive large-scale magmatic events (recorded by Group 1 igneous rocks) through their concomitant basaltic underplating make the Hf composition of the lower crust more radiogenic, and tend to homogenise the isotopic composition of the continental crust. We consider three important coupled controls: 1) large-scale magmatic systems promote extensive crustal melting potentially blending multiple crustal sources that can also include a significant juvenile source contribution; 2) melt depletion whereby older, and potentially more unradiogenic crustal materials become more refractory; and 3) “crustal jacking” where mantle-derived magmas are added as underplate to the crust (i.e. basification) and can shift older crustal materials to more shallow levels (potentially in concert with erosion and exhumation) and away from zones of crustal melting. Our findings highlight the importance of integrating the geologic and intrusive history with whole-rock geochemical data and isotopic information, and have direct implications for continental regions that exhibit protracted igneous histories and where isotopic compositions may trend towards more juvenile compositions such as circum-Pacific or retreating accretionary orogens.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2020-01-01
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2020-06-05
    Description: Subduction processes introduce crustal materials into the mantle, and mantle plumes return them to the surface. However, when and how the subducted materials were recorded in the plume-related basalts remains unclear. Here we investigate geochronology, bulk-rock composition, and Sr–Nd–Pb isotopes of Cenozoic basalts from Southeast China, occurring near the west Pacific subduction zone and the seismically detected Hainan plume. Volcanism beginning in the late Oligocene in the continental margin of SE China consistently becomes younger landward. Together with a compilation of published results on the synchronous basalts from the South China Sea seamounts and the Indochina peninsula, the volcanoes close to the Pacific subduction zone exhibit more radiogenic Pb and Sr isotopes associated with less radiogenic Nd isotopes compared with those of the inland volcanoes. Such spatiotemporal variations in radiogenic isotopes imply oceanic crusts of different ages in the source, each corresponding to a different geographical volcanic belt. Major-element features such as low CaO, high TiO2 and high Fe/Mn ratios imply that pyroxenite/eclogite could serve as a source lithology of the SE China basalts. Specific trace-element signatures reveal the important roles of recycled oceanic crust along with surface sediment, which was inconsistently dehydrated during subduction. A geologically, geochemically, and geophysically plausible scenario is proposed to illustrate the time–space–source correlation of the late Cenozoic basaltic lavas in SE Asia. The Hainan plume delivered the ancient subducted crust (1·5 Ga) from the core–mantle boundary and, subsequently, the subducted Pacific plate crustal materials from the mantle transition zone to the shallow mantle as a result of mantle convection induced by continuous subduction of the Pacific plate. Such recycled materials of different ages contributed to the geographical compositional heterogeneities of the late Cenozoic basaltic lavas in SE Asia.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2020-07-06
    Description: The peak temperature and duration of ultrahigh-temperature (UHT) metamorphism are critical to identify and understand its tectonic environment. The UHT metamorphism of the Jining complex in the Khondalite Belt, North China Craton is controversial on the peak temperature, time and tectonic setting. A representative sapphirine-bearing granulite sample is selected from the classic Tianpishan outcrop for addressing the metamorphic evolution and timing. The rock is markedly heterogeneous on centimetre scale and can be divided into melanocratic domains rich in sillimanite (MD-s) or rich in orthopyroxene (MD-o), and leucocratic domains (LD). On the basis of detailed petrographic analyses and phase equilibria modelling using THERMOCALC, all three types of domains record peak temperatures of 1120–1140 °C and a series of post-peak cooling stages at 0·8–0·9 GPa to the fluid-absent solidus (∼890 °C), followed by sub-solidus decompression. The peak temperature for MD-s is constrained by the coexistence of sillimanite-I + sapphirine + spinel + quartz, where sillimanite-I contains densely exsolved aciculae of hematite, yielding reintegrated Fe2O3 contents up to 2·1–2·3 wt %. The post-peak cooling evolution involves the sequential appearance of K-feldspar, sillimanite-II + garnet, orthopyroxene and biotite, where sillimanite-II is exsolution-free and contains variable Fe2O3 contents of 1·3–1·8 wt %. The peak temperature for MD-o is constrained by the sapphirine + orthopyroxene assemblage, where orthopyroxene has a maximum AlIV of 0·22 (Al2O3 = 9·5 wt %) in the core. The cooling evolution involves the sequential appearance of K-feldspar, garnet and biotite, and the decreasing AlIV (0·22→0·17) from core to rim in orthopyroxene. The peak temperature for LD is constrained by the inferred K-feldspar-absent assemblage and the maximum anorthite content of 0·11 in K-feldspar. The cooling evolution involves the crystallization of segregated melts, exsolution of supra-solvus ternary feldspars and growth of biotite. The Al in orthopyroxene, Fe2O3 in sillimanite and anorthite in K-feldspar are good indicators for constraining extreme UHT conditions although they depend differently on bulk-rock compositions. In-situ SHRIMP U–Pb dating of metamorphic zircon indicates that the UHT metamorphism may have occurred at 〉1·94 Ga and the cooling under UHT conditions lasted over 40 Ma. The extreme UHT metamorphism in the Jining complex is interpreted to be triggered by the advective heating of intraplate hyperthermal mafic magmas together with a plume-related hot mantle upwelling, following an orogenic crustal thickening event.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2020-06-18
    Description: Besides standard thermo-mechanical conservation laws, a general description of mantle magmatism requires the simultaneous consideration of phase changes (e.g. from solid to liquid), chemical reactions (i.e. exchange of chemical components) and multiple dynamic phases (e.g. liquid percolating through a deforming matrix). Typically, these processes evolve at different rates, over multiple spatial scales and exhibit complex feedback loops and disequilibrium features. Partially due to these complexities, integrated descriptions of the thermal, mechanical and chemical evolution of mantle magmatism have been challenging for numerical models. Here we present a conceptual and numerical model that provides a versatile platform to study the dynamics and nonlinear feedbacks inherent to mantle magmatism and to make quantitative comparisons between petrological and geochemical datasets. Our model is based on the combination of three main modules: i) a Two-Phase, Multi-Component, Reactive Transport module that describes how liquids and solids evolve in space and time, ii) a melting formalism, called Dynamic Disequilibirum Melting, based on thermodynamic grounds and capable of describing the chemical exchange of major elements between phases in disequilibrium, and iii) a grain-scale model for diffusion-controlled trace-element mass transfer. We illustrate some of the benefits of the model by analyzing both major and trace elements during mantle magmatism in a mid-ocean ridge-like context. We systematically explore the effects of mantle potential temperature, upwelling velocity, degree of equilibrium and hetererogeneous sources on the compositional variability of melts and residual peridotites. Our model not only reproduces the main thermo-chemical features of decompression melting but also predicts counter-intuitive differentiation trends as a consequence of phase changes and transport occurring in disequilibrium. These include a negative correlation between and in melts generated at the same and the continued increase of the melt’s after Cpx exhaustion. Our model results also emphasize the role of disequilibrium arising from diffusion for the interpretation of trace-element signatures. The latter is shown to be able to reconcile the major- and trace-element compositions of abyssal peridotites with field evidence indicating extensive reaction between peridotites and melts. The combination of chemical disequilibrium of major elements and slugglish diffusion of trace elements may also result in weakened MREE-to-HREE depletion comparable to the effect of residual garnet in MORB, despite its absence in the modelled melts source. We also find that the crystallization of basalts ascending in disequilibrium through the asthenospheric mantle could be responsible for the formation of olivine gabbros and wehrlites that are observed in the deep sections of ophiolites. The presented framework is general and readily extendable to accommodate additional processes of geological relevance (e.g. melting in the presence of volatiles and/or of complex heterogeneous sources, refertilization of the lithospheric mantle, magma channelization and shallow processes) and the implementation of other geochemical and isotopic proxies. Here we illustrate the effect of heterogeneous sources on the thermo-mechanical-chemical evolution of melts and residues using a mixed peridotite-pyroxenite source.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2020-06-12
    Description: The 2·1 ka Moinui lava flow field, erupted from the southwest rift zone of Mauna Loa, Hawai`i, exhibits striking textural and geochemical variations, that can be used to interpret magma processes pre-, syn- and post-eruption. From this lava flow, the duration of magma storage and storage conditions, the timescales over which magma is transported to the surface, and flow emplacement mechanisms at Mauna Loa are determined. Electron microprobe analysis (EMPA) and diffusion chronometry of olivine crystals identify two distinct crystal populations: a primitive, polyhedral olivine population with core compositions of Fo90–88 and a more evolved, platy olivine population with core compositions of Fo83–82. Fe–Mg diffusion modelling of these olivine populations gives distinct timescales for each population; platy olivines yield timescales of days up to a few weeks, while polyhedral olivines yield timescales of months to years. Despite the nature of a well-insulated pāhoehoe flow, meaning that post-emplacement diffusion continues for some time, a wealth of time information can be retrieved concerning pre-eruptive magmatic processes as well as the processes associated with the lava extrusion. The short timescales obtained from the platy olivine crystals and the observed equilibrium between its cores and ambient melt suggest late-stage nucleation and crystal growth in the shallow conduit and during lava emplacement. Conversely, the longer timescales and olivine-melt disequilibrium of the polyhedral olivine crystals suggests accumulation from a deeper source and subsequent transportation to shallow magma storage beneath the summit of Mauna Loa months, or even years before eruption. The chemical and textural details of the Moinui lava reflect the mode of flow emplacement and may have implications for the interpretation of the distribution of spinifex and cumulate olivine within komatiites; high-temperature, low-viscosity lavas, common in the Archean.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2020-06-12
    Description: Despite its accessory mineral status in metabasaltic rocks, rutile controls the whole-rock Ti, Nb and Ta budget. These are key elements used to trace fluid- and melt-mediated mass transfer across the mantle–crust boundary. Rutile also contains significant amounts of the redox-sensitive element V, which is increasingly used to estimate oxygen fugacity. Kimberlite-borne mantle eclogite xenoliths, which are frequently rutile-bearing, have been interpreted as residues from the extraction of silicic partial melt similar in composition to the average continental crust. Published mineral compositions for eclogite xenoliths from various cratons combined with geothermobarometrical calculations show that TiO2 contents in garnet and clinopyroxene increase with increasing temperature of last residence in the lithospheric mantle, whereas apparent clinopyroxene–garnet distribution coefficients decrease. This implies that (1) increasing TiO2 contents in eclogitic garnet or clinopyroxene are not a signature of increasing metasomatism with depth, (2) whole-rock eclogites reconstructed without rutile will increasingly underestimate TiO2, Nb and Ta contents with decreasing temperature, and (3) low-temperature eclogites are more likely to contain free rutile. Only about a third of the ∼250 samples considered here would have whole-rock TiO2 contents (reconstructed with calculated rutile modes) required for rutile saturation during subduction and partial melting. If there is a role for subducting oceanic crust now sampled as mantle eclogite, the characteristic Ti–Nb–Ta depletion in continental crust may require fluid-dominated processes, where these elements are not efficiently mobilised. In garnet, Ti uptake on the octahedral site is accommodated primarily by coupled substitution with Na and subordinately with a divalent metal cation, and there is no evidence for substitution on the tetrahedral site. For samples equilibrated to the conductive geotherm, Ti in addition to Na enrichment may be indicative of equilibration in the diamond stability field. The jadeite component in clinopyroxene as a function of temperature is a good indicator of the geotherm to which the various samples equilibrated, and can be used to reveal samples within each suite that have been affected by isobaric heating. The distribution of V in eclogitic garnet, clinopyroxene and rutile is affected by bulk composition, temperature and oxygen fugacity. In carefully vetted, low-temperature samples with TiO2 contents 〉0·8 wt%, V-based oxybarometry may monitor redox conditions prevailing during metamorphism of oceanic crust or, at lower TiO2, during (secular) cooling-related exsolution of rutile from garnet or clinopyroxene, whereas in higher-temperature ilmenite-bearing samples metasomatic conditions may be recorded.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2020-06-09
    Description: The c. 1·85 Ga Sudbury Igneous Complex (SIC) is the igneous remnant of one of the oldest, largest and best-preserved impact structures on Earth and contains some of the world’s largest magmatic Ni–Cu–PGE sulfide deposits. Most of the mineralization occurs in Sublayer, Footwall Breccia and inclusion-bearing quartz diorite (IQD), all of which contain significant (Sublayer and IQD) to minor (Footwall Breccia) amounts of olivine-bearing mafic–ultramafic inclusions. These inclusions have only rare equivalents in the country rocks and are closely associated with the Ni–Cu–PGE sulfide mineralization. They can be divided into three groups on the basis of petrography and geochemical characteristics. Group I (n = 47) includes igneous-textured olivine melanorite and olivine melagabbronorite inclusions in the Whistle and Levack embayments on the North Range with Zr/Y, Zr/Nb, Nb/U and Zr/Hf similar to igneous-textured Sublayer matrix. Group I inclusions are interpreted to be anteliths that crystallized from a mixture of SIC impact melt and a more mafic melt, probably derived by melting of ultramafic footwall rocks. Group II includes Group IIA (n = 17) shock metamorphosed wehrlite and olivine clinopyroxenite inclusions in the Levack embayment and Group IIB (n = 2) shock metamorphosed olivine melanorite inclusions in the Foy Offset on the North Range. Group II inclusions have similar trace element patterns [e.g. negative Th–U, Nb–Ta–(Ti), Sr and Zr–Hf anomalies] and overlapping Nb/U to a layered mafic–ultramafic intrusion in the footwall of the Levack and Fraser deposits, which together with their limited distribution suggests that Group II inclusions are locally-derived xenoliths. Group III (n = 21) includes phlogopite lherzolite and feldspar lherzolite inclusions with igneous, recrystallized and shock-metamorphic textures in the Trill, Levack and Bowell embayments, and the Foy Offset dike on the North Range. They have no equivalents in the exposed country rocks. The calculated parental magma is similar to continental arc basalt formed by approximately 5% partial melting of garnet peridotite. Ol–Cpx–Pl thermobarometry of several Group III inclusions indicate equilibration at 900–1120 ºC and 210 ± 166 MPa to 300 ± 178 MPa, suggesting crystallization in the upper-middle crust (7·7 ± 6·6 to 10·9 ± 6·5 km), prior to being incorporated into the lower parts of the impact melt sheet during impact excavation. The exotic xenoliths provide information about the depth of impact and composition of upper-middle crust in the Sudbury region at 1850 Ma, the local xenoliths provide information about the thermomechanical erosion process that followed generation of the impact melt, the anteliths provide information about the early crystallization history of the SIC, and all of the inclusions provide constraints on the genesis of Sublayer, IQD, footwall breccia, and associated Ni–Cu–PGE mineralization.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2020-07-24
    Description: Magmatic processes occurring in the deepest parts of sub-volcanic plumbing systems remain poorly constrained. However, crystal mush fragments incorporated into ascending magmas can provide valuable insights into the processes and conditions of transcrustal magma transport, storage and differentiation. Here we use lava samples drilled from Tamu Massif, Shatsky Rise, to understand the magmatic processes taking place in a region of thickened oceanic crust. We observe correlations between crystal textures and compositional zones in plagioclase that reveal relationships between mechanisms of magmatic differentiation and the crustal depths at which they occurred. When combined with geothermobarometric models, our observations indicate that deep crustal crystal storage took place in high crystallinity mushes at two discrete levels (∼17 and ∼27 km depth). Diffusive constraints from crystal zoning lengthscales indicate that the lifetime of crystals within the mushes exceeded several thousand years. Magmatic recharge was frequent and produced various dissolution textures in plagioclase. Contrastingly, shallow crystal storage (∼2.4 km depth) took place in a liquid-dominated domain where crystal residence times were much shorter. Crystal zoning patterns indicate that magmas transporting crystals from the deepest environment to the surface sometimes accumulated additional crystals from mid-crustal storage regions and sometimes did not, highlighting the complexity of magma assembly processes. Temperature contrasts in the lower crust at Shatsky Rise are probably low, owing to extensive magma input and a paucity of hydrothermal cooling at depth. Crystal growth morphologies are consequently relatively simple. Crystallisation in thick and thermally mature crusts may therefore lead to less complexity in crystal textures than crystallisation in thinner crusts where temperature contrasts are higher. Our observations indicate that combining thermobarometry with studies of crystal textures and crystal compositions is a powerful approach for improving our understanding of magmatic differentiation and magma ascent paths.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2020-06-15
    Description: High-grade metamorphic rocks underlying the intrusive layered dunite–pyroxenite–gabbronorite East-Khabarny Complex (EKC) are integrated in the complex Khabarny mafic–ultramafic Massif in the Sakmara Allochthon zone in the Southern Urals. These rocks are associated with high-temperature shear zones. Garnetites from the upper part of the metamorphic unit close to the contact with EKC gabbronorite are chemically and texturally analysed to estimate their formation conditions and fluid regime. Fluids provide crucial information of formation conditions and evolution of these garnetites during high-grade metamorphism, and are preserved in channel positions within Si6O1812- rings of cordierite, and in fluid inclusions in quartz and garnet. Minerals and fluid inclusions of the garnetites are studied with X-ray fluorescence spectrometry, electron microprobe analyses, Raman spectroscopy, and microthermometry. The garnetites mainly consist of garnet (up to 80 vol. %), cordierite and quartz. Accessory minerals are rutile, ilmenite, graphite, magnetite and cristobalite. Granulite-facies metamorphic conditions of the garnetites are estimated with the garnet–cordierite–sillimanite–quartz geothermobarometer: temperatures of 740 to 830 ˚C and pressures of 770–845 MPa. The average garnet composition in end-member concentrations is 48·5 mole % almandine (±3·9), 34·7 mole % pyrope (±3·3), 10·3 mole % spessartine (±1·1), 1·8 mole % grossular (±1·5), and 1·5 mole % andradite (±1·5). The cordierite electron microprobe analyses reveal an average Mg2+ fraction of 0·79 ± 0·01 in the octahedral site. Relicts of a strong positive temperature anomaly (up to 1000 ˚C) are evidenced by the preservation of cristobalite crystals in garnet and the high titanium content of quartz (0·031 ± 0·008 mass % TiO2) and garnet (0·31 ± 0·16 mole % end-member Schorlomite-Al). The fluid components H2O, CO2, N2 and H2S are detected in cordierite, which correspond to a relatively oxidized fluid environment that is common in granulites. In contrast, a highly reduced fluid environment is preserved in fluid inclusions in quartz nodules, which are mono-fluid phase at room temperature and composed of CH4 (〉96 mole %) with locally minor amounts of C2H6, N2, H2S and graphite. The fluid inclusions occur in homogeneous assemblages with a density of 0·349 to 0·367 g·cm-3. The CH4-rich fluid may represent peak-temperature metamorphic conditions, and is consistent with temperature estimation (∼1000 ˚C) from Ti-in-garnet and Ti-in-quartz geothermometry. Tiny CH4-rich fluid inclusions (diameter 0·5 to 2 µm) are also detected by careful optical analyses in garnet and at the surface of quartz crystals that are included in garnet grains. Graphite in fluid inclusions precipitated at retrograde metamorphic conditions around 300–310 ± 27 ˚C. Aragonite was trapped simultaneously with CH4-rich fluids and is assumed to have crystallized at metastable conditions. The initial granulite facies conditions that led to the formation of a cordierite and garnet mineral assemblage must have occurred in a relative oxidized environment (QFM-buffered) with H2O–CO2-rich fluids. Abundant intrusions or tectonic emplacement of mafic to ultramafic melts from the upper mantle that were internally buffered at a WI-buffered (wüstite–iron) level must have released abundant hot CH4-rich fluids that flooded and subsequently dominated the system. The origin of the granulite-facies conditions is similar to peak-metamorphic conditions in the Salda complex (Central Urals) and the Ivrea–Verbano zone (Italian Alps) as a result of magmatic underplating that provided an appearance of a positive thermal anomaly, and further joint emplacement (magmatic and metamorphic rocks together) into upper crustal level as a high temperature plastic body (diapir).
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2020-06-15
    Description: Olivine is the most abundant phase in kimberlites and is stable throughout most of the crystallization sequence, thus providing an extensive record of kimberlite petrogenesis. To better constrain the composition, evolution, and source of kimberlites we present a detailed petrographic and geochemical study of olivine from multiple dyke, sill, and root zone kimberlites in the Kimberley cluster (South Africa). Olivine grains in these kimberlites are zoned, with a central core, a rim overgrowth, and occasionally an external rind. Additional ‘internal’ and ‘transitional’ zones may occur between the core and rim, and some samples of root zone kimberlites contain a late generation of high-Mg olivine in cross-cutting veins. Olivine records widespread pre-ascent (proto-)kimberlite metasomatism in the mantle including the following features: (1) relatively Fe-rich (Mg# 89; 〉0·05 wt% CaO) suggested to be sourced from neoblasts in sheared peridotites (25 % of cores); (3) transitional zones between cores and rims probably formed by partial re-equilibration of xenocrysts (now cores) with a previous pulse of kimberlite melt (i.e. compositionally heterogeneous xenocrysts); (4) olivine from the Wesselton water tunnel sills, internal zones (I), and low-Mg# rims, which crystallized from a kimberlite melt that underwent olivine fractionation and stalled within the shallow lithospheric mantle. Magmatic crystallization begins with internal olivine zones (II), which are common but not ubiquitous in the Kimberley olivine. These zones are euhedral, contain rare inclusions of chromite, and have a higher Mg# (90·0 ± 0·5), NiO, and Cr2O3 contents, but are depleted in CaO compared with the rims. Internal olivine zones (II) are interpreted to crystallize from a primitive kimberlite melt during its ascent and transport of olivine toward the surface. Their compositions suggest assimilation of peridotitic material (particularly orthopyroxene) and potentially sulfides prior to or during crystallization. Comparison of internal zones (II) with liquidus olivine from other mantle-derived carbonate-bearing magmas (i.e. orangeites, ultramafic lamprophyres, melilitites) shows that low (100×) Mn/Fe (∼1·2), very low Ca/Fe (∼0·6), and moderate Ni/Mg ratios (∼1·1) appear to be the hallmarks of olivine in melts derived from carbonate-bearing garnet-peridotite sources. Olivine rims display features indicative of magmatic crystallization, which are typical of olivine rims in kimberlites worldwide; that is, primary inclusions of chromite, Mg-ilmenite and rutile, homogeneous Mg# (88·8 ± 0·3), decreasing Ni and Cr, and increasing Ca and Mn. Rinds and high-Mg olivine are characterized by extreme Mg–Ca–Mn enrichment and Ni depletion, and textural relationships indicate that these zones represent replacement of pre-existing olivine, with some new crystallization of rinds. These zones probably precipitated from evolved, oxidized, and relatively low-temperature kimberlite fluids after crustal emplacement. In summary, this study demonstrates the utility of combined petrography and olivine geochemistry to trace the evolution of kimberlite magmatic systems from early metasomatism of the lithospheric mantle by (proto-)kimberlite melts, to crystallization at different depths en route to surface, and finally late-stage deuteric or hydrothermal fluid alteration after crustal emplacement.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2020-06-29
    Description: The Neoproterozoic Bijigou intrusion is one of the largest and well-differentiated Fe–Ti oxide-bearing layered intrusion in Central China, and hosts Fe–Ti oxide ore layers in the middle zone with a total thickness of ∼112 m. In order to examine the role of compaction and compositional convection on the solidification of a layered intrusion associated with the crystallization of large amounts of Fe–Ti oxides, we collected the samples from a drill core profile of the apatite-oxide gabbronorite unit above the main Fe–Ti oxide layer in the middle zone of the Bijigou intrusion and carried out a detailed study on the crystal size distributions (CSDs) and trace element compositions of the fluorapatite in the samples. The apatite-oxide gabbronorite unit is mainly composed of pyroxene and plagioclase with Fe–Ti oxides and fluorapatite interstitial to the silicates, and can be further divided into the lower and upper sections in terms of grain size, rare earth element (REE) concentrations of fluorapatite and stress deformation of minerals. In the lower section, the plagioclase and pyroxene of the rocks are often bent, fluorapatite crystals have grain sizes ranging from ∼0·10 × 0·30 mm to ∼1·00 × 2·50 mm and the average Ce concentration of the fluorapatite of each sample varies from 230 to 387 μg/g. In contrast, the plagioclase and pyroxene of the rocks from the upper section are sparsely bent, fluorapatite crystals range in size from ∼0·05 × 0·05 mm to ∼0·15 × 0·40 mm, and the average Ce concentration of the fluorapatite of each sample varies from 468 to 704 μg/g. Modeling results show that the fraction of trapped liquid (FTL) is ∼7% in the lower section and ∼15% in the upper section, and relatively elevated REE (e.g. Ce) concentrations of the fluorapatite of the upper section are thus likely attributed to the trapped liquid shift (TLS) effect. The TLS effect may have also enhanced the textural coarsening of the fluorapatite of the upper section, which is illustrated by a convex-upward curve for
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2020-06-29
    Description: Mantle source heterogeneity and magmatic processes have been widely studied beneath most parts of the Southwest Indian Ridge (SWIR). But less is known from the newly recovered mid-ocean ridge basalts from the Dragon Bone amagmatic segment (53°E, SWIR) and the adjacent magmatically robust Dragon Flag Segment. Fresh basalt glasses from Dragon Bone segment are clearly more enriched in isotopic composition than the adjacent Dragon Flag basalts, but the trace element ratios of the Dragon Flag basalts are more extreme compared to the average mid-ocean ridge basalts (MORB) than the Dragon Bone basalts. Their geochemical differences can only be explained by source differences rather than variations in degree of melting of a roughly similar source. The Dragon Flag basalts are influenced by an arc-like mantle component as evidenced by enrichment in fluid-mobile over fluid-immobile elements. However, the sub-ridge mantle at the Dragon Flag segment is depleted in melt component compared to a normal MORB source due to previous melting in the subarc. This fluid-metasomatized, subarc depleted mantle is entrained beneath the Dragon Flag segment. In comparison, for the Dragon Bone axial basalts, their Pb isotopic compositions and their slight enrichment in Ba, Nb, Ta, K, La, Sr, Zr and depletion in Pb, Ti concentrations show resemblance to the Ejeda-Bekily dikes of Madagascar. Also, Dragon Bone Sr and Nd isotopic compositions together with the Ce/Pb, La/Nb and La/Th ratios can be modeled by mixing the most isotopically depleted Dragon Flag basalts with a composition within the range of the Ejeda-Bekily dikes. It is, thus, proposed that the Dragon Bone axial basalts, similar to the Ejeda-Bekily dikes, are sourced from sub-continental lithospheric Archean mantle beneath Gondwana, pulled from beneath the Madagascar Plateau. The recycling of the residual subarc mantle and the subcontinental lithospheric mantle could be related to either the breakup of Gondwana, or the formation and accretion of Neoproterozoic island arc terranes during the collapse of the Mozambique Ocean, and is now present beneath the ridge.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2020-08-10
    Description: The architecture of lower oceanic crust at slow- and ultraslow-spreading ridge is diverse, yet the mechanisms that produce this diversity are not well understood. Particularly, the 660-km2 gabbroic massif at Atlantis Bank (Southwest Indian Ridge) exhibits significant compositional zonation, representing a high magma supply end member for accretion of the lower ocean crust at slow and ultraslow-spreading ridges. We present the petrographic and geochemical data of olivine gabbros from the 809-meter IODP Hole U1473A at Atlantis Bank gabbroic massif. Structurally, the upper portion of U1473A consists of a ∼600-meter shear zone; below this, the hole is relatively undeformed, with several minor shear zones. Olivine gabbros away from the shear zones have mineral trace element compositions indicative of high-temperature reaction with an oxide-undersaturated melt. By contrast, olivine gabbros within shear zones display petrographic and chemical features indicative of reaction with a relatively low-temperature, oxide-saturated melt. These features indicate an early stage of primitive to moderately evolved melt migration, followed by deformation-driven transport of highly evolved Fe-Ti-rich melts to high levels in this gabbroic massif. The close relationship between shear zones and the reaction with oxide-saturated melts suggests that syn-magmatic shear zones provide a conduit for late-stage, Fe-Ti-rich melt transport through Atlantis Bank lower crust. This process is critical to generate the compositional zonation observed. Thus, the degree of syn-magmatic deformation, which is fundamentally related to magma supply, plays a dominant role in developing the diversity of lower ocean crust observed at slow- and ultraslow-spreading ridges.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2020-08-06
    Description: The discovery of komatiites, first in South Africa and then in many other Archean greenstone belts, with MgO concentrations of 20–30% and eruption temperatures of more than ∼1600 °C, showed that some parts of the mantle were hotter in the Archean than they are now. Since their discovery there have been many speculative proposals as to how such magmas can form. At present melt is produced by mantle upwelling, because the solidus temperature gradient of the mantle is steeper than that of isentropic decompression gradient at depths of less than 300 km. In contrast, in the lower half of the upper mantle the solidus gradient is shallower than the isentropic gradient, and, therefore, isentropic upwelling cannot generate melt. At the base of the upper mantle limited melting can occur, either in the thermal boundary layer at the base of the upper mantle, or in the upper part of the lower mantle where the solidus gradient is steeper than the isentropic gradient. In both cases melting can occur at depths of more than 600 km, where Ca perovskite, CaPv, is a stable phase on the solidus. A surprising feature of the partitioning between melt and solid CaPv is that most trace elements are compatible in the solid. Partitioning into CaPv can, therefore, account for the low concentrations of such elements in komatiites. The temperatures required to generate such magmas in plumes need be no more than ∼50 °C above those of Phanerozoic plumes. The presence of komatiites in the Archean, therefore, requires plume temperatures in the first half of the Earth’s history to have been somewhat hotter than they are now, but does not constrain the average temperature of the Archean upper mantle.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2020-08-26
    Description: The Wajrakarur Kimberlite Field (WKF) on the Eastern Dharwar Craton in southern India hosts several occurrences of Mesoproterozoic kimberlites, lamproites, and ultramafic lamprophyres, for which mantle-derived xenoliths are rare and only poorly preserved. The general paucity of mantle cargo has hampered the investigation of the nature and evolution of the continental lithospheric mantle (CLM) beneath cratonic southern India. We present a comprehensive study of the major and trace element compositions of clinopyroxene and garnet xenocrysts recovered from heavy mineral concentrates for three ca. 1.1 Ga old WKF kimberlite pipes (P7, P9, P10), with the goal to improve our understanding of the cratonic mantle architecture and its evolution beneath southern India. The pressure-temperature conditions recorded by peridotitic clinopyroxene xenocrysts, estimated using single-pyroxene thermobarometry, suggest a relatively moderate cratonic mantle geotherm of 40 mW/m2 at 1.1 Ga. Reconstruction of the vertical distribution of clinopyroxene and garnet xenocrysts, combined with some rare mantle xenoliths data, reveals a compositionally layered CLM structure. Two main lithological horizons are identified and denoted as layer A (∼80–145 km depth) and layer B (∼160–190 km depth). Layer A is dominated by depleted lherzolite with subordinate amounts of pyroxenite, whereas layer B comprises mainly refertilised and Ti-metasomatised peridotite. Harzburgite occurs as a minor lithology in both layers. Eclogite stringers occur within the lower portion of layer A and at the bottom of layer B near the lithosphere–asthenosphere boundary at 1.1 Ga. Refertilisation of layer B is marked by garnet compositions with enrichment in Ca, Ti, Fe, Zr and LREE, although Y is depleted compared to garnet in layer A. Garnet trace element systematics such as Zr/Hf and Ti/Eu indicate that both kimberlitic and carbonatitic melts have interacted with and compositionally overprinted layer B. Progressive changes in the REE systematics of garnet grains with depth record an upward percolation of a continuously evolving metasomatic agent. The intervening zone between layers A and B at ∼145–160 km depth is characterised by a general paucity of garnet. This ‘garnet-paucity’ zone and an overlying type II clinopyroxene-bearing zone (∼115–145 km) appear to be rich in hydrous mineral assemblages of the MARID- or PIC kind. The composite horizon between ∼115–160 km depth may represent the product of intensive melt/rock interaction by which former garnet was largely reacted out and new metasomatic phases such as type II clinopyroxene and phlogopite plus amphibole were introduced. By analogy with better-studied cratons, this ‘metasomatic horizon’ may be a petrological manifestation of a former mid-lithospheric discontinuity at 1.1 Ga. Importantly, the depth interval of the present-day lithosphere–asthenosphere boundary beneath Peninsular India as detected in seismic surveys coincides with this heavily overprinted metasomatic horizon, which suggests that post-1.1 Ga delamination of cratonic mantle lithosphere progressed all the way to mid-lithospheric depth. This finding implies that strongly overprinted metasomatic layers, such as the ‘garnet-paucity’ zone beneath the Dharwar craton, present structural zones of weakness that aid lithosphere detachment and foundering in response to plate tectonic stresses.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2020-08-26
    Description: Understanding the origin of intermediate magmas that commonly erupt from subduction zone volcanoes is important to better constraining the mechanisms of continental crust formation. We performed a detailed mineralogical and petrological study of the eruptive products from April 2015 eruption of Calbuco volcano, Chile, a three-phase sub-Plinian eruption that produced pyroclastic deposits of andesitic composition. The eruptive products comprise a glass phase and a high but variable proportion of minerals dominated by plagioclase, clinopyroxene, and orthopyroxene, with minor olivine, amphibole, and magnetite. Plagioclase is very strongly zoned with highly anorthitic cores surrounded by more albitic rims, and no intermediate compositions between them. Based on thermodynamic calculations and published experimental data, we estimate that the anorthitic cores crystallized from a basaltic andesite melt containing 3.5–4.5 wt.% H2O. The bulk-rock major and trace element variability at Calbuco is best explained by the accumulation of minerals (72% plagioclase, 28% pyroxene) in a dacitic melt. These minerals most likely formed in the crystal mush zone of the magma chamber, at 200–300 MPa (8–11 km depth) according to pyroxene and amphibole compositions. A few weeks to months before the eruption, the crystal mush was disaggregated, perhaps due to magmatic underplating, and a crystal-bearing dacitic melt migrated into a sub-surface storage region where the albitic plagioclase rims crystallized. The eruption was probably internally triggered by over-pressurization in the shallow magma chamber.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2020-08-26
    Description: Melt inclusions represent a unique tool to reconstruct the composition and chemical evolution of silicate melts in magmatic systems. Laser-ablation inductively-coupled-plasma mass-spectrometry (LA-ICP-MS) is the most commonly used microanalytical technique to analyze crystallized melt inclusions without prior re-homogenization. Well-preserved melt inclusions can be quantified by subtracting the contribution of co-ablated host with a carefully selected internal standard. However, post-entrapment compositional re-equilibration commonly renders this task difficult, to the same degree as it would affect any quantification after prior re-homogenization. In this study, we first examine well-preserved, crystallized melt inclusions hosted in olivine, plagioclase, apatite, clinopyroxene and orthopyroxene from porphyry dikes and volcanic rocks to test various quantification strategies and evaluate the associated uncertainties, and then we use these strategies to quantify coarsely crystallized melt inclusions from gabbroic rocks at Marble Canyon (USA) and Laiyuan (China) that experienced severe post-entrapment modifications due to relatively slow cooling rates. The results demonstrate that even for well-preserved melt inclusions hosted in chemically complex minerals the uncertainty related to inclusion–host deconvolution can be rather high (up to 30‒50% for host-incompatible trace elements significantly above their limits of detection), though other uncertainties inherent to LA-ICP-MS analysis are relatively small (typically ≤5‒10%). The deconvolution-related uncertainty can be minimized to ca. 10% by (i) choosing whole rocks that are fresh and representative of magmatic liquids, (ii) choosing the smallest possible spot size to ablate the melt inclusions, and (iii) choosing a host endmember that is compositionally as similar as possible to the one ablated together with the inclusion. Results of coarsely crystallized melt inclusions from gabbroic rocks suggest that the range of elements affected by post-entrapment re-equilibration varies from intrusion to intrusion. Olivine-hosted melt inclusions from Marble Canyon appear to have diffusively lost Fe, Ti and Ca, whereas those from Laiyuan lost Fe, Na, Al, Ca, Ti and Y and gained V. However, the relative abundances of K, P, Rb, Sr, Zr, Nb, Mo, Cs, Ba, Ce, Ta, Pb, Th, U and ±Cu appear unchanged. Plagioclase-hosted melt inclusions from Marble Canyon are relatively well-preserved, whereas those from Laiyuan lost significant amounts of Fe, K, Mg, Mn, Rb and Co. Apatite-hosted melt inclusions seem well preserved with regard to most elements except for Cu. These results suggest that despite the post-entrapment modification of certain element concentrations and the associated difficulties in melt inclusion quantification, information on the approximate abundances of other elements that are invaluable for petrogenetic and metallogenic studies can still be retrieved from melt inclusions in gabbroic rocks using the LA-ICP-MS technique.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2020-10-27
    Description: This field, petrographic, and geochemical study examines mingling of compositionally similar rocks at multiple scales. Evidence of complex magma interaction in a multi-component crystal mush reservoir is preserved within the Wild Unit, located along the northeast shoreline of Fogo Island, Newfoundland and Labrador, Canada. The irregular contacts and lack of chilled margins between units, the back-intrusion of younger units by older units, the similar composition of units, and an overlap in U-Pb zircon ages suggest all units interacted as viscous crystal mushes at similar temperatures in the shallow crust. Abundant rounded to ellipsoidal magmatic enclaves, of which there are at least three populations based on composition and crystallinity, appear to represent separate magmas that were entrained either as earlier mush material or crystal-poor intrusions that experienced break-up. Evidence of changes in liquid environment at deeper levels is preserved both in the field and at the mineral-scale, where it is highlighted by abrupt compositional spikes in traverses across early forming plagioclase and pyroxene crystals. Heterogeneity in textures and composition of both major minerals (plagioclase and pyroxene) and an accessory mineral (zircon) point to processes such as crystal exchange and capture affecting tonalite crystal mushes, magmatic enclaves, and other intrusions in the study area earlier in their histories at deeper levels.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2020-08-26
    Description: Determining the mineralogical changes occurring in subducted oceanic crust is key to understanding short- and long-term geochemical cycles. Although numerous studies have explored the mineral assemblages that form in mid-ocean ridge basalt (MORB) at different depths below the Earth’s surface, it is widely recognized that seafloor hydrothermal alteration of the uppermost portion of the oceanic crust can change its composition between a ridge and a trench prior to subduction. In this study, we use petrological modelling to explore the effects of different types of pre-subduction hydrothermal alteration on the phase changes that occur during seafloor alteration of MORB-like compositions during subduction along an average Phanerozoic geotherm. We consider a representative composition of altered oceanic crust, as well as extreme end-member scenarios (pervasive spilitization, chloritization, and epidotization). Our models show that epidotization and chloritization of MORB strongly affects phase equilibria at different depths, whereas spilitization and an average style of alteration produce relatively fewer changes on the mineral assemblage to those expected in a pristine MORB. Devolatilization of MORB during subduction occurs mostly in the forearc region, although the type and extent of alteration strongly control the depth and magnitude of fluid released. Altered compositions carry significantly more H2O to sub- and postarc depths than unaltered compositions; the H2O carrying capacity of unaltered and altered compositions is further enhanced during subduction along colder geotherms. Extremely localized areas affected by epidotization can transport up to 22 times more H2O than unaltered MORB and up to two times more than average altered oceanic crust compositions to depths beyond the arc. Regardless of the extent and style of alteration, the stability of hydrous phases, such as epidote and phengite (important trace element carriers), is expanded to greater pressure and temperature conditions. Thus, hydrothermal alteration of the subducted oceanic slab-top represents a viable, and probably common, mechanism that enhances geochemical recycling between the Earth’s hydrosphere and shallow interior.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2020-08-26
    Description: Nickel is a strongly compatible element in olivine, and thus fractional crystallization of olivine typically results in a concave-up trend on a Fo-Ni diagram. "Ni-enriched" olivine compositions are considered those that fall above such a crystallization trend. To explain Ni-enriched olivine crystals, we develop a set of theoretical and computational models to describe how primitive olivine phenocrysts from a parent (high-Mg, high-Ni) basalt re-equilibrate with an evolved (low-Mg, low-Ni) melt through diffusion. These models describe the progressive loss of Fo and Ni in olivine cores during protracted diffusion for various crystal shapes and different relative diffusivities for Ni and Fe-Mg. In the case when the diffusivity of Ni is lower than that for Fe-Mg interdiffusion, then olivine phenocrysts affected by protracted diffusion form a concave-down trend that contrasts with the concave-up crystallization trend. Models for different simple geometries show that the concavity of the diffusion trend does not depend on the size of the crystals and only weakly depends on their shape. We also find that the effect of diffusion anisotropy on trend concavity is in the same magnitude as the effect of crystal shape. Thus, both diffusion anisotropy and crystal shape do not significantly change the concave-down diffusion trend. Three-dimensional numerical diffusion models using a range of more complex, realistic olivine morphologies with anisotropy corroborate this conclusion. Thus, the curvature of the concave-down diffusion trend is mainly determined by the ratio of Ni and Fe-Mg diffusion coefficients. The initial and final points of the diffusion trend are in turn determined by the compositional contrast between mafic and more evolved melts that have mixed to cause disequilibrium between olivine cores and surrounding melt. We present several examples of measurements on olivine from arc basalts from Kamchatka, and several published olivine datasets from mafic magmas from non-subduction settings (lamproites and kimberlites) that are consistent with diffusion-controlled Fo-Ni behaviour. In each case the ratio of Ni and Fe-Mg diffusion coefficients is indicated to be 
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2020-08-08
    Description: Inherited zircon, crystals that did not form in situ from their host magma but were incorporated from either the source region or assimilated from the wall-rock, is common but can be difficult to identify. Age, chemical and/or textural dissimilarity to the youngest zircon fraction are the primary mechanisms of distinguishing such grains. However, in Zr-undersaturated magmas, the entire zircon population may be inherited and, if not identifiable via textural constraints, can lead to erroneous interpretation of magmatic crystallization age and magma source. Here, we present detailed field mapping of cross-cutting relationships, whole-rock geochemistry and zircon textural, U-Pb and trace element data of trondhjemite, granodiorite and granite from two localities in a complex Archean gneiss terrane in southwest Greenland, which reveal cryptic zircon inheritance. Zircon textural, U–Pb and trace element data demonstrate that, in both localities, trondhjemite is the oldest rock (3011 ± 5 Ma, 2σ), which is intruded by granodiorite (2978 ± 4 Ma, 2σ). However, granite intrusions, constrained by cross-cutting relationships as the youngest component, only contain inherited zircon derived from trondhjemite and granodiorite based on ages and trace element concentrations. Without age constraints on the older two lithologies, it would be tempting to consider the youngest zircon fraction as recording crystallization of the granite but this would be erroneous. Furthermore, whole-rock geochemistry indicates that the granite contains only 6 µg g-1 Zr, extremely low for a granitoid with ∼77 wt. % SiO2. Such low Zr concentration explains the lack of autocrystic zircon in the granite. We expand on a differentiation tool that uses Th/U ratios in zircon versus that in the whole rock to aid in the identification of inherited zircon. This work emphasizes the need for field observations, geochemistry, grain characterization, and precise geochronology to accurately determine igneous crystallization ages and differentiate between inherited and autocrystic zircon.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2020-10-09
    Description: The Palaeogene layered ultrabasic intrusion of the Isle of Rum forms the hearth of the Rum Igneous Centre in NW-Scotland. The regional Long Loch Fault, which is widely held to represent the feeder system to the layered magma reservoir, dissects the intrusion and is marked by extensive ultrabasic breccias of various types. Here we explore the connection between the layered ultrabasic cumulate rocks and breccias of central Rum that characterize the fault zone (the ‘Central Series’) and evaluate their relationship with the Long Loch Fault system. We show that fault splays in the Central Series define a transtensional graben above the Long Loch Fault into which portions of the layered units subsided and collapsed to form the extensive breccias of central Rum. The destabilization of the cumulate pile was aided by intrusion of Ca-rich ultrabasic magmas along the faults, fractures and existing bedding planes, creating a widespread network of veins and dykelets that provided a further means of disintegration and block detachment. Enrichment in LREE and compositional zoning in intra cumulate interstices suggest that the collapsed cumulates were infiltrated by relatively evolved plagioclase-rich melt, which led to extensive re-crystallisation of interstices. Clinopyroxene compositions in Ca-rich gabbro and feldspathic peridotite veins suggest that the intruding magma was also relatively water-rich, and that pyroxene crystallized dominantly below the current level of exposure. We propose that the Long Loch Fault opened and closed repeatedly to furnish the Rum volcano with a pulsing magma conduit. When the conduit was shut, pressure built up in the underlying plumbing system, but was released during renewed fault movements to permit dense and often crystal-rich ultrabasic magmas to ascend rapidly from depth. These spread laterally on arrival in the shallow Rum magma reservoir, supplying repetitive recharges of crystal-rich magma to assemble the rhythmic layering of the Rum layered intrusion.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2020-10-03
    Description: Exposed plumbing systems provide important insight into crystallization and differentiation in shallow sills beneath volcanic fields. We use whole rock major element, trace element, and radiogenic isotopic compositions, along with mineral geochemical data on 125 samples to examine the conditions of melt differentiation in shallow sills from the exposed 4-Ma-old San Rafael subvolcanic field (SRVF), Utah. The field consists of ∼2,000 dikes, 12 sills, and 63 well preserved volcanic conduits. Intrusive rocks consist of mainly fine-grained trachybasalts and coarse-grained syenites; which are alkaline, comagmatic, and enriched in Ba, Sr and LREE. Within sills, syenite is found as veins, lenses, and sheets totally enveloped by the basalt. The SRVF intrusions have geochemical signatures of both enriched sub-continental lithospheric and asthenospheric mantle sources. We estimate partial melting occurred between 1.2 and 1.9 GPa (50–70 km), with mantle potential temperatures in the range 1260–1326 ± 25 °C, consistent with those estimated for volcanic rocks erupted on the Colorado Plateau. Geobarometry results based on clinopyroxene chemistry indicate that (1) basalt crystallized during ascent from at least 40 km deep with limited lithospheric storage, and (2) syenites crystallized only in the sills, ∼1 km below the surface. San Rafael mafic magma emplaced in sills and started to crystallize inward from the sill margins. Densities of basalt and syenite at solidus temperatures are 2.6 and 2.4 g/cc, respectively, with similar viscosities of ∼150 Pa s. Petrographic observations and physical properties suggest that syenite can be physically separated from basalt by crystal compaction and segregation of the tephrophonolitic residual liquid out of the basaltic crystal mush after reaching 30–45 % of crystallization. Each individual sill is 10– 50 m thick and would have solidified fairly rapidly (1–30 years), the same order of magnitude as the duration of common monogenetic eruptions. Our estimates imply that differentiation in individual shallow sills may occur during the course of an eruption whose style may vary from effusive to explosive by tapping different magma compositions. Our study shows that basaltic magmas have the potential to differentiate to volatile-rich magma in shallow intrusive systems, which may increase explosivity.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2020-09-30
    Description: The exhumation and cooling rates of high-grade metamorphic rocks are crucial for inferring orogenic processes and understanding the regimes of heat transport in Earth's crust. Quantification of these rates remains challenging for Precambrian terranes, because the temporal resolution of geochronology becomes coarser in deeper geologic time. This limitation is partly reflected by a striking lack of Proterozoic or older short-duration events (
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2020-09-21
    Description: Layered mafic-ultramafic intrusions are the fossilized remnants of magmatic plumbing systems and provide excellent natural laboratories to investigate the processes of magma differentiation and solidification. The Rustenburg Layered Suite is the plutonic mafic-ultramafic part of the Bushveld Complex of South Africa and it has traditionally been assumed to have formed from an upwardly-aggrading (and in-sequence) crystal pile in a melt-dominated chamber. In this study, we present field and petrological observations, complemented with detailed plagioclase mineral chemistry (molar An, LREE and strontium isotopes) for the first stratiform anorthosite layer (MG3F anorthosite) at the Lower-Upper Critical Zone boundary (LCZ-UCZ) in the eastern limb of the Bushveld Complex. We use these data to test the overarching paradigm of a melt-dominated chamber for the magmatic evolution of the Rustenburg Layered Suite. The MG3F anorthosite is immediately overlain by the MG3 chromitite and both are surrounded by pyroxenite. A distinctive ‘egg-box’ structure, consisting of round pyroxenite blocks mantled by chromitite, marks the LCZ-UCZ boundary, and represents an erosional disconformity at the base of the MG3F anorthosite. The MG3F anorthosite is laterally continuous for 100s km in the eastern limb. In the northern-central sector of the eastern limb, the 1.5 m thick MG3F anorthosite is characterized by non-cotectic proportions of foliated plagioclase and chromite chains that lie parallel to the foliation. The MG3F anorthosite is divisible into two sub-layers on the basis of (i) a compositional break in plagioclase molar An, LREE and strontium isotope composition and, (ii) a peak in chromite mode (up to 12 vol%). In the lower half of the layer plagioclase LREE concentrations increase upward, molar An shows a marginal decrease upward and strontium isotopes are relatively homogeneous (87Sr/86Sr2.06Ga 0.7056-0.7057). In the upper half of the layer, plagioclase LREE concentrations decrease upward, molar An shows a marginal increase upward and strontium isotopes show strong inter- and intra-grain variability (87Sr/86Sr2.06Ga 0.7053-0.7064). Strontium isotopes in interstitial plagioclase in the immediate footwall and hangingwall pyroxenites show similar 87Sr/86Sr2.06Ga values to the MG3F anorthosite and decrease with distance from the MG3F anorthosite. In the southern sector of the eastern limb, the 4 m thick MG3F anorthosite exhibits identical stratigraphic compositional trends in terms of molar An in plagioclase. We infer that the MG3F anorthosite formed by two successive sill-like injections of magma into a resident viscoplastic pyroxenitic crystal mush. An initial pulse of plagioclase-saturated melt underwent in situ fractional crystallization, manifested as upwardly decreasing molar An and upwardly increasing LREE in plagioclase in the lower half of the MG3F anorthosite. Sill intrusion caused deformation of the viscoplastic pyroxenite mush and vortices of superheated liquid generated by frictional viscous heating caused disaggregation of the footwall pyroxenitic mush. Disaggregated blocks of pyroxenitic mush reacted with the superheated liquid (a hybrid chromite-saturated melt) to produce chromite-rich rims at the base of the MG3F anorthosite (egg-box structure). A second sill-like injection of magma then entered the chamber that halted in situ crystallization. This sill was a plagioclase slurry that contained isotopically distinct plagioclase laths compared to those present in the previous sill. The upward increase in molar An of plagioclase, and decreasing LREE, may be explained by the slurry becoming more primitive in melt composition with time. The second sill also caused mush disaggregation and renewed the production of a hybrid chromite-saturated melt. Chromite crystals were then mobilized and injected as slurries at the interface between the sill and resident mush towards the back of the flow, culminating in the development of the MG3 chromitite. Our model for the development of the Lower-Upper Critical Zone boundary questions the existence of a melt-dominated chamber and it has implications for the origin of stratiform anorthosites (and chromitites) in crustal magma chambers.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2020-01-01
    Description: Nolans Bore is a rare earth element (REE) ore deposit in the Reynolds Range, Aileron Province, Northern Territory, Australia. It consists primarily of fluorapatite and alteration products thereof, surrounded by a diopside-dominated selvage. Previously considered to form via hydrothermal fluids, we now suggest that the deposit formed by a metasomatic reaction between a mantle-derived carbonatite and granulite-facies felsic host rocks, after peak metamorphism. REE patterns of fluorapatite are strongly light REE (LREE) enriched, convex with maxima at Ce to Nd, and contain a weak negative Eu anomaly. Textural and geochemical properties of the fluorapatite are consistent with its formation from a carbonatite liquid. Sinusoidal REE patterns in diopside along with strong Yb–Lu enrichment relative to coexisting titanite are suggestive of derivation from a Ca-rich carbonatite. Likewise, hyalophane present in the selvages forms by reaction of a BaCO3 component in the carbonatite with K-feldspar in the silicate host rocks. The overall morphology of Nolans Bore is consistent with carbonatite–silicate reaction experiments, with the carbonatite itself migrating elsewhere owing to the open-system nature of Nolans Bore. Ekanite veins in massive fluorapatite zones and allanite–epidote crusts on fluorapatite in contact with the diopside selvages formed by hydrothermal fluids exsolved from the carbonatite. Minor interstitial calcite was not igneous but was the last mineral to crystallize from the carbonatite-exsolved fluid. Y/Ho ratios qualitatively trace the transition from mantle-dominated igneous minerals to later low-temperature hydrothermal minerals. Rb–Sr and Sm–Nd analyses of unaltered minerals (fluorapatite, allanite, calcite) show that the carbonatite had homogeneous initial 87Sr/86Sr ≈ 0·7054 and εNd ≈ –4 at 1525 Ma, the best age estimate of the mineralization. Fluorapatite–allanite Sm–Nd dating results in an age of 1446 ± 140 Ma, consistent with forming soon after the end of the Chewings Orogeny. Neodymium depleted mantle model ages are older than 2 Ga, indicating the presence of recycled crustal material within the source. We suggest that the carbonatite was sourced from a mantle enriched by subduction of LREE-rich oceanic crustal rocks, marine sediments, and phosphorites, potentially from the south, or the Mount Isa area to the east. Nolans Bore represents the root zone of a now-eroded carbonatite. Other Nolans-type deposits (Hoidas Lake, Canada and Kasipatnam, India) are similarly hosted within siliceous granulite-facies rocks in regions with a long tectonic history, suggesting common processes that led to the formation of all three deposits. The REE-rich compositions of the mid-crustal Nolans Bore fluorapatite are the cumulates hypothesized to cause REE depletion in some unmineralized carbonatites. The rocks at Nolans Bore demonstrate that carbonatites, previously thought to be mostly unreactive, can undergo modification and modify the composition of the silicate rocks which they encounter, forming an ‘antiskarn’. At igneous temperatures, the resulting mineral assemblage (other than fluorapatite) consists of diopside and titanite, both of which are common in granulite-facies rocks. Therefore, carbonatite metasomatism can remain unnoticed if the resulting assemblage does not contain distinctively carbonatitic minerals.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2020-10-24
    Description: The Iheya Graben is a back-arc spreading center in the middle part of the Okinawa Trough. It is also located in the center of an anomalous volcanic zone (volcanic arc migration phenomenon, or VAMP) and is characterized by bimodal volcanism, unusually high heat flow, and active hydrothermal circulation. The subvolcanic magma plumbing system and the magmatic processes related to the formation of rare erupted intermediate lavas in this area remain uncertain. In this study, we conducted systematic mineralogical analyses (in situ major element, trace element, and Sr isotopes) and whole rock geochemical analyses (major element, trace element, and Sr-Nd isotopes) on an andesite (T5-2; type C andesite) and a rhyolite (C11; type 2 rhyolite) and present evidence for magma mixing in the origins of these lavas. Andesite T5-2 contains a mafic mineral assemblage and a silicic mineral assemblage, which are derived from a basaltic melt and a type 2 rhyolitic melt, respectively. A 4:6 mixture of basalt and type 2 rhyolite from the Iheya Graben reproduces the whole-rock major element, trace element, and Sr-Nd isotope compositions of T5-2. Rhyolite C11 contains a group of disequilibrium minerals that crystallized from a less evolved rhyolitic melt with relatively more enriched Sr-Nd isotope compositions, suggesting mixing of this melt with a more evolved and isotopically more depleted rhyolitic melt. This mixing process could produce a series of rhyolitic melts with a negative correlation between SiO2 concentrations and 87Sr/86Sr ratios (or a positive correlation for 143Nd/144Nd ratios), which are recorded by the whole group of type 2 rhyolites. The results from mineral-based thermobarometers suggest that the premixing storage temperatures of the basaltic and rhyolitic melts are ∼1100 °C and 870–900 °C, respectively. The hybrid andesitic melt has temperatures of ∼950 to ∼980 °C. The magma storage pressures are not well constrained, ranging from ∼400 MPa to ∼100 MPa. We show that magma mixing plays a significant role in the origins of diverse volcanism in the middle Okinawa Trough; more specifically, two of the three types of andesites (types B and C) and one of the two types of rhyolites (type 2) are associated with magma mixing. We thus propose a complex magma plumbing system with multichamber magma storage and frequent magma mixing beneath the Iheya Graben.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2020-10-24
    Description: Modern arc adakites with high Mg# values (molar 100 × Mg/(Mg + Fe) ratio) are generally considered products of interaction between melts derived from subducted oceanic crust and/or eroded forearc crust and peridotite in the mantle wedge. An alternative model, in which high-Mg# adakitic rocks are produced by garnet fractionation of mantle-derived magmas, has been proposed based on whole-rock geochemical variations; however, magmatic garnet has not been found in high-Mg# adakitic rocks, and little is known about the physical conditions required for this magmatic differentiation. Here we report geochronological, mineralogical, and geochemical data for Late Triassic garnet-bearing high-Mg# (Mg# = 45–56) adakitic diorite porphyries, and garnet-free non-adakitic diorite porphyries with Mg# 〉 62 from central Tibet. Consistent compositional correlation between Ca-rich garnet crystals, their host rocks, and zircon autocrysts suggests that the garnet crystals grew in their host magmas. Amphibole, garnet, zircon, and the host rocks display increasing Dy/Yb ratios with increasing magma differentiation. Pristine magmas in equilibrium with amphibole that crystallized prior to garnet are not adakitic. The garnet-bearing high-Mg# adakitic rocks were probably generated by the fractionation of pyroxene, amphibole, and garnet at ∼1 GPa from a primitive andesitic parent that was geochemically similar to the garnet-free diorite porphyries. The primitive andesitic magmas with enriched isotope compositions ([87Sr/86Sr]i 〉 0.709, ɛNd[t]  5 wt.%) magmas stalled, cooled isobarically, and differentiated at the base of the crust. This study provides direct mineralogical evidence for the generation of high-Mg# adakitic rocks by crystal fractionation involving garnet, rather than by interaction between crust-derived melt and the mantle, although the latter is potentially a frequent occurrence in the mantle wedge.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2020-10-20
    Description: Sulphur behaviour and variations in redox conditions during magma differentiation and degassing in Mt. Etna (Italy) volcanic system have been explored by integrating the study of olivine-hosted melt inclusions (MIs) with an experimental survey of sulphur solubility in hydrous basaltic magmas. Sulphur solubility experiments were performed at conditions relevant to the Etnean plumbing system (1200 °C, 200 MPa and oxygen fugacity between NNO + 0.2 and NNO + 1.7, with NNO being the Nickel-Nickel Oxide buffer), and their results confirm the important control of oxygen fugacity (fO2) on S abundance in mafic magmas and on S partitioning between fluid and melt phases (DSfluid/melt). The observed DSfluid/melt value increases from 51 ± 4 to 146 ± 6 when fO2 decreases from NNO + 1.7 ± 0.5 to NNO + 0.3. Based on the calculated DSfluid/melt and a careful selection of previously published data, an empirical model is proposed for basaltic magmas in order to predict the variation of DSfluid/melt values upon variations in P (25–300 MPa), T (1030–1200 °C) and fO2 (between NNO-0.8 and NNO + 2.4). Olivine-hosted melt inclusions (Fo89-91) from tephra of the prehistoric (4 ka BP) sub-plinian picritic eruption, named FS (“Fall Stratified”), have been investigated for their major element compositions, volatile contents and iron speciation (expressed as Fe3+/ƩFe ratio). These primitive MIs present S content from 235 ± 77 to 3445 ± 168 ppm, while oxygen fugacity values, estimated from Fe3+/ƩFe ratios, range from NNO + 0.7 ± 0.2 to NNO + 1.6 ± 0.2. Iron speciation has also been investigated in more evolved and volatile-poorer Etnean MIs. The only primitive melt inclusion from Mt. Spagnolo eruption (4–15 ka BP) presents a S content of 1515 ± 49 ppm and an estimated fO2 of NNO + 1.4 ± 0.1. The more evolved MIs (from 2002/2003, 2006, 2008/2009 and 2013 eruptions) have S content lower than 500 ppm, and their Fe3+/ΣFe ratios result in fO2 between NNO-0.9 ± 0.1 and NNO + 0.4 ± 0.1. Redox conditions and S behaviour in Etnean magmas during degassing and fractional crystallization were modelled coupling MELTS code with our empirical DSfluid/melt model. Starting from a FS-type magma composition and upon decrease of T and P, fractional crystallization of olivine, clinopyroxene, spinel and plagioclase causes a significant fO2 decrease. The fO2 reduction, in turn, causes a decrease in sulphur solubility and an increase in DSfluid/melt, promoting S exsolution during magma ascent, which further enhances the reduction of fO2. For the evolved melt inclusions of 2002–2013 eruptions, magma differentiation may therefore have played a crucial role in decreasing redox conditions and favouring efficient S degassing. Differently, during the unusual FS eruption, only limited melt evolution is observed and S exsolution seems to have been triggered by a major pressure decrease accompanied by H2O and CO2 exsolution during fast magmatic ascent.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2020-10-15
    Description: Metamorphic differentiation, resulting in segregated mineral bands, is commonly recorded in metamorphic rocks. Despite the ubiquitous nature of compositionally layered metamorphic rocks, the processes that are responsible for metamorphic differentiation receive very little attention. Here, detailed petrography, quantitative mineral chemistry and bulk rock analyses are applied to investigate compositional variations and assemblage microstructure. Furthermore, thermodynamic modelling is applied to provide additional constraints on the P–T–XH2O conditions of assemblage formation and mass transfer. The studied outcrop, located within the Bergen arcs of southwestern Norway, preserves the hydration of anorthositic granulite at amphibolite-facies conditions. The amphibolite-facies hydration is expressed as both a statically hydrated amphibolite and a shear zone lithology, defined by the interlayering of amphibolite with leucocratic domains. Within the granulite, quartz-lined fractures surrounded by amphibolite-facies alteration haloes represent relics of initial fluid infiltration associated with brittle failure. The fracture assemblage (quartz + plagioclase + zoisite + kyanite ± muscovite ± biotite) is identical to that occurring within leucocratic domains of the shear zone. Consequently, the compositional layering of the shear zone lithology is linked to fluid infiltration along localised zones of high permeability that result from fracturing. Mass-balance calculations indicate that quartz-lined fractures and compositional differentiation of the shear zone resulted from mass redistribution internal to the shear zone rather than partial melting or precipitation of minerals from externally derived fluid. The process of internal fractionation within the shear zone is driven by enhanced dissolution along highly permeable fracture planes resulting in the loss of MgO, Fetot and K2O from the leucocratic domains. Elements dissolved in the fluid are then transported and ultimately either precipitated in comparatively impermeable amphibolite domains or removed from the system resulting in an overall mass loss. The mass transfer causing metamorphic differentiation of the shear zone is the result of coupled reaction and diffusion under differential stress. The mechanisms of mass redistribution observed within this shear zone provides further insight into the processes that facilitate mass transfer in the Earth’s crust.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2020-10-27
    Description: Serpentinization is a metamorphic process that can stabilize highly reduced hydrogen-rich fluids. Previous measurements of elevated CH4 and H2 concentrations in ultramafic-hosted submarine springs indicate that active serpentinization occurs along mid-ocean ridge systems at seafloor pressures (∼
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2020-10-27
    Description: Magma volatile budgets and storage depths play a key role in controlling the eruptive styles of volcanoes. Volatile concentrations in the melt can be inferred from analyses of glass inclusions, which however may not be present in the investigated rocks or may have experienced post-entrapment processes that modify their volatile records. Apatite is becoming an alternative robust tool for unraveling the information of magmatic volatiles. Here we report a comprehensive dataset for the concentrations of volatiles and major elements in apatite crystals in the rocks from two eruptions with contrasting eruptive styles: the 2006 (dome-forming) and 2010 (explosive) eruptive events at Merapi volcano (Java, Indonesia). We obtained two-dimensional compositional distributions and in situ concentrations of H2O, CO2, F, Cl, and S in 50 apatite crystals occurring at various textural positions. The CO2 concentrations we report are probably the first ones from natural volcanic apatite. Using the volatile concentrations in apatite and existing thermodynamic models and geothermobarometers, we have calculated the volatile abundances of the pre-eruptive melts of the two eruptions. We find that the apatite from the 2006 and 2010 deposits have a similar compositional range of volatiles, with a bimodal distribution of F-H2O-CO2 contents. The apatite included in amphibole has higher H2O (0.9–1.0 wt.%) and CO2 (Type equation here.≥2400 ppm), but lower F (0.9–1.4 wt.%), compared to crystals included in plagioclase, clinopyroxene, or in the groundmass (H2O: 0.4–0.7 wt.%; CO2: 40–900 ppm; F: 1.7–2.3 wt.%). Using these volatile concentrations and apatite-melt exchange coefficients we obtained two distinct ranges of H2O-CO2-S-F-Cl concentrations in the melt. Melts in equilibrium with apatite included in amphibole had 3–8 wt.% H2O, ≥8000 ppm CO2, 340–2000 ppm S, whereas melts in equilibrium with apatite included in anhydrous minerals and in the groundmass had lower H2O (1.5–4 wt.%), CO2 (60–2500 ppm), and S (10-130 ppm). We calculated the melt H2O-CO2 saturation pressures and found that they correspond to two main magma storage depths. The shallow reservoir with melts stored at ≤10 km below the crater agrees with the depths constrained by melt inclusions, as well as the geodetic, geophysical, and seismic tomography studies from the literature. We have also found a significantly deeper melt storage zone at ≥25–30 km recorded by the C- and H2O-rich apatite in amphibole and barometry calculations using amphibole and high-Al clinopyroxene, which matches with the depths reported in seismic tomography studies. The high CO2/H2O and CO2/SO2 concentrations of the deep melt can help to explain the sharp increase in these ratios in fumarolic gas that were sampled just before the eruption in 2010. Supply of deep volatiles to the shallower magma column before the eruption in 2010 could have increased the magma buoyancy, and thus led to higher magma ascent rates and associated eruption explosivity. Evidence for the faster pre-eruptive magma ascent in 2010 than 2006 is also found on the diffusion distance of Cl in apatite microlites.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2020-01-01
    Description: Sapphirine-bearing UHT granulites from the Dongpo locality in the Khondalite Belt of the North China Craton have been comprehensively characterized in terms of petrology, mineral chemistry, metamorphic evolution and zircon geochronology. However, the precise timing of the peak-UHT metamorphism and other key stages in the P–T–t evolution remain controversial due to the complexity of multiple metamorphic overprints and the lack of petrographic context for zircon age data. In this study, monazite from four samples of the Dongpo granulite are divided into six groups based on chemical composition and textural context, and dated (in-situ SHRIMP and LA–ICP–MS U–Pb). An age population of 1·91–1·88 Ga was obtained from high-Y cores of monazite inclusions in garnet (Group 1) and on grains in the rock matrix (Group 2). The maximum age of c.1·91 Ga is interpreted as the minimum timing for prograde metamorphism before UHT metamorphism (M1). An age population of 1·90–1·85 Ga was obtained from low-Y domains of monazite inclusions (Group 3) and of matrix grains (Group 4). Combined with previous zircon dating results, the age population from low-Y Mnz constrains the timing and duration of the UHT metamorphism to 1·90–1·85 Ga and 50 (±15) million years, respectively. The large (50 m.y.) age spread is interpreted to reflect continuous monazite formation, and it is consistent with the slow post-peak near-isobaric cooling stage (M2). An age of c.1·86 Ga was obtained from monazite in textural contact with sapphirine/spinel + plagioclase intergrowths (Group 5), which is interpreted as the timing of the subsequent decompression–heating stage (M3). The younger age clusters at c.1·80 and 1·77 Ga, obtained from Th-rich monazite rims (Group 6) and one single Th-depleted monazite in textural contact with matrix biotite, respectively, indicate dissolution–reprecipitation and new monazite growth from fluid released by crystallizing anatectic melt during retrogression. These results, along with the previous 1·93–1·91 Ga data for UHT metamorphism, suggest that there was a very long-lived Paleoproterozoic UHT metamorphism (1·93–1·85 Ga) in the Khondalite Belt of the North China Craton. This supports the large hot orogeny model for the generation of Paleoproterozoic UHT metamorphism in the Khondalite Belt during the amalgamation of the Nuna supercontinent.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2020-01-01
    Description: Quantifying the timescales of Archean ultrahigh temperature (UHT) metamorphism is essential for constraining the style of plate tectonics on the early Earth. However, such timescales can be difficult to quantify, due to the antiquity of Archean rocks and the extreme thermal conditions of UHT metamorphism. We constrain the timescales of Archean UHT metamorphic processes recorded by a single rock sample from the Pikwitonei granulite domain (northwestern Superior Province), through the integration of two U–Pb zircon petrochronologic techniques. In this study we combine: (1) high-spatial resolution laser ablation split-stream inductively coupled mass spectrometry (LASS) on in situ zircon (in thin section) and hand-picked zircon; and (2) high-precision isotope dilution thermal ionization mass spectrometry (ID-TIMS) analyses on microsampled fragments from the same hand-picked zircon analysed by LASS. Phase equilibria modelling and Zr-in-rutile thermometry suggest the rock followed a P–T path characterized by decompression at 〉 960 °C, followed by near-isobaric cooling at ∼0·8 GPa. In situ LASS zircon analyses could be interpreted to record zircon growth at broadly ∼2665 Ma, though the large uncertainties on isotopic dates make potentially distinct growth episodes difficult to distinguish. ID-TIMS U–Pb dates of zircon fragments reveal a polyphase zircon growth history over a 24 Ma duration, from 2673 to 2649 Ma. Zircon trace element compositions, textures, and microstructural relationships, as well as evaluation of zircon-garnet equilibrium, suggest zircon grew during melt crystallization, after UHT decompression and garnet resorption. Variable Ti concentrations within zircon domains indicate: (1) zircon crystallized through the temperature interval of ∼875 °C to ∼730 °C, potentially in isolated rock domains with variable zircon saturation temperature; and/or (2) zircon crystallized over a narrower temperature interval in isolated rock domains with variable aTiO2 and/or aSiO2. Collectively, the data suggest the west-central Pikwitonei granulite domain reached peak UHT conditions prior to 2673 Ma, after which suprasolidus conditions in the lower crust persisted for at least 24 Ma. Such an interpretation would be impossible if based on either the LASS or ID-TIMS zircon data alone, which highlights the utility of applying both techniques in tandem to constrain metamorphic timescales in ancient UHT terranes.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2020-03-28
    Description: The 1800 Ma monzonitic to syenitic Raftsund intrusion is the largest intrusive body of the Lofoten–Vesterålen anorthosite–mangerite–charnockite–granite (AMCG) suite. It is composed of three units that can be differentiated based on their textures. This study focuses on the most voluminous, predominantly equigranular, unit consisting of a pigeonite–augite syenite and a fayalite–augite monzonite. The pigeonite–augite syenite is associated with centimeter-scale to hundred-meter scale occurrences of Fe–Ti–P-rich rocks that display sharp to gradational contacts with the surrounding syenite. Iron–Ti–P-rich rocks consist of augite, Fe-rich olivine ± partly inverted pigeonite, apatite, ilmenite, titanomagnetite and sparse pyrrhotite, hornblende and biotite. Partly resorbed ternary feldspar crystals are common toward the contact with the syenite. Microtextures, such as symplectites, encountered at the contact between the syenite and the Fe–Ti–P-rich rocks indicate local disequilibrium between the two rock types. The Fe–Ti–P-rich rocks show large compositional variations but overall are enriched in Ca, Zn, Sc and rare earth elements in addition to Fe, Ti and P compared with the host syenite. Field evidence, whole-rock compositions and textural relationships all suggest that that silicate–liquid immiscibility was involved in the genesis of the Fe–Ti–P-rich rocks. These are interpreted to represent Fe-rich unmixed melts, whereas the syenite is inferred to originate from the crystallization of conjugate Si-rich immiscible melt. The existence of an Fe-rich melt is further supported by the high trace element content of augite from the Fe–Ti–P-rich rocks, showing that they grew from a melt enriched in elements such as Sc and Ti. The fayalite–augite monzonite also displays textural and chemical evidence of silicate liquid immiscibility resulting in unusually variable Zr contents (few hundred ppm to more than 3000 ppm) and the presence of abundant zircon and allanite restricted to millimeter- to centimeter-scale Fe-rich mineral clusters. The most Fe-rich and Si-poor rocks are interpreted to represent the larger proportion of the Fe-rich melt. Liquid immiscibility can be identified at various scales in the pigeonite–augite syenite, from millimeter-size clusters to large-scale bodies, up to hundreds of meters in size, indicating various degrees of separation and coalescence of the Fe-rich melt in the intrusion. The immiscible liquids in the fayalite–augite monzonite consist of an emulsion, with small millimeter- to centimeter-scale droplets of Fe-rich melt, whereas in the pigeonite–augite syenite, Fe-rich melt pockets were able to coalesce and form larger pods. The difference between the two units either results from earlier onset of immiscibility in the pigeonite–augite syenite or reflects a difference in the degree of polymerization of the melt at the time of unmixing. This study emphasizes the importance of silicate–liquid immiscibility in the evolution of intermediate to felsic alkalic ferroan systems and provides a series of arguments that can be used to identify the process in such systems.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2020-03-20
    Description: The sodic amphibole glaucophane is generally considered as indicative of blueschist-facies metamorphism. However, sodic amphiboles display a large range in chemical compositions, owing principally to the Fe2+Mg–1 and Fe3+Al–1 substitutions. Therefore, the whole-rock composition (namely its Na2O and FeO* content, and the Fe2+–Fe3+ ratio), strongly controls the stability field of the sodic amphiboles at the transition from greenschist- to blueschist-facies conditions. Neglecting these variables can lead to erroneous estimates of the metamorphic conditions and consequently the tectonic framework of the rocks. This paper explores the mechanisms that control the development of sodic amphibole and sodic pyroxene within the basement of the Dent Blanche Tectonic System (Western Alps), as a result of the Alpine metamorphic history. Field, petrographic and geochemical data indicate that sodic amphibole and sodic pyroxene form in different rock types: (1) in undeformed pods of ultramafic cumulates (hornblendite), sodic amphibole (magnesioriebeckite) forms coronas around magmatic pargasite; (2) metatonalite displays patches of radiating sodic (magnesioriebeckite) and calcic (actinolite) amphiboles; (3) sodic amphibole (magnesioriebeckite–glaucophane) occurs with high-Si potassic white mica (phengitic muscovite) in fine-grained (blue) schists; (4) in mylonitized granitoids (amphibole-gneiss) metasomatized along the contact with ultramafic cumulates, sodic amphibole (magnesioriebeckite–winchite) mainly forms rosettes or sheaves, generally without a shape-preferred orientation. Only locally are the needles aligned parallel to the stretching lineation. Pale green aegirine–augite is dispersed in an albite–quartz matrix or forms layers of fine-grained fibrous aggregates. The bulk-rock chemical composition of the different lithologies indicates that sodic amphibole and sodic pyroxene developed in Na- and Fe-rich systems or in a system with high Fe3+/Fe*. Thermodynamic modelling performed for different rock types (taking into account the measured Fe2O3 contents) reveals that sodic amphibole appears at ∼8 ± 1 kbar and 400–450 °C (i.e. at the transition between the greenschist- and blueschist-facies conditions) about 5 kbar lower than previous estimates. To test the robustness of our conclusion, we performed a review of sodic amphibole compositions from a variety of terranes and P–T conditions. This shows (1) systematic variations of composition with P–T conditions and bulk-rock chemistry, and (2) that the amphibole compositions reported from the studied area are consistent with those reported from other greenschist- to blueschist-facies transitions.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2020-03-26
    Description: High-pressure phase relations for much of the Cu–Fe–S system have not previously been determined experimentally. Experimental studies have concentrated on low-pressure phase relations and cannot explain high-pressure sulfide mineral inclusion assemblages in some natural blueschists and eclogites. In particular, the coexistence of pyrite + covellite at 1·0 GPa, and pyrite + bornite at 1·9 GPa, observed in New Caledonian rocks, is precluded by tie-lines between S and bornite, and S and the intermediate solid solution (iss), in the published low-pressure experimental topologies at corresponding temperatures. In addition, the Cu content (up to ∼10 at%) of pyrrhotite in eclogite exceeds the experimentally determined maximum for Cu in solid solution with pyrrhotite at low pressures and at corresponding temperatures. We have performed six experiments in which natural chalcopyrite starting material was equilibrated at conditions ranging from 1·0 to 1·7 GPa and 500 to 650 °C. At 1 GPa chalcopyrite is replaced by iss. The iss phase undergoes a terminal breakdown reaction between 1·0 and 1·7 GPa, being replaced by a new assemblage of bornite, pyrite, and pyrrhotite. Our experimental results confirm predictions from the SUPCRT thermodynamic database (Johnson et al., 1992; Computers & Geosciences 18, 899–947) but not that of Robie & Hemingway (1995; US Geological Survey Bulletin 2131). The former database is therefore recommended for calculation of high-pressure sulfide phase relations. Chalcopyrite and its high-temperature, low-fS2 equivalent, iss are not stable at pressures corresponding to much of blueschist–eclogite-facies metamorphism. These results are also applicable to sulfide assemblages in the lithospheric mantle along both oceanic and continental geotherms; the subsolidus Cu-rich mineral in the lithosphere at depths of 30 to 〉65 km must be bornite–digenite solid solution (bn-ss) rather than iss as is commonly assumed.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2020-02-01
    Description: Mantle-derived carbonatites emplaced in orogenic belts and some extensional settings are hypothesized to contain recycled crustal material. However, these carbonatites are typically composed of calcite showing a typical mantle range of C–O isotopic values devoid of recognizable sedimentary fingerprints. Here, we report the first known instance of C–Sr isotope decoupling between intimately associated dolomite carbonatites and magnetite–forsterite–calcite carbonatites from the northern Qinling orogen, central China. The calcite-dominant variety is developed at the contact between the dolomite carbonatite and metasomatized wall-rock gneiss. The two types of carbonatites have similar δ18OVSMOW (6·98‰ to 9·96‰), εNd(i) (-3·01 to -6·47) and Pb (206Pb/204Pb(i) = 17·369–17·584, 207Pb/204Pb(i) = 15·443–15·466) isotopic compositions, but significantly different C and Sr isotopic signatures (δ13CVPDB = -3·09 to -3·58‰ and -6·11 to -7·19‰; 87Sr/86Sr(i) = 0·70373 to 0·70565 vs 0·70565 to 0·70624 for the dolomite and calcite rocks, respectively). The relative enrichment of the early-crystallizing dolomite carbonatite in 13C and its depletion in 87Sr are primary isotopic characteristics inherited from its mantle source. The observed field relations, petrographic and geochemical characteristics of the Caotan dolomite and calcite carbonatites imply that the strong C–Sr isotopic decoupling between them could not result from mixing of different mantle reservoirs (e.g. HIMU and EM1), or from magma fractionation processes. We propose that the calcite carbonatites were a by-product of metasomatic reactions between primary dolomitic melts and felsic wall-rock. These reactions involved the loss of Mg and CO2 from the magma, leading to depletion of the evolved calcite-saturated liquid in 13C and its enrichment in radiogenic Sr. We conclude that calcite carbonatites in plate-collision zones may not represent primary melts even if their isotopic signature is recognizably ‘mantle-like’.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2020-02-01
    Description: Accretionary orogens are characterized by voluminous juvenile components (recently derived from the mantle) and knowing the origin(s) of such components is vital for understanding crustal generation. Here we present field and petrological observations, along with mineral chemistry, zircon U–Pb age and Hf–O isotope data, and whole rock geochemical and Sr–Nd isotopic data for the c.320 Ma Ulungur intrusive complex from the Central Asian Orogenic Belt. The complex consists of two different magmatic series: one is characterized by medium- to high-K calc-alkaline gabbro to monzogranite; the other is defined by peralkaline aegirine–arfvedsonite granitoids. The calc-alkaline and peralkaline series granitoids have similar depleted mantle-like Sr–Nd–Hf isotopic compositions, but they have different zircon δ18O values: the calc-alkaline series have mantle-like δ18O values with mean compositions ranging from 5·2 ± 0·5‰ to 6·0 ± 0·9‰ (2SD), and the peralkaline granitoids have low δ18O values ranging from 3·3 ± 0·5‰ to 3·9 ± 0·4‰ (2SD). The calc-alkaline series were derived from a hydrous sub-arc mantle wedge, based on the isotope and geochemical compositions, under garnet peridotite facies conditions. This study suggests that the magmas underwent substantial differentiation, ranging from high pressure crystallization of ultramafic cumulates in the lower crust to lower pressure crystallization dominated by amphibole, plagioclase and minor biotite in the upper crust. The peralkaline series rocks are characterized by δ18O values lower than the mantle and enrichment of high field strength elements (HFSEs) and heavy rare earth elements (HREEs). They likely originated from melting of preexisting hydrothermally altered residual oceanic crust in the lower crust of the Junggar intra-oceanic arc. Early crystallization of clinopyroxene and amphibole was inhibited owing to their low melting temperature, leading to HFSEs and HREEs enrichment in residual peralkaline melts during crystallization of a feldspar-dominated mineral assemblage. Thus, the calc-alkaline and peralkaline series represent episodes of crust generation and reworking, respectively, demonstrating that the juvenile isotopic signature in accretionary orogens can be derived from diverse source rocks. Our results show that reworking of residual oceanic crust also plays an important role in continental crust formation for accretionary orogens, which has not previously been widely recognized.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...