ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3,306)
  • Copernicus  (3,306)
  • 2010-2014  (3,306)
  • 1980-1984
  • 1945-1949
  • 1925-1929
  • Atmospheric Measurement Techniques  (937)
  • The Cryosphere Discussions  (614)
  • 122541
  • 92598
  • 1
    Publication Date: 2013-09-12
    Description: Calibration of the passive cavity aerosol spectrometer probe for airborne determination of the size distribution Atmospheric Measurement Techniques, 6, 2349-2358, 2013 Author(s): Y. Cai, J. R. Snider, and P. Wechsler This work describes calibration methods for the particle sizing and particle concentration systems of the passive cavity aerosol spectrometer probe (PCASP). Laboratory calibrations conducted over six years, in support of the deployment of a PCASP on a cloud physics research aircraft, are analyzed. Instead of using the many calibration sizes recommended by the PCASP manufacturer, a relationship between particle diameter and scattered light intensity is established using three sizes of mobility-selected polystyrene latex particles, one for each amplifier gain stage. In addition, studies of two factors influencing the PCASP's determination of the particle size distribution – amplifier baseline and particle shape – are conducted. It is shown that the PCASP-derived size distribution is sensitive to adjustments of the sizing system's baseline voltage, and that for aggregates of spheres, a PCASP-derived particle size and a sphere-equivalent particle size agree within uncertainty dictated by the PCASP's sizing resolution. Robust determinations of aerosol concentration, and size distribution, also require calibration of the PCASP's aerosol flowrate sensor. Sensor calibrations, calibration drift, and the sensor's non-linear response are documented.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-12
    Description: Decadal trends in the Antarctic sea ice extent ultimately controlled by ice-ocean feedback The Cryosphere Discussions, 7, 4585-4632, 2013 Author(s): H. Goosse and V. Zunz The large natural variability of the Antarctic sea ice is a key characteristic of the system that might be responsible for the small positive trend in sea ice extent observed since 1979. In order to gain insight in the processes responsible for this variability, we have analysed in a control simulation performed with a coupled climate model a strong positive ice-ocean feedback that amplifies sea ice variations. When sea ice concentration increases in a region, in particular close to the ice edge, the mixed layer depth tends to decrease. This can be caused by a net inflow of ice and thus of freshwater that stabilizes the water column. Another stabilizing mechanism at interannual time scales that appears more widespread in our simulation is associated with the downward salt transport due to the seasonal cycle of ice formation: brine is released in winter when ice is formed and mixed over a deep layer while the freshwater flux caused by ice melting is included in a shallow layer, resulting in a net vertical transport of salt. Because of this stronger stratification due to the presence of sea ice, more heat is stored at depth in the ocean and the vertical oceanic heat flux is reduced, which contributes to maintain a higher ice extent. This positive feedback is not associated with a particular spatial pattern. Consequently, the spatial distribution of the trend in ice concentration is largely imposed by the wind changes that can provide the initial perturbation. A positive freshwater flux could alternatively be the initial trigger but the amplitude of the final response of the sea ice extent is finally set up by the amplification related to ice-ocean feedback. Initial conditions have also an influence as the chance to have a large increase in ice extent is higher if starting from a state characterized by a low value.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-09-13
    Description: Experimental quantification of contact freezing in an electrodynamic balance Atmospheric Measurement Techniques, 6, 2373-2382, 2013 Author(s): N. Hoffmann, A. Kiselev, D. Rzesanke, D. Duft, and T. Leisner Heterogeneous nucleation of ice in a supercooled water droplet induced by external contact with a dry aerosol particle has long been known to be more effective than freezing induced by the same nucleus immersed in the droplet. However, the experimental quantification of contact freezing is challenging. Here we report an experimental method to determine the temperature-dependent ice nucleation probability of size-selected aerosol particles. The method is based on the suspension of supercooled charged water droplets in a laminar flow of air containing aerosol particles as contact freezing nuclei. The rate of droplet–particle collisions is calculated numerically with account for Coulomb attraction, drag force and induced dipole interaction between charged droplet and aerosol particles. The calculation is verified by direct counting of aerosol particles collected by a levitated droplet. By repeating the experiment on individual droplets for a sufficient number of times, we are able to reproduce the statistical freezing behavior of a large ensemble of supercooled droplets and measure the average rate of freezing events. The freezing rate is equal to the product of the droplet–particle collision rate and the probability of freezing on a single contact, the latter being a function of temperature, size and composition of the contact ice nuclei. Based on these observations, we show that for the types of particles investigated so far, contact freezing is the dominating freezing mechanism on the timescale of our experiment.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-09-24
    Description: Validation and empirical correction of MODIS AOT and AE over ocean Atmospheric Measurement Techniques, 6, 2455-2475, 2013 Author(s): N. A. J. Schutgens, M. Nakata, and T. Nakajima We present a validation study of Collection 5 MODIS level 2 Aqua and Terra AOT (aerosol optical thickness) and AE (Ångström exponent) over ocean by comparison to coastal and island AERONET (AErosol RObotic NETwork) sites for the years 2003–2009. We show that MODIS (MODerate-resolution Imaging Spectroradiometer) AOT exhibits significant biases due to wind speed and cloudiness of the observed scene, while MODIS AE, although overall unbiased, exhibits less spatial contrast on global scales than the AERONET observations. The same behaviour can be seen when MODIS AOT is compared against Maritime Aerosol Network (MAN) data, suggesting that the spatial coverage of our datasets does not preclude global conclusions. Thus, we develop empirical correction formulae for MODIS AOT and AE that significantly improve agreement of MODIS and AERONET observations. We show these correction formulae to be robust. Finally, we study random errors in the corrected MODIS AOT and AE and show that they mainly depend on AOT itself, although small contributions are present due to wind speed and cloud fraction in AOT random errors and due to AE and cloud fraction in AE random errors. Our analysis yields significantly higher random AOT errors than the official MODIS error estimate (0.03 + 0.05 τ), while random AE errors are smaller than might be expected. This new dataset of bias-corrected MODIS AOT and AE over ocean is intended for aerosol model validation and assimilation studies, but also has consequences as a stand-alone observational product. For instance, the corrected dataset suggests that much less fine mode aerosol is transported across the Pacific and Atlantic oceans.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-09-29
    Description: A data set of world-wide glacier length fluctuations The Cryosphere Discussions, 7, 4775-4811, 2013 Author(s): P. W. Leclercq, J. Oerlemans, H. J. Basagic, I. Bushueva, A. J. Cook, and R. Le Bris Glacier fluctuations contribute to variations in sea level and historical glacier length fluctuations are natural indicators of climate change. To study these subjects, long-term information of glacier change is needed. In this paper we present a~data set of global long-term glacier length fluctuations. The data set is a compilation of available information on changes in glacier length world-wide, including both measured and reconstructed glacier length fluctuations. All 471 length series start before 1950 and cover at least four decades. The longest record starts in 1534, but the majority of time series start after 1850. The number of available records decreases again after 1962. The data set has global coverage including records from all continents. However, the Canadian Arctic is not represented in the data set. The glacier length series show relatively small fluctuations until the mid-19th century followed by a global retreat that was strongest in the first half of the 20th century, although large variability in the length change of the different glaciers is observed. During the 20th century, calving glaciers retreated more than land terminating glaciers, but their relative length change was approximately equal. Besides calving, the glacier slope is the most important glacier property determining length change: steep glaciers have retreated less than glaciers with a gentle slope.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-09-07
    Description: Implementation and evaluation of prognostic representations of the optical diameter of snow in the detailed snowpack model SURFEX/ISBA-Crocus The Cryosphere Discussions, 7, 4443-4500, 2013 Author(s): C. M. Carmagnola, S. Morin, M. Lafaysse, F. Domine, B. Lesaffre, Y. Lejeune, G. Picard, and L. Arnaud In the SURFEX/ISBA-Crocus multi-layer snowpack model, the snow microstructure was up to now characterized by the grain size and by semi-empirical shape variables which cannot be measured easily in the field or linked to other relevant snow properties. In this work we introduce a new formulation of snow metamorphism directly based on equations describing the rate of change of the optical diameter ( d opt ). This variable is considered here to be equal to the equivalent sphere optical diameter, which is inversely proportional to the specific surface area (SSA). d opt thus represents quantitatively some of the geometric characteristics of a porous medium. Different prognostic rate equations of d opt , including a re-formulation of the original Crocus scheme and the parametrizations from Taillandier et al. (2007) and Flanner and Zender (2006), were evaluated by comparing their predictions to field measurements carried out at Summit Camp (Greenland) in May and June 2011 and at Col de Porte (French Alps) during the 2009/10 and 2011/12 winter seasons. We focused especially on results in terms of SSA. In addition, we tested the impact of the different formulations on the simulated density profile, the total snow height, the snow water equivalent (SWE) and the surface albedo. Results indicate that all formulations perform well, with median values of the RMSD between measured and simulated SSA lower than 10 m 2 kg −1 . Incorporating the optical diameter as a fully-fledged prognostic variable is an important step forward in the quantitative description of the snow microstructure within snowpack models, because it opens the way to data assimilation of various electromagnetic observations.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-09-10
    Description: A neural network algorithm for cloud fraction estimation using NASA-Aura OMI VIS radiance measurements Atmospheric Measurement Techniques, 6, 2301-2309, 2013 Author(s): G. Saponaro, P. Kolmonen, J. Karhunen, J. Tamminen, and G. de Leeuw The discrimination of cloudy from cloud-free pixels is required in almost any estimate of a parameter retrieved from satellite data in the ultraviolet (UV), visible (VIS) or infrared (IR) parts of the electromagnetic spectrum. In this paper we report on the development of a neural network (NN) algorithm to estimate cloud fractions using radiances measured at the top of the atmosphere with the NASA-Aura Ozone Monitoring Instrument (OMI). We present and discuss the results obtained from the application of two different types of neural networks, i.e., extreme learning machine (ELM) and back propagation (BP). The NNs were trained with an OMI data sets existing of six orbits, tested with three other orbits and validated with another two orbits. The results were evaluated by comparison with cloud fractions available from the MODerate Resolution Imaging Spectrometer (MODIS) flying on Aqua in the same constellation as OMI, i.e., with minimal time difference between the OMI and MODIS observations. The results from the ELM and BP NNs are compared. They both deliver cloud fraction estimates in a fast and automated way, and they both performs generally well in the validation. However, over highly reflective surfaces, such as desert, or in the presence of dust layers in the atmosphere, the cloud fractions are not well predicted by the neural network. Over ocean the two NNs work equally well, but over land ELM performs better.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-09-10
    Description: Distribution and recent variations of supraglacial lakes on dendritic-type glaciers in the Khan Tengri-Tomur Mountains, Central Asia The Cryosphere Discussions, 7, 4545-4584, 2013 Author(s): Q. Liu, C. Mayer, and S. Liu Supraglacial lakes are widely distributed on glaciers in the Tomur-Khan Tengri Tianshan Mountains, Central Asia. The existence and development of supraglacial lakes play an important role in the ice melting processes and also in the storage and release of glacial melt water. Here we mapped the supraglacial lakes of eight typical debris-covered dendritic-type glaciers around the Tomur-Khan Tengri peaks based on 9 Landsat TM/ETM+ images acquired in the summers of 1990 until 2011. With a lower area limit of 3600 m 2 for a conservative identification of glacial lakes, we mapped 775 supraglacial lakes and 38 marginal glacial lakes in total. Our results indicate that supraglacial lakes (area 〉 3600 m 2 ) in the study region never develop beyond an elevation of about 3850 m a.s.l., 800 m lower than the maximum upper boundary of debris cover (4650 m a.s.l.). The area-elevation distribution shows that lakes are predominantly occured close to the altitude of 3250 m a.s.l., where the clean ice simultaneously disappears. The majority of the supraglacial lakes are found on the Tomur Glacier and the South Inylchek Glacier, two strongly debris-covered dendritic-type glaciers in the region. As for the multi-year variation of lake area, the summer total and mean areas of supraglacial lakes show some variability from 1990 and 2005 but increased noticeably between 2005 and 2011. The mean area of the mapped lakes reached a maximum in 2010. We found that the area of supraglacial lakes is positively correlated to the total precipitation in summer (July to September) but negatively correlated to the mean spring air temperature (April to June). Pre-summer air temperature fluctuations likely have a stronger impact on the different evolution processes of glacial drainage, evolving from unconnected to connected systems, which may lead to the drainage of larger supraglacial lakes and results in shrinkage of the total and mean lake area during the summer.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-09-10
    Description: Fracture-induced softening for large-scale ice dynamics The Cryosphere Discussions, 7, 4501-4544, 2013 Author(s): T. Albrecht and A. Levermann Floating ice shelves can exert a retentive and hence stabilizing force onto the inland ice sheet of Antarctica. However, this effect has been observed to diminish by fracture-coupled dynamic processes within the protective ice shelves leading to accelerated ice flow and hence to a sea-level contribution. In order to better understand the role of fractures in ice dynamics we apply a large-scale continuum representation of fractures and related fracture growth into the prognostic Parallel Ice Sheet Model (PISM). To this end we introduce a higher-order accuracy advection scheme for the transport of the two-dimensional fracture density across the regular computational grid. Dynamic coupling of fractures and ice flow is attained by a reduction of effective ice viscosity proportional to the inferred fracture density. This formulation implies the possibility of a non-linear threshold behavior due to self-amplified fracturing in shear regions triggered by small variations in damage threshold. As a result of prognostic flow simulations, flow patterns with realistically large across-flow velocity gradients in fracture-weakened regions as seen in observations are reproduced. This model framework is expandable to grounded ice streams and accounts for climate-induced effects on fracturing and hence on the ice-flow dynamics. It further allows for an enhanced fracture-based calving parameterization.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-09-11
    Description: Validation of stratospheric and mesospheric ozone observed by SMILES from International Space Station Atmospheric Measurement Techniques, 6, 2311-2338, 2013 Author(s): Y. Kasai, H. Sagawa, D. Kreyling, E. Dupuy, P. Baron, J. Mendrok, K. Suzuki, T. O. Sato, T. Nishibori, S. Mizobuchi, K. Kikuchi, T. Manabe, H. Ozeki, T. Sugita, M. Fujiwara, Y. Irimajiri, K. A. Walker, P. F. Bernath, C. Boone, G. Stiller, T. von Clarmann, J. Orphal, J. Urban, D. Murtagh, E. J. Llewellyn, D. Degenstein, A. E. Bourassa, N. D. Lloyd, L. Froidevaux, M. Birk, G. Wagner, F. Schreier, J. Xu, P. Vogt, T. Trautmann, and M. Yasui We observed ozone (O 3 ) in the vertical region between 250 and 0.0005 hPa (~ 12–96 km) using the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on the Japanese Experiment Module (JEM) of the International Space Station (ISS) between 12 October 2009 and 21 April 2010. The new 4 K superconducting heterodyne receiver technology of SMILES allowed us to obtain a one order of magnitude better signal-to-noise ratio for the O 3 line observation compared to past spaceborne microwave instruments. The non-sun-synchronous orbit of the ISS allowed us to observe O 3 at various local times. We assessed the quality of the vertical profiles of O 3 in the 100–0.001 hPa (~ 16–90 km) region for the SMILES NICT Level 2 product version 2.1.5. The evaluation is based on four components: error analysis; internal comparisons of observations targeting three different instrumental setups for the same O 3 625.371 GHz transition; internal comparisons of two different retrieval algorithms; and external comparisons for various local times with ozonesonde, satellite and balloon observations (ENVISAT/MIPAS, SCISAT/ACE-FTS, Odin/OSIRIS, Odin/SMR, Aura/MLS, TELIS). SMILES O 3 data have an estimated absolute accuracy of better than 0.3 ppmv (3%) with a vertical resolution of 3–4 km over the 60 to 8 hPa range. The random error for a single measurement is better than the estimated systematic error, being less than 1, 2, and 7%, in the 40–1, 80–0.1, and 100–0.004 hPa pressure regions, respectively. SMILES O 3 abundance was 10–20% lower than all other satellite measurements at 8–0.1 hPa due to an error arising from uncertainties of the tangent point information and the gain calibration for the intensity of the spectrum. SMILES O 3 from observation frequency Band-B had better accuracy than that from Band-A. A two month period is required to accumulate measurements covering 24 h in local time of O 3 profile. However such a dataset can also contain variation due to dynamical, seasonal, and latitudinal effects.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2013-09-13
    Description: The Atmospheric radiation measurement (ARM) program network of microwave radiometers: instrumentation, data, and retrievals Atmospheric Measurement Techniques, 6, 2359-2372, 2013 Author(s): M. P. Cadeddu, J. C. Liljegren, and D. D. Turner The Climate Research Facility of the US Department of Energy's Atmospheric Radiation Measurement (ARM) Program operates a network of ground-based microwave radiometers. Data and retrievals from these instruments have been available to the scientific community for almost 20 yr. In the past five years the network has expanded to include a total of 22 microwave radiometers deployed in various locations around the world. The new instruments cover a frequency range between 22 and 197 GHz and are consistently and automatically calibrated. The latest addition to the network is a new generation of three-channel radiometers, currently in the early stage of deployment at all ARM sites. The network has been specifically designed to achieve increased accuracy in the retrieval of precipitable water vapor (PWV) and cloud liquid water path (LWP) with the long-term goal of providing the scientific community with reliable, calibrated radiometric data and retrievals of important geophysical quantities with well-characterized uncertainties. The radiometers provide high-quality, continuous datasets that can be utilized in a wealth of applications and scientific studies. This paper presents an overview of the microwave instrumentation, calibration procedures, data, and retrievals that are available for download from the ARM data archive.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2013-09-14
    Description: Sea ice detection with space-based LIDAR The Cryosphere Discussions, 7, 4681-4701, 2013 Author(s): S. Rodier, Y. Hu, and M. Vaughan Monitoring long-term climate change in the Polar Regions relies on accurate, detailed and repeatable measurements of geophysical processes and states. These regions are among the Earth's most vulnerable ecosystems, and measurements there have shown rapid changes in the seasonality and the extent of snow and sea ice coverage. The authors have recently developed a promising new technique that uses lidar surface measurements from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission to infer ocean surface ice-water phase. CALIPSO's 532 nm depolarization ratio measurements of the ocean surface are uniquely capable of providing information about the ever-changing sea surface state within the Polar Regions. With the finer resolution of the CALIPSO footprint (90 m diameter, spaced 335 m apart) and its ability to acquire measurements during both daytime and nighttime orbit segments and in the presence of clouds, the CALIPSO sea ice product provides fine-scale information on mixed phase scenes and can be used to assess/validate the estimates of sea-ice concentration currently provided by passive sensors. This paper describes the fundamentals of the CALIPSO sea-ice detection and classification technique. We present retrieval results from a six-year study, which are compared to existing data sets obtained by satellite-based passive remote sensors.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-09-17
    Description: Airborne sun photometer PLASMA: concept, measurements, comparison of aerosol extinction vertical profile with lidar Atmospheric Measurement Techniques, 6, 2383-2389, 2013 Author(s): Y. Karol, D. Tanré, P. Goloub, C. Vervaerde, J. Y. Balois, L. Blarel, T. Podvin, A. Mortier, and A. Chaikovsky A 15-channel airborne sun-tracking photometer has been developed. The instrument provides aerosol optical depths over a wide spectral range (0.34–2.25 μm) with an accuracy (ΔAOD) of approximately 0.01. Taking measurements at different altitudes allow us to derive the aerosol extinction vertical profile. Thanks to the wide spectral range of the instrument, information on the aerosol size distribution along the vertical is also available.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2013-09-18
    Description: McClear: a new model estimating downwelling solar radiation at ground level in clear-sky conditions Atmospheric Measurement Techniques, 6, 2403-2418, 2013 Author(s): M. Lefèvre, A. Oumbe, P. Blanc, B. Espinar, B. Gschwind, Z. Qu, L. Wald, M. Schroedter-Homscheidt, C. Hoyer-Klick, A. Arola, A. Benedetti, J. W. Kaiser, and J.-J. Morcrette A new fast clear-sky model called McClear was developed to estimate the downwelling shortwave direct and global irradiances received at ground level under clear skies. It is a fully physical model replacing empirical relations or simpler models used before. It exploits the recent results on aerosol properties, and total column content in water vapour and ozone produced by the MACC project (Monitoring Atmosphere Composition and Climate). It accurately reproduces the irradiance computed by the libRadtran reference radiative transfer model with a computational speed approximately 10 5 times greater by adopting the abaci, or look-up table, approach combined with interpolation functions. It is therefore suited for geostationary satellite retrievals or numerical weather prediction schemes with many pixels or grid points, respectively. McClear irradiances were compared to 1 min measurements made in clear-sky conditions at several stations within the Baseline Surface Radiation Network in various climates. The bias for global irradiance comprises between −6 and 25 W m −2 . The RMSE ranges from 20 W m −2 (3% of the mean observed irradiance) to 36 W m −2 (5%) and the correlation coefficient ranges between 0.95 and 0.99. The bias for the direct irradiance comprises between −48 and +33 W m −2 . The root mean square error (RMSE) ranges from 33 W m −2 (5%) to 64 W m −2 (10%). The correlation coefficient ranges between 0.84 and 0.98. This work demonstrates the quality of the McClear model combined with MACC products, and indirectly the quality of the aerosol properties modelled by the MACC reanalysis.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2013-09-24
    Description: Ten years of MIPAS measurements with ESA Level 2 processor V6 – Part 1: Retrieval algorithm and diagnostics of the products Atmospheric Measurement Techniques, 6, 2419-2439, 2013 Author(s): P. Raspollini, B. Carli, M. Carlotti, S. Ceccherini, A. Dehn, B. M. Dinelli, A. Dudhia, J.-M. Flaud, M. López-Puertas, F. Niro, J. J. Remedios, M. Ridolfi, H. Sembhi, L. Sgheri, and T. von Clarmann The MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) instrument on the Envisat (Environmental satellite) satellite has provided vertical profiles of the atmospheric composition on a global scale for almost ten years. The MIPAS mission is divided in two phases: the full resolution phase, from 2002 to 2004, and the optimized resolution phase, from 2005 to 2012, which is characterized by a finer vertical and horizontal sampling attained through a reduction of the spectral resolution. While the description and characterization of the products of the ESA processor for the full resolution phase has been already described in previous papers, in this paper we focus on the performances of the latest version of the ESA (European Space Agency) processor, named ML2PP V6 (MIPAS Level 2 Prototype Processor), which has been used for reprocessing the entire mission. The ESA processor had to perform the operational near real time analysis of the observations and its products needed to be available for data assimilation. Therefore, it has been designed for fast, continuous and automated analysis of observations made in quite different atmospheric conditions and for a minimum use of external constraints in order to avoid biases in the products. The dense vertical sampling of the measurements adopted in the second phase of the MIPAS mission resulted in sampling intervals finer than the instantaneous field of view of the instrument. Together with the choice of a retrieval grid aligned with the vertical sampling of the measurements, this made ill-conditioned the retrieval problem of the MIPAS operational processor. This problem has been handled with minimal changes to the original retrieval approach but with significant improvements nonetheless. The Levenberg–Marquardt method, already present in the retrieval scheme for its capability to provide fast convergence for nonlinear problems, is now also exploited for the reduction of the ill-conditioning of the inversion. An expression specifically designed for the regularizing Levenberg–Marquardt method has been implemented for the computation of the covariance matrices and averaging kernels of the retrieved products. The regularization of the Levenberg–Marquardt method is controlled by the convergence criteria and is deliberately kept weak. The resulting oscillations of the retrieved profile are a posteriori damped by an innovative self-adapting Tikhonov regularization. The convergence criteria and the weakness of the self-adapting regularization ensure that minimum constraints are used and the best vertical resolution obtainable from the measurements is achieved in all atmospheric conditions. Random and systematic errors, as well as vertical and horizontal resolution are compared in the two phases of the mission for all products, namely: temperature, H 2O , O 3 , HNO 3 , CH 4 , N 2O , NO 2 , CFC-11, CFC-12, N 2 O 5 and ClONO 2 . The use in the two phases of the mission of different optimized sets of spectral intervals ensures that, despite the different spectral resolutions, comparable performances are obtained in the whole MIPAS mission in terms of random and systematic errors, while the vertical resolution and the horizontal resolution are significantly better in the case of the optimized resolution measurements.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2013-09-24
    Description: Ground-based stratospheric O 3 and HNO 3 measurements at Thule, Greenland: an intercomparison with Aura MLS observations Atmospheric Measurement Techniques, 6, 2441-2453, 2013 Author(s): I. Fiorucci, G. Muscari, L. Froidevaux, and M. L. Santee In response to the need for improving our understanding of the evolution and the interannual variability of the winter Arctic stratosphere, in January 2009 a Ground-Based Millimeter-wave Spectrometer (GBMS) was installed at the Network for the Detection of Atmospheric Composition Change (NDACC) site in Thule (76.5° N, 68.8° W), Greenland. In this work, stratospheric GBMS O 3 and HNO 3 vertical profiles obtained from Thule during the winters 2010 (HNO 3 only), 2011 and 2012 are characterized and intercompared with co-located measurements of the Aura Microwave Limb Sounder (MLS) experiment. Using a recently developed algorithm based on Optimal Estimation, we find that the GBMS O 3 retrievals show good sensitivity (〉 80%) to atmospheric variations between ~ 17 and ~ 50 km, where their 1σ uncertainty is estimated to be the larger of ~ 11% or 0.2 ppmv. Similarly, HNO 3 profiles can be considered for scientific use between ~ 17 and ~ 45 km altitude, with a 1σ uncertainty that amounts to the larger of 15% or 0.2 ppbv. Comparisons with Aura MLS version 3.3 observations show that, on average, GBMS O 3 mixing ratios are biased negatively with respect to MLS throughout the stratosphere, with differences ranging between ~ 0.3 ppmv (8%) and 0.9 ppmv (18%) in the 17–50 km vertical range. GBMS HNO 3 values display instead a positive bias with respect to MLS up to 26 km, reaching a maximum of ~ 1 ppbv (10%) near the mixing ratio profile peak. O 3 and HNO 3 values from the two datasets prove to be well correlated at all altitudes, although their correlations worsen at the lower end of the altitude ranges considered. Column contents of GBMS and MLS O 3 (from 20 km upwards) and HNO 3 (from 17 km upwards) correlate very well and indicate that GBMS measurements can provide valuable estimates of column interannual and seasonal variations for these compounds.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2013-09-25
    Description: Simulating the role of gravel on the dynamics of permafrost on the Qinghai-Tibetan Plateau The Cryosphere Discussions, 7, 4703-4740, 2013 Author(s): S. Yi, J. Chen, Q. Wu, and Y. Ding Gravel (particle size ≥ 2 mm) is common in soil profiles of the Qinghai-Tibetan Plateau (QTP). It has different thermal and hydrological properties than other fine mineral soils (particle size 〈 2 mm), which may have significant impacts on the thermal and hydrological processes of soil. However, few models have considered gravel. In this study, we implemented the thermal and hydraulic properties of gravel into the Dynamic Organic Soil-Terrestrial Ecosystem Model to develop new schemes to simulate the dynamics of permafrost on the QTP. Results showed that: (1) the widely used Farouki thermal scheme always simulated higher thermal conductivity of frozen soils than unfrozen soils with the same soil water content; therefore it tends to overestimate permafrost thickness strongly; (2) there exists a soil moisture threshold, below which the new set of schemes with gravel simulated smaller thermal conductivity of frozen soils than unfrozen soils; (3) soil with gravel has higher hydraulic conductivity and poorer water retention capability; and simulations with gravel were usually drier than those without gravel; and (4) the new schemes simulated faster upward degradation than downward degradation; and the simulated permafrost thicknesses were sensitive to the fraction of gravel, the gravel size, the thickness of soil with gravel, and the subsurface drainage. To reduce the uncertainties in the projection of permafrost degradation on the QTP, more effort should be made to: (1) developing robust relationships between soil thermal and hydraulic properties and gravel characteristics based on laboratory work; and (2) compiling spatial datasets of the vertical distribution of gravel content based on measurements during drilling or the digging of soil pits.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2013-09-27
    Description: Inter-calibration of polar imager solar channels using SEVIRI Atmospheric Measurement Techniques, 6, 2495-2508, 2013 Author(s): J. F. Meirink, R. A. Roebeling, and P. Stammes Accurate calibration of satellite imagers is a prerequisite for using their measurements in climate applications. Here we present a method for the inter-calibration of geostationary and polar-orbiting imager solar channels based on regressions of collocated near-nadir reflectances. Specific attention is paid to correcting for differences in spectral response between instruments. The method is used to calibrate the solar channels of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on the geostationary Meteosat satellite with corresponding channels of the Moderate Resolution Imaging Spectroradiometer (MODIS) on the polar-orbiting Aqua satellite. The SEVIRI operational calibration is found to be stable during the years 2004 to 2009, but offset by −8, −6, and +3.5 % for channels 1 (0.6 μm), 2 (0.8 μm), and 3 (1.6 μm), respectively. These results are robust for a range of choices that can be made regarding data collocation and selection, as long as the viewing and illumination geometries of the two instruments are matched. Uncertainties in the inter-calibration method are estimated to be 1 % for channel 1 and 1.5 % for channels 2 and 3. A specific application of our method is the inter-calibration of polar imagers using SEVIRI as a transfer instrument. This offers an alternative to direct inter-calibration, which in general has to rely on high-latitude collocations. Using this method we have tied MODIS-Terra and Advanced Very High Resolution Radiometer (AVHRR) instruments on National Oceanic and Atmospheric Administration (NOAA) satellites 17 and 18 to MODIS-Aqua for the years 2007 to 2009. While reflectances of the two MODIS instruments differ less than 2 % for all channels considered, deviations of an existing AVHRR calibration from MODIS-Aqua reach −3.5 and +2.5 % for the 0.8 and 1.6 μm channels, respectively.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2013-09-28
    Description: Using ocean-glint scattered sunlight as a diagnostic tool for satellite remote sensing of greenhouse gases Atmospheric Measurement Techniques, 6, 2509-2520, 2013 Author(s): A. Butz, S. Guerlet, O. P. Hasekamp, A. Kuze, and H. Suto Spectroscopic measurements of sunlight backscattered by the Earth's surface is a technique widely used for remote sensing of atmospheric constituent concentrations from space. Thereby, remote sensing of greenhouse gases poses particularly challenging accuracy requirements for instrumentation and retrieval algorithms which, in general, suffer from various error sources. Here, we investigate a method that helps disentangle sources of error for observations of sunlight backscattered from the glint spot on the ocean surface. The method exploits the backscattering characteristics of the ocean surface, which is bright for glint geometry but dark for off-glint angles. This property allows for identifying a set of clean scenes where light scattering due to particles in the atmosphere is negligible such that uncertain knowledge of the lightpath can be excluded as a source of error. We apply the method to more than 3 yr of ocean-glint measurements by the Thermal And Near infrared Sensor for carbon Observation (TANSO) Fourier Transform Spectrometer (FTS) onboard the Greenhouse Gases Observing Satellite (GOSAT), which aims at measuring carbon dioxide (CO 2 ) and methane (CH 4 ) concentrations. The proposed method is able to clearly monitor recent improvements in the instrument calibration of the oxygen (O 2 ) A-band channel and suggests some residual uncertainty in our knowledge about the instrument. We further assess the consistency of CO 2 retrievals from several absorption bands between 6400 cm −1 (1565 nm) and 4800 cm −1 (2100 nm) and find that the absorption bands commonly used for monitoring of CO 2 dry air mole fractions from GOSAT allow for consistency better than 1.5 ppm. Usage of other bands reveals significant inconsistency among retrieved CO 2 concentrations pointing at inconsistency of spectroscopic parameters.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2013-10-01
    Description: Ice volume estimates for the Himalaya–Karakoram region: evaluating different methods The Cryosphere Discussions, 7, 4813-4854, 2013 Author(s): H. Frey, H. Machguth, M. Huss, C. Huggel, S. Bajracharya, T. Bolch, A. Kulkarni, A. Linsbauer, N. Salzmann, and M. Stoffel Ice volume estimates are crucial for assessing water reserves stored in glaciers. A variety of different methodologies exist but there is a lack of systematic comparative analysis thereof. Due to its large glacier coverage, such estimates are of particular interest for the Himalayan-Karakoram (HK) region. Here, three volume–area (V–A) relations, a slope-dependent estimation method, and two ice-thickness distribution models are applied to a complete glacier inventory of the HK region. An uncertainty and sensitivity assessment is performed to investigate the influence of the input glacier areas, and model approaches and parameters on the resulting total ice volumes. Results of the two ice-thickness distribution models are validated with local ice-thickness measurements at six glaciers. The resulting ice volumes for the entire HK region range from 2955 km 3 to 6455 km 3 , depending on the approach. Results from the ice thickness distribution models and the slope-dependent thickness estimations agree well with measured local ice thicknesses while V–A relations show stronger deviations. The study provides evidence on the significant effect of the selected method on results and underlines the importance of a careful and critical evaluation. More ice-thickness measurements are needed to improve models and results in the future.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2013-10-02
    Description: Black carbon concentrations from a Tibetan Plateau ice core spanning 1843–1982: recent increases due to emissions and glacier melt The Cryosphere Discussions, 7, 4855-4880, 2013 Author(s): M. Jenkins, S. Kaspari, S. Kang, B. Grigholm, and P. A. Mayewski Black carbon (BC) deposited on snow and glacier surfaces can reduce albedo and lead to accelerated melt. An ice core recovered from Guoqu glacier on Mt. Geladaindong and analyzed using a Single Particle Soot Photometer provides the first long-term (1843–1982) record of BC concentrations from the Central Tibetan Plateau. The highest concentrations are observed from 1975–1982, which corresponds to a 2.0-fold and 2.4-fold increase in average and median values, respectively, relative to 1843–1940. BC concentrations post-1940 are also elevated relative to the earlier portion of the record. Causes for the higher BC concentrations include increased regional BC emissions and subsequent deposition, and melt induced enrichment of BC, with the melt potentially accelerated due to the presence of BC at the glacier surface. A qualitative comparison of the BC and Fe (used as a dust proxy) records suggests that if changes in the concentrations of absorbing impurities at the glacier surface have influenced recent glacial melt, the melt may be due to the presence of BC rather than dust. Guoqu glacier has received no net ice accumulation since the 1980s, and is a potential example of a glacier where an increase in the equilibrium line altitude is exposing buried high impurity layers. That BC concentrations in the uppermost layers of the Geladaindong ice core are not substantially higher relative to deeper in the ice core suggests that some of the BC that must have been deposited on Guoqu glacier via wet or dry deposition between 1983 and 2005 has been removed from the surface of the glacier, potentially via supraglacial or englacial meltwater.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2013-10-03
    Description: 3D-VAR multilayer assimilation of X-band SAR data into a detailed snowpack model The Cryosphere Discussions, 7, 4881-4912, 2013 Author(s): X. V. Phan, L. Ferro-Famil, M. Gay, Y. Durand, M. Dumont, S. Morin, S. Allain, G. D'Urso, and A. Girard We introduce a variational data assimilation scheme to assimilate X-band Synthetic Aperture Radar (SAR) data into a snowpack evolution model. The structure properties of a snowpack, such as snow density and grain optical diameter of each layer, are simulated over a period of time by the snow metamorphism model Crocus, fed by the local reanalysis SAFRAN at a French alpine location. These parameters are used as inputs of an Electromagnetic Backscattering Model (EBM) based on Dense Media Radiative Transfer (DMRT) theory, which calculates the simulated total backscattering coefficient. Next, 3D-VAR data assimilation is implemented in order to minimize the discrepancies between model simulations and observations obtained from SAR acquisitions, by modifying the parameters of a multilayer snowpack calculated by Crocus. The algorithm then reinitializes Crocus with the optimized snowpack structure properties, and therefore allows it to continue the simulation of snowpack evolution where adjustments based on remote sensing data has been taken into account. Results obtained using TerraSAR-X acquisitions on Argentière Glacier (Mont-Blanc massif, French Alps) show the high potential of this method for improving snow cover simulation.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2013-06-07
    Description: Parameterizing radiative transfer to convert MAX-DOAS dSCDs into near-surface box-averaged mixing ratios Atmospheric Measurement Techniques, 6, 1521-1532, 2013 Author(s): R. Sinreich, A. Merten, L. Molina, and R. Volkamer We present a novel parameterization method to convert multi-axis differential optical absorption spectroscopy (MAX-DOAS) differential slant column densities (dSCDs) into near-surface box-averaged volume mixing ratios. The approach is applicable inside the planetary boundary layer under conditions with significant aerosol load, and builds on the increased sensitivity of MAX-DOAS near the instrument altitude. It parameterizes radiative transfer model calculations and significantly reduces the computational effort, while retrieving ~ 1 degree of freedom. The biggest benefit of this method is that the retrieval of an aerosol profile, which usually is necessary for deriving a trace gas concentration from MAX-DOAS dSCDs, is not needed. The method is applied to NO 2 MAX-DOAS dSCDs recorded during the Mexico City Metropolitan Area 2006 (MCMA-2006) measurement campaign. The retrieved volume mixing ratios of two elevation angles (1° and 3°) are compared to volume mixing ratios measured by two long-path (LP)-DOAS instruments located at the same site. Measurements are found to agree well during times when vertical mixing is expected to be strong. However, inhomogeneities in the air mass above Mexico City can be detected by exploiting the different horizontal and vertical dimensions probed by the MAX-DOAS and LP-DOAS instruments. In particular, a vertical gradient in NO 2 close to the ground can be observed in the afternoon, and is attributed to reduced mixing coupled with near-surface emission inside street canyons. The existence of a vertical gradient in the lower 250 m during parts of the day shows the general challenge of sampling the boundary layer in a representative way, and emphasizes the need of vertically resolved measurements.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2013-06-08
    Description: The physical basis for gas transport through polar firn: a case study at Summit, Greenland The Cryosphere Discussions, 7, 2455-2487, 2013 Author(s): A. C. Adolph and M. R. Albert Compared to other natural porous materials, relatively little is known about the physical nature of polar firn. This intricate network of ice and pore space that comprises the top 60–100 m of the polar ice sheets is the framework that forms the natural archive of past climate information. Despite the many implications for ice core interpretation, direct measurements of physical properties throughout the firn column are limited. Models of gas transport through firn are used to interpret in-situ chemical data which is retrieved to analyze past atmospheric composition. These traditional models treat the firn as a "black box," with gas transport parameters tuned to match gas concentrations with depth to known atmospheric histories. Though this method has been largely successful and provided very useful insights, there are still many questions and uncertainties to be addressed. This work seeks to understand the impact of firn structure on gas transport in firn from a first principles standpoint through direct measurements of permeability, gas diffusivity and microstructure. The relationships between gas transport properties and microstructure will be characterized and compared to existing relationships for general porous media. Direct measurements of gas diffusivity are compared to diffusivities deduced from models based on firn air chemical sampling. Our comparison illuminates the primary importance of including microstructural parameters, beyond just porosity or density, in mass transport modeling, and it provides insights about the nature of gas transport throughout the firn column. Guidance is provided for development of next-generation firn air transport models.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2013-06-06
    Description: Polarization data from SCIAMACHY limb backscatter observations compared to vector radiative transfer model simulations Atmospheric Measurement Techniques, 6, 1503-1520, 2013 Author(s): P. Liebing, K. Bramstedt, S. Noël, V. Rozanov, H. Bovensmann, and J. P. Burrows SCIAMACHY is a passive imaging spectrometer onboard ENVISAT designed to obtain trace gas abundances from measured radiances and irradiances in the UV to SWIR range in nadir-, limb- and occultation-viewing modes. Its grating spectrometer introduces a substantial sensitivity to the polarization of the incoming light with nonnegligible effects on the radiometric calibration. To be able to correct for the polarization sensitivity, SCIAMACHY utilizes broadband Polarization Measurement Devices (PMDs). While for the nadir-viewing mode the measured atmospheric polarization has been validated against POLDER data (Tilstra and Stammes, 2007, 2010), a similar validation study regarding the limb-viewing mode has not yet been performed. This paper aims at an assessment of the quality of the SCIAMACHY limb polarization data. Since limb polarization measurements by other air/spaceborne instruments in the spectral range of SCIAMACHY are not available, a comparison with radiative transfer simulations by SCIATRAN V3.1 (Rozanov et al., 2013) using a wide range of atmospheric parameters is performed. SCIATRAN is a vector radiative transfer model (VRTM) capable of performing calculations of the multiply scattered radiance in a spherically symmetric atmosphere. The study shows that the limb polarization data exhibit a large time-dependent bias that decreases with wavelength. Possible reasons for this bias are a still unknown combination of insufficient accuracy or inconsistencies of the on-ground calibration data, scan mirror degradation and stress induced changes of the polarization response of components inside the optical bench of the instrument. It is shown that it should in principle be feasible to recalibrate the effective polarization sensitivity of the instrument using the in-flight data and VRTM simulations.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2013-06-06
    Description: Evaluating calibration strategies for isotope ratio infrared spectroscopy for atmospheric 13 CO 2 / 12 CO 2 measurement Atmospheric Measurement Techniques, 6, 1491-1501, 2013 Author(s): X.-F. Wen, Y. Meng, X.-Y. Zhang, X.-M. Sun, and X. Lee Isotope ratio infrared spectroscopy (IRIS) provides an in situ technique for measuring δ 13 C in atmospheric CO 2 . A number of methods have been proposed for calibrating the IRIS measurements, but few studies have systematically evaluated their accuracy for atmospheric applications. In this study, we carried out laboratory and ambient measurements with two commercial IRIS analyzers and compared the accuracy of four calibration strategies. We found that calibration based on the 12 C and 13 C mixing ratios (Bowling et al., 2003) and on linear interpolation of the measured delta using the mixing ratio of the major isotopologue (Lee et al., 2005) yielded accuracy better than 0.06‰. Over a 7-day atmospheric measurement in Beijing, the two analyzers agreed to within −0.02 ± 0.18‰ after proper calibration. However, even after calibration the difference between the two analyzers showed a slight correlation with concentration, and this concentration dependence propagated through the Keeling analysis, resulting in a much larger difference of 2.44‰ for the Keeling intercept. The high sensitivity of the Keeling analysis to the concentration dependence underscores the challenge of IRIS for atmospheric research.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2013-06-06
    Description: Cavity ring-down spectroscopy sensor development for high-time-resolution measurements of gaseous elemental mercury in ambient air Atmospheric Measurement Techniques, 6, 1477-1489, 2013 Author(s): A. Pierce, D. Obrist, H. Moosmüller, X. Faïn, and C. Moore We describe further development of a previous laboratory prototype pulsed cavity ring-down spectroscopy (CRDS) sensor into a field-deployable system for high-time-resolution, continuous, and automated measurement of gaseous elemental mercury (GEM) concentrations in ambient air. We employed an external, isotopically enriched Hg cell for automated locking and stabilization of the laser wavelength on the GEM peak absorption during measurements. Further, we describe implementation of differential absorption measurements via a piezoelectric tuning element for pulse-by-pulse tuning of the laser wavelength onto and off of the GEM absorption line. This allowed us to continuously correct (at 25 Hz) for system baseline extinction losses unrelated to GEM absorption. Extensive measurement and calibration data obtained with the system were based on spike addition in both GEM-free air and ambient air. Challenges and interferences that occurred during measurements (particularly in ambient air) are discussed including temperature and ozone (O 3 ) concentration fluctuations, and steps taken to reduce these. CRDS data were highly linear ( r 2 ≥ 0.98) with data from a commercial Tekran 2537 Hg analyzer across a wide range of GEM concentrations (0 to 127 ng m −3 ) in Hg-free and ambient air. Measurements during periods of stable background GEM concentrations provided a conservative instrument sensitivity estimate of 0.35 ng m −3 for the CRDS system when time averaged for 5 min. This sensitivity, along with concentration patterns observed in ambient air (with the CRDS system and verified with the Tekran analyzer), showed that the sensor was capable of characterizing GEM fluctuations in ambient air. The value of fast-response GEM measurements was shown by a series of GEM spike additions – highlighting that high-temporal-resolution measurement allowed for detailed characterization of fast concentration fluctuations not possible with traditional analyzers.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2013-06-06
    Description: Solving Richards Equation for snow improves snowpack meltwater runoff estimations The Cryosphere Discussions, 7, 2373-2412, 2013 Author(s): N. Wever, C. Fierz, C. Mitterer, H. Hirashima, and M. Lehning The runoff from the snow cover during spring snow melt or rain-on-snow events is an important factor in the hydrological cycle. In this study, water transport schemes for a 1-dimensional physical based snowpack model are compared to 14 yr of lysimeter measurements at a high alpine site. The schemes include a simple bucket-type approach, an approximation of Richards Equation (RE), and the full RE. The results show that daily sums of runoff are strongly related to a positive energy balance of the snow cover and therefore, all water transport schemes show very similar performance in terms of Nash–Sutcliffe efficiency (NSE) coefficients (around 0.59) and r 2 values (around 0.77). Timing of the arrival of meltwater in spring at the bottom of the snowpack showed differences between the schemes, where especially in the bucket-type and approximated RE approach, meltwater release is slower than in the measurements. Overall, solving RE for the snow cover yields the best agreement between modelled and measured runoff. On sub-daily time scales, the water transport schemes behave very differently. Also here, solving RE provides the highest agreement between modelled and measured runoff in terms of NSE coefficient (0.48), where other water transport schemes loose any predictive power. This appears to be mainly due to bad timing of meltwater release during the day. Accordingly, solving RE for the snow cover improves several aspects of modelling snow cover runoff. The additional computational cost was found to be in the order of a factor of 1.5.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2013-06-06
    Description: An upper-bound estimate for the accuracy of volume-area scaling The Cryosphere Discussions, 7, 2293-2331, 2013 Author(s): D. Farinotti and M. Huss Volume-area scaling is the most popular method for estimating the ice volume of large glacier samples. Here, a series of resampling experiments based on different sets of synthetic data are presented in order to derive an upper-bound estimate (i.e. a level achieved only with ideal conditions) for the accuracy of its application. We also quantify the maximum accuracy expected when scaling is used for determining the glacier volume change, and area change of a given glacier population. A comprehensive set of measured glacier areas, volumes, area and volume changes is evaluated to investigate the impact of real-world data quality on the so assessed accuracies. For populations larger than a few thousand glaciers, the total ice volume can be recovered within 30% if all measurements available worldwide are used for estimating the scaling coefficients. Assuming no systematic biases in ice volume measurements, their uncertainty is of secondary importance. Knowing the individual areas of a glacier sample for two points in time allows recovering the corresponding ice volume change within 40% for populations larger than a few hundred glaciers, both for steady-state and transient geometries. If ice volume changes can be estimated without bias, glacier area changes derived from volume-area scaling show similar uncertainties as for the volume changes. This paper does not aim at making a final judgement about the suitability of volume-area scaling, but provides the means for assessing the accuracy expected from its application.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2013-06-06
    Description: Evaluation of the snow regime in dynamic vegetation land surface models using field measurements The Cryosphere Discussions, 7, 2333-2372, 2013 Author(s): E. Kantzas, M. Lomas, S. Quegan, and E. Zakharova An increasing number of studies have demonstrated the significant climatic and ecological changes occurring in the northern latitudes over the past decades. As coupled, earth-system models attempt to describe and simulate the dynamics and complex feedbacks of the Arctic environment, it is important to reduce their uncertainties in short-term predictions by improving the description of both the systems processes and its initial state. This study focuses on snow-related variables and extensively utilizes a historical data set (1966–1996) of field snow measurements acquired across the extend of the Former Soviet Union (FSU) to evaluate a range of simulated snow metrics produced by a variety of land surface models, most of them embedded in IPCC-standard climate models. We reveal model-specific issues in simulating snow dynamics such as magnitude and timings of SWE as well as evolution of snow density. We further employ the field snow measurements alongside novel and model-independent methodologies to extract for the first time (i) a fresh snow density value (57–117 kg m –3 ) for the region and (ii) mean monthly snowpack sublimation estimates across a grassland-dominated western (November–February) [9.2, 6.1, 9.15, 15.25] mm and forested eastern sub-sector (November–March) [1.53, 1.52, 3.05, 3.80, 12.20] mm; we subsequently use the retrieved values to assess relevant model outputs. The discussion session consists of two parts. The first describes a sensitivity study where field data of snow depth and snow density are forced directly into the surface heat exchange formulation of a land surface model to evaluate how inaccuracies in simulating snow metrics affect important modeled variables and carbon fluxes such as soil temperature, thaw depth and soil carbon decomposition. The second part showcases how the field data can be assimilated with ready-available optimization techniques to pinpoint model issues and improve their performance.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2013-06-07
    Description: Spatial debris-cover effect on the maritime glaciers of Mount Gongga, south-eastern Tibetan Plateau The Cryosphere Discussions, 7, 2413-2453, 2013 Author(s): Y. Zhang, Y. Hirabayashi, K. Fujita, S. Liu, and Q. Liu The Tibetan Plateau and surroundings contain a large number of debris-covered glaciers, on which debris cover affects glacier response to climate change by altering ice melting rates and spatial patterns of mass loss. Insufficient spatial distribution of debris thickness data makes it difficult to analyze regional debris-cover effects. Mount Gongga glaciers, maritime glaciers in the south-eastern Tibetan Plateau, are characterized by a substantial reduction in glacier length and ice mass in recent decades. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)-derived thermal property of the debris layer reveals that 68% of the glaciers have extensive mantles of supraglacial debris in their ablation zones, in which the proportion of debris cover to total glacier area varies from 1.74% to 53.0%. Using a surface energy-mass balance model accounting for the debris-cover effect applied at a regional scale, we find that although the presence of supraglacial debris has a significant insulating effect on heavily debris-covered glaciers, it accelerates ice melting on ~ 10.2% of the total ablation area and produces rapid wastage of ~ 25% of the debris-covered glaciers, resulting in the similar mass losses between debris-covered and debris-free glaciers. Widespread debris cover also facilitates the development of active terminus regions. Regional differences in the debris-cover effect are apparent, highlighting the importance of debris cover for understanding glacier status and hydrology in both the Tibetan Plateau and other mountain ranges around the world.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-06-11
    Description: Decadal changes from a multi-temporal glacier inventory of Svalbard The Cryosphere Discussions, 7, 2489-2532, 2013 Author(s): C. Nuth, J. Kohler, M. König, A. von Deschwanden, J. O. Hagen, A. Kääb, G. Moholdt, and R. Pettersson We present a multi-temporal digital inventory of Svalbard glaciers with the most recent from the late 2000s containing 33 775 km 2 of glaciers, or 57% of the total land area of the archipelago. At present, 68% of the glaciated area of Svalbard drains through tidewater glaciers that have a summed terminus width of ~ 740 km. The glaciated area over the entire archipelago has decreased by an average of 80 km 2 a −1 over the past ~ 30 yr, representing a reduction of 7%. For a sample of ~ 400 glaciers (10 000 km 2 ) in the south and west of Spitsbergen, three digital inventories are available from 1930/60s, 1990 and 2007 from which we calculate average changes during 2 epochs. In the more recent epoch, the terminus retreat was larger than in the earlier epoch while area shrinkage was smaller. The contrasting pattern may be explained by the decreased lateral wastage of the glacier tongues. Temporal retreat rates for individual glaciers show a mix of accelerating and decelerating trends, reflecting the large spatial variability of glacier types and climatic/dynamic response times in Svalbard. Last, retreat rates estimated by dividing glacier area changes by the tongue width are larger than centerline retreat due to a more encompassing frontal change estimate with inclusion of lateral area loss.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-04-04
    Description: The effect of black carbon on reflectance of snow in the accumulation area of glaciers in the Baspa basin, Himachal Pradesh, India The Cryosphere Discussions, 7, 1359-1382, 2013 Author(s): A. V. Kulkarni, G. Vinay Kumar, H. S. Negi, J. Srinivasan, and S. K. Satheesh Himalayan glaciers are being extensively debated in scientific and public forums, as changes in their distribution can significantly affect the availability of water in many rivers originating in the region. The distribution of glaciers can be influenced by mass balance, and most of the glaciers located in the Pir Panjal and Greater Himalayan mountain ranges are losing mass at the rate of almost a meter per year. The Equilibrium Line Altitude (ELA) has also shifted upward by 400 m in the last two decades. This upward migration of ELA and the loss in mass could have been influenced by changes in temperature, precipitation and by the deposition of black carbon in the accumulation area of glaciers. The deposition of black carbon can reduce the albedo of snow in the accumulation area leading to faster melting of snow and causing more negative mass balance. In this investigation, a change in reflectance in the accumulation area of the Baspa basin is analysed for the year 2009, as the region has experienced extensive forest fires along with northern Indian biomass burning. The investigation has shown that: (1) The number of forest fires in the summer of 2009 was substantially higher than in any other year between 2001 and 2010; (2) the drop in reflectance in the visible region from April to May in the accumulation area was significantly higher in the year 2009 than in any other year from 2000 to 2012; (3) the temperature of the region was substantially lower than the freezing point during the active fire period of 2009, indicating the small influence of liquid water and grain size; (4) the drop in reflectance was observed only in the visible region, indicating role of contamination; (5) in the visible region, a mean drop in reflectance of 21± 5% was observed during the active fire period in the accumulation area. At some places, the drop was as high as 50 ± 5%. This can only be explained by the deposition of black carbon. The study suggests that a change in snow albedo in the accumulation area due to the deposition of black carbon from anthropogenic and natural causes can influence the mass balance of the glaciers in the Baspa basin, Himachal Pradesh, India.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2013-04-04
    Description: Broadband measurements of aerosol extinction in the ultraviolet spectral region Atmospheric Measurement Techniques, 6, 861-877, 2013 Author(s): R. A. Washenfelder, J. M. Flores, C. A. Brock, S. S. Brown, and Y. Rudich Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross sections and complex refractive indices. We describe a new laboratory instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360–390 and 385–420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We determined aerosol extinction cross sections and directly observed Mie scattering resonances for aerosols that are purely scattering (polystyrene latex spheres and ammonium sulfate), slightly absorbing (Suwannee River fulvic acid), and strongly absorbing (nigrosin dye). We describe an approach for retrieving refractive indices as a function of wavelength from the measured extinction cross sections over the 360–420 nm wavelength region. The retrieved refractive indices for PSL and ammonium sulfate agree within uncertainty with the literature values for this spectral region. The refractive index determined for nigrosin is 1.78 (± 0.03) + 0.19 (± 0.08) i at 360 nm and 1.63 (± 0.03) + 0.21 (± 0.05) i at 420 nm. The refractive index determined for Suwannee River fulvic acid is 1.71 (± 0.02) + 0.07 (± 0.06) i at 360 nm and 1.66 (± 0.02) + 0.06 (± 0.04) i at 420 nm. These laboratory results support the potential for a field instrument capable of determining ambient aerosol optical extinction, average aerosol extinction cross section, and complex refractive index as a function of wavelength.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2013-04-10
    Description: Supercooled interfacial water in fine grained soils probed by dielectric spectroscopy The Cryosphere Discussions, 7, 1441-1493, 2013 Author(s): A. Lorek and N. Wagner Water as thermodynamic state parameter affects nearly all physical, chemical and biological processes on the earth. Recent Mars observations as well as laboratory investigations suggest that water is also a key factor of current physical and chemical processes on the martian surface, e.g. rheological phenomena. Therefore it is of particular interest to get information about the liquid like state of water on martian analog soils in the temperature range below 0 °C. In this context, a parallel plate capacitor has been developed to obtain isothermal dielectric spectra of fine grained soils in the frequency range from 10 Hz to 1.1 MHz at martian like temperatures down to −70 °C. Two martian analogue soils have been investigated: a Ca-Bentonite (specific surface of 237 m 2 g −1 , up to 9.4% w/w gravimetric water content) and JSC Mars 1, a volcanic ash (specific surface of 146 m 2 g −1 , up to 7.4% w/w ). Three soil-specific relaxation processes are observed in the investigated frequency-temperature range: two weak high frequency processes (bound or hydrated water as well as ice) and a strong low frequency process due to counter ion relaxation and the Maxwell–Wagner effect. To characterize the dielectric relaxation behavior, a generalized fractional dielectric relaxation model is applied assuming three active relaxation processes with relaxation time of the i th process according to an Eyring equation. The real part of effective complex soil permittivity at 350 kHz was used to determine ice and liquid like water content by means of the Birchak or CRIM equation. There are evidence that Bentonite down to −70 °C has a liquid like water content of 1.17 monolayers and JSC Mars 1 a liquid like water content of 1.96 mono layers.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2013-04-11
    Description: Climatologies from satellite measurements: the impact of orbital sampling on the standard error of the mean Atmospheric Measurement Techniques, 6, 937-948, 2013 Author(s): M. Toohey and T. von Clarmann Climatologies of atmospheric observations are often produced by binning measurements according to latitude and calculating zonal means. The uncertainty in these climatological means is characterised by the standard error of the mean (SEM). However, the usual estimator of the SEM, i.e., the sample standard deviation divided by the square root of the sample size, holds only for uncorrelated randomly sampled measurements. Measurements of the atmospheric state along a satellite orbit cannot always be considered as independent because (a) the time-space interval between two nearest observations is often smaller than the typical scale of variations in the atmospheric state, and (b) the regular time-space sampling pattern of a satellite instrument strongly deviates from random sampling. We have developed a numerical experiment where global chemical fields from a chemistry climate model are sampled according to real sampling patterns of satellite-borne instruments. As case studies, the model fields are sampled using sampling patterns of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and Atmospheric Chemistry Experiment Fourier-Transform Spectrometer (ACE-FTS) satellite instruments. Through an iterative subsampling technique, and by incorporating information on the random errors of the MIPAS and ACE-FTS measurements, we produce empirical estimates of the standard error of monthly mean zonal mean model O 3 in 5° latitude bins. We find that generally the classic SEM estimator is a conservative estimate of the SEM, i.e., the empirical SEM is often less than or approximately equal to the classic estimate. Exceptions occur only when natural variability is larger than the random measurement error, and specifically in instances where the zonal sampling distribution shows non-uniformity with a similar zonal structure as variations in the sampled field, leading to maximum sensitivity to arbitrary phase shifts between the sample distribution and sampled field. The occurrence of such instances is thus very sensitive to slight changes in the sampling distribution, and to the variations in the measured field. This study highlights the need for caution in the interpretation of the oft-used classically computed SEM, and outlines a relatively simple methodology that can be used to assess one component of the uncertainty in monthly mean zonal mean climatologies produced from measurements from satellite-borne instruments.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2013-09-12
    Description: A chemical analyzer for charged ultrafine particles Atmospheric Measurement Techniques, 6, 2339-2348, 2013 Author(s): S. G. Gonser and A. Held New particle formation is a frequent phenomenon in the atmosphere and of major significance for the Earth's climate and human health. To date the mechanisms leading to the nucleation of particles as well as to aerosol growth are not completely understood. A lack of appropriate measurement equipment for online analysis of the chemical composition of freshly nucleated particles is one major limitation. We have developed a Chemical Analyzer for Charged Ultrafine Particles (CAChUP) capable of analyzing particles with diameters below 30 nm. A bulk of size-separated particles is collected electrostatically on a metal filament, resistively desorbed and subsequently analyzed for its molecular composition in a time of flight mass spectrometer. We report on technical details as well as characterization experiments performed with the CAChUP. Our instrument was tested in the laboratory for its detection performance as well as for its collection and desorption capabilities. The manual application of defined masses of camphene (C 10 H 16 ) to the desorption filament resulted in a detection limit between 0.5 and 5 ng, and showed a linear response of the mass spectrometer. Flow tube experiments of 25 nm diameter secondary organic aerosol from ozonolysis of alpha-pinene also showed a linear relation between collection time and the mass spectrometer's signal intensity. The resulting mass spectra from the collection experiments are in good agreement with published work on particles generated by the ozonolysis of alpha-pinene. A sensitivity study shows that the current setup of CAChUP is ready for laboratory measurements and for the observation of new particle formation events in the field.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2013-09-14
    Description: Influence of snow depth distribution on surface roughness in alpine terrain: a multi-scale approach The Cryosphere Discussions, 7, 4633-4680, 2013 Author(s): J. Veitinger, B. Sovilla, and R. S. Purves In alpine terrain, the snow covered winter surface deviates from its underlying summer terrain due to the progressive smoothing caused by snow accumulation. Terrain smoothing is believed to be an important factor in avalanche formation, avalanche dynamics and affects surface heat transfer, energy balance as well as snow depth distribution. To characterize the effect of snow on terrain we use the concept of roughness. Roughness is calculated for several snow surfaces and its corresponding underlying terrain for three alpine basins in the Swiss Alps characterized by low medium and high terrain roughness. To this end, elevation models of winter and summer terrain are derived from high-resolution (1 m) measurements performed by airborne and terrestrial LIDAR. We showed that on basin scale terrain smoothing not only depends on mean snow depth in the basin but also on its variability. Terrain smoothing can be modelled in function of mean snow depth and its standard deviation using a power law. However, a relationship between terrain smoothing and snow depth does not exist on a pixel scale. Further we demonstrated the high persistence of snow surface roughness even in between winter seasons. Those persistent patterns might be very useful to improve the representation of a winter terrain without modelling of the snow cover distribution. This can potentially improve avalanche release area definition and in the long term natural hazard management strategies.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-09-17
    Description: Comparison of AOD between CALIPSO and MODIS: significant differences over major dust and biomass burning regions Atmospheric Measurement Techniques, 6, 2391-2401, 2013 Author(s): X. Ma, K. Bartlett, K. Harmon, and F. Yu Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) provide global vertical profiles of aerosol optical properties for the first time. In this study, we employed about 6 yr (2006–2011) of CALIPSO level 3 monthly mean gridded aerosol optical depth (AOD) products (daytime and nighttime) for cloud-free conditions, to compare with the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra/Aqua level 3 monthly mean AOD dataset for the same time period. While the spatial distribution and seasonal variability of CALIPSO AOD is generally consistent with that of MODIS, CALIPSO is overall lower than MODIS as MODIS has higher frequency than CALIPSO for most bins of AOD. The correlation between MODIS and CALIPSO is better over ocean than over land. We focused on four regions that have large systematic differences: two over dust regions (the Sahara and Northwest China) and two over biomass burning regions (South Africa and South America). It is found that CALIPSO AOD is significantly lower than MODIS AOD over dust regions during the whole time period, with a maximum difference of 0.3 over the Saharan region and 0.25 over Northwest China. For biomass burning regions, CALIPSO AOD is significantly higher than MODIS AOD over South Africa, with a maximum difference of 0.25. Additionally CALIPSO AOD is slightly higher than MODIS AOD over South America for most of the time period, with a few exceptions in 2006, 2007, and 2010, when biomass burning is significantly stronger than during other years. We analyzed the impact of the satellite spatial and temporal sampling issue by using level 2 CALIPSO and MODIS products, and these systematic differences can still be found. The results of this study indicate that systematic differences of CALIPSO relative to MODIS are closely associated with aerosol types, which vary by location and season. Large differences over dust and biomass burning regions may suggest that assumptions made in satellite retrievals, such as the assumed lidar ratios for CALIPSO retrievals over dust and biomass burning regions or the surface reflectance information and/or the aerosol model utilized by the MODIS algorithm, are not appropriate.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-09-26
    Description: Microwave radiometer to retrieve temperature profiles from the surface to the stratopause Atmospheric Measurement Techniques, 6, 2477-2494, 2013 Author(s): O. Stähli, A. Murk, N. Kämpfer, C. Mätzler, and P. Eriksson TEMPERA (TEMPERature RAdiometer) is a new ground-based radiometer which measures in a frequency range from 51–57 GHz radiation emitted by the atmosphere. With this instrument it is possible to measure temperature profiles from ground to about 50 km. This is the first ground-based instrument with the capability to retrieve temperature profiles simultaneously for the troposphere and stratosphere. The measurement is done with a filterbank in combination with a digital fast Fourier transform spectrometer. A hot load and a noise diode are used as stable calibration sources. The optics consist of an off-axis parabolic mirror to collect the sky radiation. Due to the Zeeman effect on the emission lines used, the maximum height for the temperature retrieval is about 50 km. The effect is apparent in the measured spectra. The performance of TEMPERA is validated by comparison with nearby radiosonde and satellite data from the Microwave Limb Sounder on the Aura satellite. In this paper we present the design and measurement method of the instrument followed by a description of the retrieval method, together with a validation of TEMPERA data over its first year, 2012.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2013-09-28
    Description: Retrieval of nitric oxide in the mesosphere and lower thermosphere from SCIAMACHY limb spectra Atmospheric Measurement Techniques, 6, 2521-2531, 2013 Author(s): S. Bender, M. Sinnhuber, J. P. Burrows, M. Langowski, B. Funke, and M. López-Puertas We use the ultra-violet (UV) spectra in the range 230–300 nm from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) to retrieve the nitric oxide (NO) number densities from atmospheric emissions in the gamma-bands in the mesosphere and lower thermosphere. Using 3-D ray tracing, a 2-D retrieval grid, and regularisation with respect to altitude and latitude, we retrieve a whole semi-orbit simultaneously for the altitude range from 60 to 160 km. We present details of the retrieval algorithm, first results, and initial comparisons to data from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). Our results agree on average well with MIPAS data and are in line with previously published measurements from other instruments. For the time of available measurements in 2008–2011, we achieve a vertical resolution of 5–10 km in the altitude range 70–140 km and a horizontal resolution of about 9° from 60° S–60° N. With this we have independent measurements of the NO densities in the mesosphere and lower thermosphere with approximately global coverage. This data can be further used to validate climate models or as input for them.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2014-12-16
    Description: Development and field testing of a rapid and ultra-stable atmospheric carbon dioxide spectrometer Atmospheric Measurement Techniques, 7, 4445-4453, 2014 Author(s): B. Xiang, D. D. Nelson, J. B. McManus, M. S. Zahniser, R. A. Wehr, and S. C. Wofsy We present field test results for a new spectroscopic instrument to measure atmospheric carbon dioxide (CO 2 ) with high precision (0.02 μmol mol −1 , or ppm at 1 Hz) and demonstrate high stability (within 0.1 ppm over more than 8 months), without the need for hourly, daily, or even monthly calibration against high-pressure gas cylinders. The technical novelty of this instrument (ABsolute Carbon dioxide, ABC) is the spectral null method using an internal quartz reference cell with known CO 2 column density. Compared to a previously described prototype, the field instrument has better stability and benefits from more precise thermal control of the optics and more accurate pressure measurements in the sample cell (at the mTorr level). The instrument has been deployed at a long-term ecological research site (the Harvard Forest, USA), where it has measured for 8 months without on-site calibration and with minimal maintenance, showing drift bounds of less than 0.1 ppm. Field measurements agree well with those of a commercially available cavity ring-down CO 2 instrument (Picarro G2301) run with a standard calibration protocol. This field test demonstrates that ABC is capable of performing high-accuracy, unattended, continuous field measurements with minimal use of reference gas cylinders.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2014-12-16
    Description: Air temperature variability over three glaciers in the Ortles-Cevedale (Italian Alps): effects of glacier disintegration, intercomparison of calculation methods, and impacts on mass balance modeling The Cryosphere Discussions, 8, 6147-6192, 2014 Author(s): L. Carturan, F. Cazorzi, F. De Blasi, and G. Dalla Fontana Glacier mass balance models rely on accurate spatial calculation of input data, in particular air temperature. Lower temperatures (the so-called glacier cooling effect), and lower temperature variability (the so-called glacier damping effect) generally occur over glaciers, compared to ambient conditions. These effects, which depend on the geometric characteristics of glaciers and display a high spatial and temporal variability, have been mostly investigated on medium- to large-size glaciers so far, while observations on smaller ice bodies are scarce. Using a dataset from 8 on-glacier and 4 off-glacier weather stations, collected in summer 2010 and 2011, we analyzed the air temperature variability and wind regime over three different glaciers in the Ortles-Cevedale. The magnitude of the cooling effect and the occurrence of katabatic boundary layer (KBL) processes showed remarkable differences among the three ice bodies, suggesting the likely existence of important reinforcing mechanisms during glacier decay and disintegration. None of the methods proposed in the literature for calculating on-glacier temperature from off-glacier data fully reproduced our observations. Among them, the more physically-based procedure of Greuell and Böhm (1998) provided the best overall results where the KBL prevail, but it was not effective elsewhere (i.e. on smaller ice bodies and close to the glacier margins). The accuracy of air temperature estimations strongly impacted the results from a mass balance model which was applied to the three investigated glaciers. Most importantly, even small temperature deviations caused distortions in parameter calibration, thus compromising the model generalizability.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2014-12-18
    Description: Investigating uptake of N 2 O in agricultural soils using a high-precision dynamic chamber method Atmospheric Measurement Techniques, 7, 4455-4462, 2014 Author(s): N. J. Cowan, D. Famulari, P. E. Levy, M. Anderson, D. S. Reay, and U. M. Skiba Uptake (or negative flux) of nitrous oxide (N 2 O) in agricultural soils is a controversial issue which has proved difficult to investigate in the past due to constraints such as instrumental precision and methodological uncertainties. Using a recently developed high-precision quantum cascade laser gas analyser combined with a closed dynamic chamber, a well-defined detection limit of 4 μg N 2 O-N m −2 h −1 could be achieved for individual soil flux measurements. 1220 measurements of N 2 O flux were made from a variety of UK soils using this method, of which 115 indicated uptake by the soil (i.e. a negative flux in the micrometeorological sign convention). Only four of these apparently negative fluxes were greater than the detection limit of the method, which suggests that the vast majority of reported negative fluxes from such measurements are actually due to instrument noise. As such, we suggest that the bulk of negative N 2 O fluxes reported for agricultural fields are most likely due to limits in detection of a particular flux measurement methodology and not a result of microbiological activity consuming atmospheric N 2 O.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2014-11-06
    Description: Strategy of valid 14 C dates choice in syngenetic permafrost The Cryosphere Discussions, 8, 5589-5621, 2014 Author(s): Y. K. Vasil'chuk and A. C. Vasil'chuk The main problem of radiocarbon dating within permafrost is the uncertain reliability of the 14 C dates. Syngenetic sediments contain allochthonous organic deposit that originated at a distance from its present position. Due to the very good preservation of organic materials in permafrost conditions and numerous re-burials of the fossils from ancient deposits into younger ones the dates could be both younger and older than the true age of dated material. The strategy for the most authentic radiocarbon date selection for dating of syncryogenic sediments is considered taking into account the fluvial origin of the syngenetic sediments. The re-deposition of organic material is discussed in terms of cyclic syncryogenic sedimentation and also the possible re-deposition of organic material in subaerial-subaqueous conditions. The advantages and the complications of dating organic micro-inclusions from ice wedges by the accelerator mass spectrometry (AMS) method are discussed applying to true age of dated material search. Radiocarbon dates of different organic materials from the same samples are compared. The younger age of the yedoma from cross-sections of Duvanny Yar in Kolyma River and Mamontova Khayata in the mouth of Lena River is substantiated due to the principle of the choice of the youngest 14 C date from the set.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2014-11-06
    Description: Simulating the Antarctic ice sheet in the Late-Pliocene warm period: PLISMIP-ANT, an ice-sheet model intercomparison project The Cryosphere Discussions, 8, 5539-5588, 2014 Author(s): B. de Boer, A. M. Dolan, J. Bernales, E. Gasson, H. Goelzer, N. R. Golledge, J. Sutter, P. Huybrechts, G. Lohmann, I. Rogozhina, A. Abe-Ouchi, F. Saito, and R. S. W. van de Wal In the context of future climate change, understanding the nature and behaviour of ice sheets during warm intervals in Earth history is of fundamental importance. The Late-Pliocene warm period (also known as the PRISM interval: 3.264 to 3.025 million years before present) can serve as a potential analogue for projected future climates. Although Pliocene ice locations and extents are still poorly constrained, a significant contribution to sea-level rise should be expected from both the Greenland ice sheet and the West and East Antarctic ice sheets based on palaeo sea-level reconstructions. Here, we present results from simulations of the Antarctic ice sheet by means of an international Pliocene Ice Sheet Modeling Intercomparison Project (PLISMIP-ANT). For the experiments, ice-sheet models including the shallow ice and shelf approximations have been used to simulate the complete Antarctic domain (including grounded and floating ice). We compare the performance of six existing numerical ice-sheet models in simulating modern control and Pliocene ice sheets by a suite of four sensitivity experiments. Ice-sheet model forcing fields are taken from the HadCM3 atmosphere–ocean climate model runs for the pre-industrial and the Pliocene. We include an overview of the different ice-sheet models used and how specific model configurations influence the resulting Pliocene Antarctic ice sheet. The six ice-sheet models simulate a comparable present-day ice sheet, although the models are setup with their own parameter settings. For the Pliocene simulations using the Bedmap1 bedrock topography, some models show a small retreat of the East Antarctic ice sheet, which is thought to have happened during the Pliocene for the Wilkes and Aurora basins. This can be ascribed to either the surface mass balance, as the HadCM3 Pliocene climate shows a significant increase over the Wilkes and Aurora basin, or the initial bedrock topography. For the latter, our simulations with the recently published Bedmap2 bedrock topography indicate a significantly larger contribution to Pliocene sea-level rise from the East Antarctic ice sheet for all six models relative to the simulations with Bedmap1.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2014-11-07
    Description: Rapid, optical measurement of the atmospheric pressure on a fast research aircraft using open-path TDLAS Atmospheric Measurement Techniques, 7, 3653-3666, 2014 Author(s): B. Buchholz, A. Afchine, and V. Ebert Because of the high travel speed, the complex flow dynamics around an aircraft, and the complex dependency of the fluid dynamics on numerous airborne parameters, it is quite difficult to obtain accurate pressure values at a specific instrument location of an aircraft's fuselage. Complex simulations using computational fluid dynamics (CFD) models can in theory computationally "transfer" pressure values from one location to another. However, for long flight patterns, this process is inconvenient and cumbersome. Furthermore, these CFD transfer models require a local experimental validation, which is rarely available. In this paper, we describe an integrated approach for a spectroscopic, calibration-free, in-flight pressure determination in an open-path White cell on an aircraft fuselage using ambient, atmospheric water vapour as the "sensor species". The presented measurements are realised with the HAI (Hygrometer for Atmospheric Investigations) instrument, built for multiphase water detection via calibration-free TDLAS (tunable diode laser absorption spectroscopy). The pressure determination is based on raw data used for H 2 O concentration measurement, but with a different post-flight evaluation method, and can therefore be conducted at deferred time intervals on any desired flight track. The spectroscopic pressure is compared in-flight with the static ambient pressure of the aircraft avionic system and a micro-mechanical pressure sensor, located next to the open-path cell, over a pressure range from 150 to 800 hPa, and a water vapour concentration range of more than 3 orders of magnitude. The correlation between the micro-mechanical pressure sensor measurements and the spectroscopic pressure measurements shows an average deviation from linearity of only 0.14% and a small offset of 9.5 hPa. For the spectroscopic pressure evaluation we derive measurement uncertainties under laboratory conditions of 3.2 and 5.1% during in-flight operation on the HALO airplane. Under certain flight conditions we quantified, for the first time, stalling-induced, dynamic pressure deviations of up to 30% (at 200 hPa) between the avionic sensor and the optical and mechanical pressure sensors integrated in HAI. Such severe local pressure deviations from the typically used avionic pressure are important to take into account for other airborne sensors employed on such fast flying platforms as the HALO aircraft.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2014-11-07
    Description: Snow mass decrease in the Northern Hemisphere (1979/80–2010/11) The Cryosphere Discussions, 8, 5623-5644, 2014 Author(s): Z. Li, J. Liu, L. Huang, N. Wang, B. Tian, J. Zhou, Q. Chen, and P. Zhang Snow cover has a key effect on climate change and hydrological cycling, as well as water supply to a sixth of the world's population across the Northern Hemisphere. However, reliable data on trends in snow cover in the Northern Hemisphere is lacking. Snow water equivalent (SWE) is a common measure of the amount of equivalent water of the snow pack. Here we verify the accuracy of three existing global SWE products and merge the most accurate aspects of them to generate a new SWE product covering the last 32 years (1979/80–2010/11). Using this new SWE product, we show that there has been a significant decreasing trend in the total mass of snow in the Northern Hemisphere. The most notable changes in total snow mass are −16.45 ± 6.68 and −13.55 ± 7.80 Gt year −1 in January and February, respectively. These are followed by March and December, which have trends of −12.58 ± 6.88 and −10.70 ± 5.62 Gt year −1 , respectively, from 1979/80 to 2010/11. During the same period, the temperature in the study area raised 0.17 °C decade −1 , which is thought to be the main reason of SWE decline.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2014-11-07
    Description: Factors controlling Slope Environmental Lapse Rate (SELR) of temperature in the monsoon and cold-arid glacio-hydrological regimes of the Himalaya The Cryosphere Discussions, 8, 5645-5686, 2014 Author(s): R. J. Thayyen and A. P. Dimri Moisture, temperature and precipitation interplay forced through the orographic processes sustains the Himalayan cryospheric system. However, factors controlling the Slope Environmental Lapse Rate (SELR) of temperature along the higher Himalayan mountain slopes across various glacio-hydrologic regimes remain as a key knowledge gap. Present study dwells on the orographic processes driving the moisture–temperature interplay in the monsoon and cold-arid glacio-hydrological regimes of the Himalaya. Systematic data collection at three altitudes between 2540 and 3763 m a.s.l. in the Garhwal Himalaya (hereafter called monsoon regime) and between 3500 and 5600 m a.s.l. in the Ladakh Himalaya (herefater called cold-arid regime) revealed moistrue control on temperature distribution at temporal and spatial scales. Observed daily SELR of temperature ranges between 9.0 to 1.9 °C km −1 and 17.0 to 2.8 °C km −1 in the monsoon and cold-arid regimes respectively highlighting strong regional variability. Moisture influx to the region, either from Indian summer monsoon (ISM) or from Indian winter monsoon (IWM) forced lowering of SELR. This phenophena of "monsoon lowering" of SELR is due to the release latent heat of condensation from orographically focred lifted air parcel. Seasonal response of SELR in the monsoon regime is found to be closly linked with the variations in the local lifting condensation levels (LCL). Contrary to this, cold-arid system is characterised by the extremely high values of daily SELR upto 17 °C km −1 signifying the extremely arid conditions prevailing in summer. Distinctly lower SELR devoid of monsoon lowering at higher altitude sections of monsoon and cold-arid regimes suggests sustained wetter high altitude regimes. We have proposed a SELR model for both glacio-hydrological regimes demostrating with two sections each using a derivative of the Clausius–Clapeyron relationship by deriving monthly SELR indices. It has been proposed that the manifestations of presence or absence of moisture is the single most important factor determining the temperature distribution along the higher Himalayan slopes driven by the orographic forcings. This work also suggests that the arbitary use of temperature lapse rate to extrapolate temperature to the higher Himalaya is extremely untenable.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2014-11-08
    Description: A model study of Abrahamsenbreen, a surging glacier in northern Spitsbergen The Cryosphere Discussions, 8, 5687-5726, 2014 Author(s): J. Oerlemans and W. J. J. van Pelt The climate sensitivity of Abrahamsenbreen, a 20 km long surge-type glacier in northern Spitsbergen, is studied with a simple glacier model. A scheme to describe the surges is included, which makes it possible to account for the effect of surges on the total mass budget of the glacier. A climate reconstruction back to AD 1300, based on ice-core data from Lomonosovfonna and climate records from Longyearbyen, is used to drive the model. The model is calibrated by requesting that it produces the correct Little Ice Age maximum glacier length and simulates the observed magnitude of the 1978-surge. Abrahamsenbreen is strongly out of balance with the current climate. If climatic conditions will remain as they were for the period 1989–2010, the glacier will ultimately shrink to a length of about 4 km (but this will take hundreds of years). For a climate change scenario involving a 2 m yr −1 rise of the equilibrium line from now onwards, we predict that in the year 2100 Abrahamsenbreen will be about 12 km long. The main effect of a surge is to lower the mean surface elevation and to increase the ablation area, thereby causing a negative perturbation of the mass budget. We found that the occurrence of surges leads to a somewhat stronger retreat of the glacier in a warming climate. Because of the very small bed slope, Abrahamsenbreen is sensitive to small perturbations in the equilibrium-line altitude E . For a decrease of E of only 160 m, the glacier would steadily grow into the Woodfjorddalen until after 2000 years it would reach the Woodfjord and calving could slow down the advance.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2014-11-09
    Description: Mixing-layer height retrieval with ceilometer and Doppler lidar: from case studies to long-term assessment Atmospheric Measurement Techniques, 7, 3685-3704, 2014 Author(s): J. H. Schween, A. Hirsikko, U. Löhnert, and S. Crewell Aerosol signatures observed by ceilometers are frequently used to derive mixing-layer height (MLH) which is an essential variable for air quality modelling. However, Doppler wind lidar measurements of vertical velocity can provide a more direct estimation of MLH via simple thresholding. A case study reveals difficulties in the aerosol-based MLH retrieval during transition times when the mixing layer builds up in the morning and when turbulence decays in the afternoon. The difficulties can be explained by the fact that the aerosol distribution is related to the history of the mixing process and aerosol characteristics are modified by humidification. The results of the case study are generalized by evaluating one year of joint measurements by a Vaisala CT25K and a HALO Photonics Streamline wind lidar. On average the aerosol-based retrieval gives higher MLH than the wind lidar with an overestimation of MLH by about 300 m (600 m) in the morning (late afternoon). Also, the daily aerosol-based maximum MLH is larger and occurs later during the day and the average morning growth rates are smaller than those derived from the vertical wind. In fair weather conditions classified by less than 4 octa cloud cover the mean diurnal cycle of cloud base height corresponds well to the mixing-layer height showing potential for a simplified MLH estimation.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2011-06-16
    Description: Radio occultation bending angle anomalies during tropical cyclones Atmospheric Measurement Techniques, 4, 1053-1060, 2011 Author(s): R. Biondi, T. Neubert, S. Syndergaard, and J. K. Nielsen The tropical deep convection affects the radiation balance of the atmosphere changing the water vapor mixing ratio and the temperature of the upper troposphere lower stratosphere. The aim of this work is to better understand these processes and to investigate if severe storms leave a significant signature in radio occultation profiles in the tropical tropopause layer. Using tropical cyclone best track database and data from different GPS radio occultation missions (COSMIC, GRACE, CHAMP, SACC and GPSMET), we selected 1194 profiles in a time window of 3 h and a space window of 300 km from the eye of the cyclone. We show that the bending angle anomaly of a GPS radio occultation signal is typically larger than the climatology in the upper troposphere and lower stratosphere and that a double tropopause during deep convection can easily be detected using this technique. Comparisons with co-located radiosondes, climatology of tropopause altitudes and GOES analyses are also shown to support the hypothesis that the bending angle anomaly can be used as an indicator of convective towers. The results are discussed in connection to the GPS radio occultation receiver which will be part of the Atomic Clock Ensemble in Space (ACES) payload on the International Space Station.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2011-06-18
    Description: Assimilation of GPS radio occultation data at DWD Atmospheric Measurement Techniques, 4, 1105-1113, 2011 Author(s): H. Anlauf, D. Pingel, and A. Rhodin We describe the status of the assimilation of bending angles from GPS radio occultations in the 3D-Var for DWD's operational global forecast model GME ("Global Model for Europe"). Experiments show that the assimilation of GPSRO data leads to a significant reduction of biases in the analyses of temperature, humidity and wind in the upper troposphere and the stratosphere, as well as a better r. m. s. fit in the comparison to radiosondes. The impact on forecasts is most prominent in the data sparse Southern Hemisphere, but is also quite notable in the Northern Hemisphere extra-tropics. The positive results found in the impact experiments lead to the implementation of the assimilation of GPS radio occultations from GRACE-A, FORMOSAT-3/COSMIC and GRAS/MetOp-A into the operational suite on 3 August 2010. We also show some initial results from assimilation experiments using radio occultation data from the German research satellite TerraSAR-X.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2011-06-23
    Description: Brief communication "Snow profile associated measurements (SPAM) – a new instrument for quick snow profile measurements" The Cryosphere Discussions, 5, 1737-1748, 2011 Author(s): P. Lahtinen A new instrument concept (SPAM) for snow profile associated measurements is presented. The potential of the concept is demonstrated by presenting preliminary results obtained with the prototype instrument. With this concept it is possible to retrieve rapid snow profiles of e.g. light extinction, reflectance, temperature and snow layer structure with high vertical resolution. As a side-product, also snow depth is retrieved.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2011-06-25
    Description: CIAO: the CNR-IMAA advanced observatory for atmospheric research Atmospheric Measurement Techniques, 4, 1191-1208, 2011 Author(s): F. Madonna, A. Amodeo, A. Boselli, C. Cornacchia, V. Cuomo, G. D'Amico, A. Giunta, L. Mona, and G. Pappalardo Long-term observations of aerosol and clouds are of crucial importance to understand the weather climate system. At the Istituto di Metodologie per l'Analisi Ambientale of the Italian National Research Council (CNR-IMAA) an advanced atmospheric observatory, named CIAO, is operative. CIAO (CNR-IMAA Atmospheric Observatory) main scientific objective is the long term measurement for the climatology of aerosol and cloud properties. Its equipment addresses the state-of-the-art for the ground-based remote sensing of aerosol, water vapour and clouds including active and passive sensors, like lidars, ceilometers, radiometers, and a radar. This paper describes the CIAO infrastructure, its scientific activities as well as the observation strategy. The observation strategy is mainly organized in order to provide quality assured measurements for satellite validation and model evaluation and to fully exploit the synergy and integration of the active and passive sensors for the improvement of atmospheric profiling. Data quality is ensured both by the application of protocols and dedicated quality assurance programs mainly related to the projects and networks in which the infrastructure is involved. The paper also introduces examples of observations performed at CIAO and of the synergies and integration algorithms (using Raman lidar and microwave profiler data) developed and implemented at the observatory for the optimization and improvement of water vapour profiling. CIAO database represents an optimal basis to study the synergy between different sensors and to investigate aerosol-clouds interactions, and can give a significant contribution to the validation programs of the incoming new generation satellite missions.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2011-06-29
    Description: Airborne DOAS limb measurements of tropospheric trace gas profiles: case studies on the profile retrieval of O 4 and BrO Atmospheric Measurement Techniques, 4, 1241-1260, 2011 Author(s): C. Prados-Roman, A. Butz, T. Deutschmann, M. Dorf, L. Kritten, A. Minikin, U. Platt, H. Schlager, H. Sihler, N. Theys, M. Van Roozendael, T. Wagner, and K. Pfeilsticker A novel limb scanning mini-DOAS spectrometer for the detection of UV/vis absorbing radicals (e.g., O 3 , BrO, IO, HONO) was deployed on the DLR-Falcon (Deutsches Zentrum für Luft- und Raumfahrt) aircraft and tested during the ASTAR 2007 campaign (Arctic Study of Tropospheric Aerosol, Clouds and Radiation) that took place at Svalbard (78° N) in spring 2007. Our main objectives during this campaign were to test the instrument, and to perform spectral and profile retrievals of tropospheric trace gases, with particular interest on investigating the distribution of halogen compounds (e.g., BrO) during the so-called ozone depletion events (ODEs). In the present work, a new method for the retrieval of vertical profiles of tropospheric trace gases from tropospheric DOAS limb observations is presented. Major challenges arise from modeling the radiative transfer in an aerosol and cloud particle loaded atmosphere, and from overcoming the lack of a priori knowledge of the targeted trace gas vertical distribution (e.g., unknown tropospheric BrO vertical distribution). Here, those challenges are tackled by a mathematical inversion of tropospheric trace gas profiles using a regularization approach constrained by a retrieved vertical profile of the aerosols extinction coefficient E M . The validity and limitations of the algorithm are tested with in situ measured E M , and with an absorber of known vertical profile (O 4 ). The method is then used for retrieving vertical profiles of tropospheric BrO. Results indicate that, for aircraft ascent/descent observations, the limit for the BrO detection is roughly 1.5 pptv (pmol mol −1 ), and the BrO profiles inferred from the boundary layer up to the upper troposphere and lower stratosphere have around 10 degrees of freedom. For the ASTAR 2007 deployments during ODEs, the retrieved BrO vertical profiles consistently indicate high BrO mixing ratios (∼15 pptv) within the boundary layer, low BrO mixing ratios (≤1.5 pptv) in the free troposphere, occasionally enhanced BrO mixing ratios (∼1.5 pptv) in the upper troposphere, and increasing BrO mixing ratios with altitude in the lowermost stratosphere. These findings agree reasonably well with satellite and balloon-borne soundings of total and partial BrO atmospheric column densities.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2011-06-10
    Description: Processing of GRAS/METOP radio occultation data recorded in closed-loop and raw-sampling modes Atmospheric Measurement Techniques, 4, 1021-1026, 2011 Author(s): M. E. Gorbunov, K. B. Lauritsen, H.-H. Benzon, G. B. Larsen, S. Syndergaard, and M. B. Sørensen Instrument GRAS (Global Navigation Satellite System Receiver for Atmospheric Sounding) on-board of the Metop-A satellite was activated on 27 October 2006. Currently, Metop-A is a fully operational satellite with GRAS providing from 650–700 occultations per day. We describe our processing of GRAS data based on the modification of our OCC software, which was modified to become capable of reading and processing GRAS data. We perform a statistical comparison of bending angles and refractivities derived from GRAS data with those derived from ECMWF analyses. We conclude that GRAS data have error characteristics close to those of COSMIC data. In the height range 10–30 km, the systematic refractivity difference GRAS–ECMWF is of the order of 0.1–0.2 %, and the standard deviation is 0.3–0.6 %. In the lower troposphere GRAS refractivity and bending angle indicate a negative bias, which reaches its maximum value in the tropics. In particular the retrieved refractivity is biased by up to 2.5 %. The negative bias pattern is similar to that found in the statistical validation of COSMIC data. This makes it probable that the bias should not be attributed to the instrument design or hardware.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2011-06-10
    Description: Eight-component retrievals from ground-based MAX-DOAS observations Atmospheric Measurement Techniques, 4, 1027-1044, 2011 Author(s): H. Irie, H. Takashima, Y. Kanaya, K. F. Boersma, L. Gast, F. Wittrock, D. Brunner, Y. Zhou, and M. Van Roozendael We attempt for the first time to retrieve lower-tropospheric vertical profile information for 8 quantities from ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations. The components retrieved are the aerosol extinction coefficients at two wavelengths, 357 and 476 nm, and NO 2 , HCHO, CHOCHO, H 2 O, SO 2 , and O 3 volume mixing ratios. A Japanese MAX-DOAS profile retrieval algorithm, version 1 (JM1), is applied to observations performed at Cabauw, the Netherlands (51.97° N, 4.93° E), in June–July 2009 during the Cabauw Intercomparison campaign of Nitrogen Dioxide measuring Instruments (CINDI). Of the retrieved profiles, we focus here on the lowest-layer data (mean values at altitudes 0–1 km), where the sensitivity is usually highest owing to the longest light path. In support of the capability of the multi-component retrievals, we find reasonable overall agreement with independent data sets, including a regional chemical transport model (CHIMERE) and in situ observations performed near the surface (2–3 m) and at the 200-m height level of the tall tower in Cabauw. Plumes of enhanced HCHO and SO 2 were likely affected by biogenic and ship emissions, respectively, and an improvement in their emission strengths is suggested for better agreement between CHIMERE simulations and MAX-DOAS observations. Analysis of air mass factors indicates that the horizontal spatial representativeness of MAX-DOAS observations is about 3–15 km (depending mainly on aerosol extinction), comparable to or better than the spatial resolution of current UV-visible satellite observations and model calculations. These demonstrate that MAX-DOAS provides multi-component data useful for the evaluation of satellite observations and model calculations and can play an important role in bridging different data sets having different spatial resolutions.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2011-06-16
    Description: Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra Atmospheric Measurement Techniques, 4, 1061-1076, 2011 Author(s): I. Morino, O. Uchino, M. Inoue, Y. Yoshida, T. Yokota, P. O. Wennberg, G. C. Toon, D. Wunch, C. M. Roehl, J. Notholt, T. Warneke, J. Messerschmidt, D. W. T. Griffith, N. M. Deutscher, V. Sherlock, B. Connor, J. Robinson, R. Sussmann, and M. Rettinger Column-averaged volume mixing ratios of carbon dioxide and methane retrieved from the Greenhouse gases Observing SATellite (GOSAT) Short-Wavelength InfraRed observation (GOSAT SWIR X CO 2 and X CH 4 ) were compared with the reference calibrated data obtained by ground-based high-resolution Fourier Transform Spectrometers (g-b FTSs) participating in the Total Carbon Column Observing Network (TCCON). Preliminary results are as follows: the GOSAT SWIR X CO 2 and X CH 4 (Version 01.xx) are biased low by 8.85 ± 4.75 ppm (2.3 ± 1.2 %) and 20.4 ± 18.9 ppb (1.2 ± 1.1 %), respectively. The standard deviation of the GOSAT SWIR X CO 2 and X CH 4 is about 1 % (1 σ) after correcting the negative biases of X CO 2 and X CH 4 by 8.85 ppm and 20.4 ppb, respectively. The latitudinal distributions of zonal means of the GOSAT SWIR X CO 2 and X CH 4 show similar features to those of the g-b FTS data except for the negative biases in the GOSAT data.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2011-06-16
    Description: Modeling the impact of wintertime rain events on the thermal regime of permafrost The Cryosphere Discussions, 5, 1697-1736, 2011 Author(s): S. Westermann, J. Boike, M. Langer, T. V. Schuler, and B. Etzelmüller In this study, we present field measurements and numerical process modeling from Western Svalbard showing that the ground surface temperature below the snow is impacted by strong wintertime rain events. During such events, rain water percolates to the bottom of the snow pack, where it freezes and releases latent heat. In the winter season 2005/2006, on the order of 20 to 50 % of the wintertime precipitation fell as rain, thus confining the surface temperature to close to 0 °C for several weeks. The measured average ground surface temperature during the snow-covered period is −0.6 °C, despite of a snow surface temperature of on average −8.5 °C. For the considered period, the temperature threshold below which permafrost is sustainable on long timescales is exceeded. We present a simplified model of rain water infiltration in the snow coupled to a transient permafrost model. While small amounts of rain have only minor impact on the ground surface temperature, strong rain events have a long-lasting impact. We show that consecutively applying the conditions encountered in the winter season 2005/2006 results in the formation of an unfrozen zone in the soil after three to five years, depending on the prescribed soil properties. If water infiltration in the snow is disabled in the model, more time is required for the permafrost to reach a similar state of degradation.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2011-06-18
    Description: Remote sensing of aerosols over snow using infrared AATSR observations Atmospheric Measurement Techniques, 4, 1133-1145, 2011 Author(s): L. G. Istomina, W. von Hoyningen-Huene, A. A. Kokhanovsky, E. Schultz, and J. P. Burrows Infrared (IR) retrievals of aerosol optical thickness (AOT) are challenging because of the low reflectance of aerosol layer at longer wavelengths. In this paper we present a closer analysis of this problem, performed with radiative transfer (RT) simulations for coarse and accumulation mode of four main aerosol components. It shows the strong angular dependence of aerosol IR reflectance at low solar elevations resulting from the significant asymmetry of aerosol phase function at these wavelengths. This results in detectable values of aerosol IR reflectance at certain non-nadir observation angles providing the advantage of multiangle remote sensing instruments for a retrieval of AOT at longer wavelengths. Such retrievals can be of importance e.g. in case of a very strong effect of the surface on the top of atmosphere (TOA) reflectance in the visible spectral range. In the current work, a new method to retrieve AOT of the coarse and accumulation mode particles over snow has been developed using the measurements of Advanced Along Track Scanning Radiometer (AATSR) on board the ENVISAT satellite. The algorithm uses AATSR channel at 3.7 μm and utilizes its dual-viewing observation technique, implying the forward view with an observation zenith angle of around 55 degrees and the nadir view. It includes cloud/snow discrimination, extraction of the atmospheric reflectance out of measured brightness temperature (BT) at 3.7 μm, and interpolation of look-up tables (LUTs) for a given aerosol reflectance. The algorithm uses LUTs, separately simulated with RT forward calculations. The resulting AOT at 500 nm is estimated from the value at 3.7 μm using a fixed Angström parameter. The presented method has been validated against ground-based Aerosol Robotic Network (AERONET) data for 4 high Arctic stations and shows good agreement. A case study has been performed at W-Greenland on 5 July 2008. The day before was characterized by a noticeable dust event. The retrieved AOT maps of the region show a clear increase of AOT in the Kangerlussuaq area. The area of increased AOT was detected on 5 July on the ice sheet east of Kangelussuaq, opposite to the observed north easterly wind at ground level. This position can be explained by a small scale atmospheric circulation transporting the mobilized mineral dust upslope, after its intrusion into the upper branch of the circulation. The performed study of atmospheric reflectance at 3.7 μm also shows possibilities for the detection and retrievals of cloud properties over snow surfaces.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2011-06-23
    Description: Analytical system for stable carbon isotope measurements of low molecular weight (C 2 -C 6 ) hydrocarbons Atmospheric Measurement Techniques, 4, 1161-1175, 2011 Author(s): A. Zuiderweg, R. Holzinger, and T. Röckmann We present setup, testing and initial results from a new automated system for stable carbon isotope ratio measurements on C 2 to C 6 atmospheric hydrocarbons. The inlet system allows analysis of trace gases from air samples ranging from a few liters for urban samples and samples with high mixing ratios, to many tens of liters for samples from remote unpolluted regions with very low mixing ratios. The centerpiece of the sample preparation is the separation trap, which is used to separate CO 2 and methane from the compounds of interest. The main features of the system are (i) the capability to sample up to 300 l of air, (ii) long term (since May 2009) operational δ 13 C accuracy levels in the range 0.3–0.8 ‰ (1-σ), and (iii) detection limits of order 1.5–2.5 ngC (collected amount of substance) for all reported compounds. The first application of this system was the analysis of 21 ambient air samples taken during 48 h in August 2009 in Utrecht, the Netherlands. Results obtained are generally in good agreement with those from similar urban ambient air studies. Short sample intervals allowed by the design of the instrument help to illustrate the complex diurnal behavior of hydrocarbons in an urban environment, where diverse sources, dynamical processes, and chemical reactions are present.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2011-06-10
    Description: Source brightness fluctuation correction of solar absorption fourier transform mid infrared spectra Atmospheric Measurement Techniques, 4, 1045-1051, 2011 Author(s): T. Ridder, T. Warneke, and J. Notholt The precision and accuracy of trace gas observations using solar absorption Fourier Transform infrared spectrometry depend on the stability of the light source. Fluctuations in the source brightness, however, cannot always be avoided. Current correction schemes, which calculate a corrected interferogram as the ratio of the raw DC interferogram and a smoothed DC interferogram, are applicable only to near infrared measurements. Spectra in the mid infrared spectral region below 2000 cm −1 are generally considered uncorrectable, if they are measured with a MCT detector. Such measurements introduce an unknown offset to MCT interferograms, which prevents the established source brightness fluctuation correction. This problem can be overcome by a determination of the offset using the modulation efficiency of the instrument. With known modulation efficiency the offset can be calculated, and the source brightness correction can be performed on the basis of offset-corrected interferograms. We present a source brightness fluctuation correction method which performs the smoothing of the raw DC interferogram in the interferogram domain by an application of a running mean instead of high-pass filtering the corresponding spectrum after Fourier transformation of the raw DC interferogram. This smoothing can be performed with the onboard software of commercial instruments. The improvement of MCT spectra and subsequent ozone profile and total column retrievals is demonstrated. Application to InSb interferograms in the near infrared spectral region proves the equivalence with the established correction scheme.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2011-06-23
    Description: An improved NO 2 retrieval for the GOME-2 satellite instrument Atmospheric Measurement Techniques, 4, 1147-1159, 2011 Author(s): A. Richter, M. Begoin, A. Hilboll, and J. P. Burrows Satellite observations of nitrogen dioxide (NO 2 ) provide valuable information on both stratospheric and tropospheric composition. Nadir measurements from GOME, SCIAMACHY, OMI, and GOME-2 have been used in many studies on tropospheric NO 2 burdens, the importance of different NO x emissions sources and their change over time. The observations made by the three GOME-2 instruments will extend the existing data set by more than a decade, and a high quality of the data as well as their good consistency with existing time series is of particular importance. In this paper, an improved GOME-2 NO 2 retrieval is described which reduces the scatter of the individual NO 2 columns globally but in particular in the region of the Southern Atlantic Anomaly. This is achieved by using a larger fitting window including more spectral points, and by applying a two step spike removal algorithm in the fit. The new GOME-2 data set is shown to have good consistency with SCIAMACHY NO 2 columns. Remaining small differences are shown to be linked to changes in the daily solar irradiance measurements used in both GOME-2 and SCIAMACHY retrievals. In the large retrieval window, a not previously identified spectral signature was found which is linked to deserts and other regions with bare soil. Inclusion of this empirically derived pseudo cross-section significantly improves the retrievals and potentially provides information on surface properties and desert aerosols. Using the new GOME-2 NO 2 data set, a long-term average of tropospheric columns was computed and high-pass filtered. The resulting map shows evidence for pollution from several additional shipping lanes, not previously identified in satellite observations. This illustrates the excellent signal to noise ratio achievable with the improved GOME-2 retrievals.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2011-06-24
    Description: Matching radiative transfer models and radiosonde data from the EPS/Metop Sodankylä campaign to IASI measurements Atmospheric Measurement Techniques, 4, 1177-1189, 2011 Author(s): X. Calbet, R. Kivi, S. Tjemkes, F. Montagner, and R. Stuhlmann Radiances observed from IASI are compared to calculated ones. Calculated radiances are obtained using several radiative transfer models (OSS, LBLRTM v11.3 and v11.6) on best estimates of the atmospheric state vectors. The atmospheric state vectors are derived from cryogenic frost point hygrometer and humidity dry bias corrected RS92 measurements flown on sondes launched 1 h and 5 min before IASI overpass time. The temperature and humidity best estimate profiles are obtained by interpolating or extrapolating these measurements to IASI overpass time. The IASI observed and calculated radiances match to within one sigma IASI instrument noise in the spectral region where water vapour is a strong absorber (wavenumber, ν, in the range of 1500 ≤ ν ≤ 1570 and 1615 ≤ ν ≤ 1800 cm −1 ).
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2011-06-30
    Description: Eddy covariance measurements with high-resolution time-of-flight aerosol mass spectrometry: a new approach to chemically resolved aerosol fluxes Atmospheric Measurement Techniques, 4, 1275-1289, 2011 Author(s): D. K. Farmer, J. R. Kimmel, G. Phillips, K. S. Docherty, D. R. Worsnop, D. Sueper, E. Nemitz, and J. L. Jimenez Although laboratory studies show that biogenic volatile organic compounds (VOCs) yield substantial secondary organic aerosol (SOA), production of biogenic SOA as indicated by upward fluxes has not been conclusively observed over forests. Further, while aerosols are known to deposit to surfaces, few techniques exist to provide chemically-resolved particle deposition fluxes. To better constrain aerosol sources and sinks, we have developed a new technique to directly measure fluxes of chemically-resolved submicron aerosols using the high-resolution time-of-flight aerosol mass spectrometer (HR-AMS) in a new, fast eddy covariance mode. This approach takes advantage of the instrument's ability to quantitatively identify both organic and inorganic components, including ammonium, sulphate and nitrate, at a temporal resolution of several Hz. The new approach has been successfully deployed over a temperate ponderosa pine plantation in California during the BEARPEX-2007 campaign, providing both total and chemically resolved non-refractory (NR) PM 1 fluxes. Average deposition velocities for total NR-PM 1 aerosol at noon were 2.05 ± 0.04 mm s −1 . Using a high resolution measurement of the NH 2 + and NH 3 + fragments, we demonstrate the first eddy covariance flux measurements of particulate ammonium, which show a noon-time deposition velocity of 1.9 ± 0.7 mm s −1 and are dominated by deposition of ammonium sulphate.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2011-06-18
    Description: Space and ground segment performance and lessons learned of the FORMOSAT-3/COSMIC mission: four years in orbit Atmospheric Measurement Techniques, 4, 1115-1132, 2011 Author(s): C.-J. Fong, D. Whiteley, E. Yang, K. Cook, V. Chu, B. Schreiner, D. Ector, P. Wilczynski, T.-Y. Liu, and N. Yen The FORMOSAT-3/COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) Mission consisting of six Low-Earth-Orbit (LEO) satellites is the world's first demonstration constellation using radio occultation signals from Global Positioning System (GPS) satellites. The atmospheric profiles derived by processing radio occultation signals are retrieved in near real-time for global weather/climate monitoring, numerical weather prediction, and space weather research. The mission has processed, on average, 1400 to 1800 high-quality atmospheric sounding profiles per day. The atmospheric radio occultation data are assimilated into operational numerical weather prediction models for global weather prediction, including typhoon/hurricane/cyclone forecasts. The radio occultation data has shown a positive impact on weather predictions at many national weather forecast centers. A follow-on mission was proposed that transitions the current experimental research mission into a significantly improved real-time operational mission, which will reliably provide 8000 radio occultation soundings per day. The follow-on mission, as planned, will consist of 12 LEO satellites (compared to 6 satellites for the current mission) with data latency requirement of 45 min (compared to 3 h for the current mission), which will provide greatly enhanced opportunities for operational forecasts and scientific research. This paper will address the FORMOSAT-3/COSMIC system and mission overview, the spacecraft and ground system performance after four years in orbit, the lessons learned from the encountered technical challenges and observations, and the expected design improvements for the spacecraft and ground system for FORMOSAT-7/COSMIC-2.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2011-06-17
    Description: Exploring Earth's atmosphere with radio occultation: contributions to weather, climate and space weather Atmospheric Measurement Techniques, 4, 1077-1103, 2011 Author(s): R. A. Anthes The launch of the proof-of-concept mission GPS/MET (Global Positioning System/Meteorology) in 1995 began a revolution in profiling Earth's atmosphere through radio occultation (RO). GPS/MET; subsequent single-satellite missions CHAMP (CHAllenging Minisatellite Payload), SAC-C (Satellite de Aplicaciones Cientificas-C), GRACE (Gravity Recovery and Climate Experiment), METOP-A, and TerraSAR-X (Beyerle et al., 2010); and the six-satellite constellation, FORMOSAT-3/COSMIC (Formosa Satellite mission {#}3/Constellation Observing System for Meteorology, Ionosphere, and Climate) have proven the theoretical capabilities of RO to provide accurate and precise profiles of electron density in the ionosphere and refractivity, containing information on temperature and water vapor, in the stratosphere and troposphere. This paper summarizes results from these RO missions and the applications of RO observations to atmospheric research and operational weather analysis and prediction.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2011-06-29
    Description: Detection of HO 2 by laser-induced fluorescence: calibration and interferences from RO 2 radicals Atmospheric Measurement Techniques, 4, 1209-1225, 2011 Author(s): H. Fuchs, B. Bohn, A. Hofzumahaus, F. Holland, K. D. Lu, S. Nehr, F. Rohrer, and A. Wahner HO 2 concentration measurements are widely accomplished by chemical conversion of HO 2 to OH including reaction with NO and subsequent detection of OH by laser-induced fluorescence. RO 2 radicals can be converted to OH via a similar radical reaction sequence including reaction with NO, so that they are potential interferences for HO 2 measurements. Here, the conversion efficiency of various RO 2 species to HO 2 is investigated. Experiments were conducted with a radical source that produces OH and HO 2 by water photolysis at 185 nm, which is frequently used for calibration of LIF instruments. The ratio of HO 2 and the sum of OH and HO 2 concentrations provided by the radical source was investigated and was found to be 0.50 ± 0.02. RO 2 radicals are produced by the reaction of various organic compounds with OH in the radical source. Interferences via chemical conversion from RO 2 radicals produced by the reaction of OH with methane and ethane (H-atom abstraction) are negligible consistent with measurements in the past. However, RO 2 radicals from OH plus alkene- and aromatic-precursors including isoprene (mainly OH-addition) are detected with a relative sensitivity larger than 80 % with respect to that for HO 2 for the configuration of the instrument with which it was operated during field campaigns. Also RO 2 from OH plus methyl vinyl ketone and methacrolein exhibit a relative detection sensitivity of 60 %. Thus, previous measurements of HO 2 radical concentrations with this instrument were biased in the presence of high RO 2 radical concentrations from isoprene, alkenes or aromatics, but were not affected by interferences in remote clean environment with no significant emissions of biogenic VOCs, when the OH reactivity was dominated by small alkanes. By reducing the NO concentration and/or the transport time between NO addition and OH detection, interference from these RO 2 species are suppressed to values below 20 % relative to the HO 2 detection sensitivity. The HO 2 conversion efficiency is also smaller by a factor of four, but this is still sufficient for atmospheric HO 2 concentration measurements for a wide range of conditions.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2011-06-29
    Description: Diode laser-based cavity ring-down instrument for NO 3 , N 2 O 5 , NO, NO 2 and O 3 from aircraft Atmospheric Measurement Techniques, 4, 1227-1240, 2011 Author(s): N. L. Wagner, W. P. Dubé, R. A. Washenfelder, C. J. Young, I. B. Pollack, T. B. Ryerson, and S. S. Brown This article presents a diode laser-based, cavity ring-down spectrometer for simultaneous in situ measurements of four nitrogen oxide species, NO 3 , N 2 O 5 , NO, NO 2 , as well as O 3 , designed for deployment on aircraft. The instrument measures NO 3 and NO 2 by optical extinction at 662 nm and 405 nm, respectively; N 2 O 5 is measured by thermal conversion to NO 3 , while NO and O 3 are measured by chemical conversion to NO 2 . The instrument has several advantages over previous instruments developed by our group for measurement of NO 2 , NO 3 and N 2 O 5 alone, based on a pulsed Nd:YAG and dye laser. First, the use of continuous wave diode lasers reduces the requirements for power and weight and eliminates hazardous materials. Second, detection of NO 2 at 405 nm is more sensitive than our previously reported 532 nm instrument, and does not have a measurable interference from O 3 . Third, the instrument includes chemical conversion of NO and O 3 to NO 2 to provide measurements of total NO x (= NO + NO 2 ) and O x (= NO 2 + O 3 ) on two separate channels; mixing ratios of NO and O 3 are determined by subtraction of NO 2 . Finally, all five species are calibrated against a single standard based on 254 nm O 3 absorption to provide high accuracy. Disadvantages include an increased sensitivity to water vapor on the 662 nm NO 3 and N 2 O 5 channels and a modest reduction in sensitivity for these species compared to the pulsed laser instrument. The in-flight detection limit for both NO 3 and N 2 O 5 is 3 pptv (2 σ, 1 s) and for NO, NO 2 and O 3 is 140, 90, and 120 pptv (2 σ, 1 s) respectively. Demonstrated performance of the instrument in a laboratory/ground based environment is better by approximately a factor of 2–3. The NO and NO 2 measurements are less precise than research-grade chemiluminescence instruments. However, the combination of these five species in a single instrument, calibrated to a single analytical standard, provides a complete and accurate picture of nighttime nitrogen oxide chemistry. The instrument performance is demonstrated using data acquired during a recent field campaign in California.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2011-05-13
    Description: Investigating changes in basal conditions of Variegated Glacier prior and during its 1982–1983 surge The Cryosphere Discussions, 5, 1461-1494, 2011 Author(s): M. Jay-Allemand, F. Gillet-Chaulet, O. Gagliardini, and M. Nodet The Variegated Glacier (Alaska) is known to surge periodically after a sufficient amount of cumulative mass balance is reached, but this observation is difficult to link with changes in the basal conditions. Here, using a 10-year dataset, consisting in surface topography and surface velocity observations along a flow line for 25 dates, we have reconstructed the evolution of the basal conditions prior and during the 1982–1983 surge. The model solves the full-Stokes problem along the central flow line using the finite element method. For the 25 dates of the dataset, the basal friction parameter distribution is inferred using the inverse method proposed by Arthern and Gudmundson (2010). This method is here slightly modified by incorporating a regularisation term in the cost function to avoid short wave length changes in the friction parameter. Our results indicate that dramatic changes in the basal conditions occurred between 1973 to 1983. Prior to the surge, periodical changes can be observed between winter and summer, with a regular increase of the sliding from 1973 to 1982. During the surge, the basal friction decreased dramatically and an area of very low friction moved from the upper part of the glacier to its terminus. Using a more complex friction law, these changes in basal sliding are then interpreted in terms of basal water pressure. It confirms that dramatic changes took place in the subglacial drainage system of Variegated Glacier, moving from a relatively efficient drainage system prior to the surge to an inefficient one during the surge. By reconstructing the water pressure evolution at the base of the glacier it is possible to infer realistic scenarios for the hydrological history leading to the occurrence of a surge.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2011-05-24
    Description: Retrieval of water vapor vertical distributions in the upper troposphere and the lower stratosphere from SCIAMACHY limb measurements Atmospheric Measurement Techniques, 4, 933-954, 2011 Author(s): A. Rozanov, K. Weigel, H. Bovensmann, S. Dhomse, K.-U. Eichmann, R. Kivi, V. Rozanov, H. Vömel, M. Weber, and J. P. Burrows This study describes the retrieval of water vapor vertical distributions in the upper troposphere and lower stratosphere (UTLS) altitude range from space-borne observations of the scattered solar light made in limb viewing geometry. First results using measurements from SCIAMACHY (Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY) aboard ENVISAT (Environmental Satellite) are presented here. In previous publications, the retrieval of water vapor vertical distributions has been achieved exploiting either the emitted radiance leaving the atmosphere or the transmitted solar radiation. In this study, the scattered solar radiation is used as a new source of information on the water vapor content in the UTLS region. A recently developed retrieval algorithm utilizes the differential absorption structure of the water vapor in 1353–1410 nm spectral range and yields the water vapor content in the 11–25 km altitude range. In this study, the retrieval algorithm is successfully applied to SCIAMACHY limb measurements and the resulting water vapor profiles are compared to in situ balloon-borne observations. The results from both satellite and balloon-borne instruments are found to agree typically within 10 %.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2011-05-27
    Description: Fast NO 2 retrievals from Odin-OSIRIS limb scatter measurements Atmospheric Measurement Techniques, 4, 965-972, 2011 Author(s): A. E. Bourassa, C. A. McLinden, C. E. Sioris, S. Brohede, A. F. Bathgate, E. J. Llewellyn, and D. A. Degenstein The feasibility of retrieving vertical profiles of NO 2 from space-based measurements of limb scattered sunlight has been demonstrated using several different data sets since the 1980's. The NO 2 data product routinely retrieved from measurements made by the Optical Spectrograph and InfraRed Imaging System (OSIRIS) instrument onboard the Odin satellite uses a spectral fitting technique over the 437 to 451 nm range, over which there are 36 individual wavelength measurements. In this work we present a proof of concept technique for the retrieval of NO 2 using only 4 of the 36 OSIRIS measurements in this wavelength range, which reduces the computational cost by almost an order of magnitude. The method is an adaptation of a triplet analysis technique that is currently used for the OSIRIS retrievals of ozone at Chappuis band wavelengths. The results obtained are shown to be in very good agreement with the spectral fit method, and provide an important alternative for applications where the computational burden is very high. Additionally this provides a baseline for future instrument design in terms of cost effectiveness and reducing spectral range requirements.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2014-12-19
    Description: Intercomparison of stratospheric gravity wave observations with AIRS and IASI Atmospheric Measurement Techniques, 7, 4517-4537, 2014 Author(s): L. Hoffmann, M. J. Alexander, C. Clerbaux, A. W. Grimsdell, C. I. Meyer, T. Rößler, and B. Tournier Gravity waves are an important driver for the atmospheric circulation and have substantial impact on weather and climate. Satellite instruments offer excellent opportunities to study gravity waves on a global scale. This study focuses on observations from the Atmospheric Infrared Sounder (AIRS) onboard the National Aeronautics and Space Administration Aqua satellite and the Infrared Atmospheric Sounding Interferometer (IASI) onboard the European MetOp satellites. The main aim of this study is an intercomparison of stratospheric gravity wave observations of both instruments. In particular, we analyzed AIRS and IASI 4.3 μm brightness temperature measurements, which directly relate to stratospheric temperature. Three case studies showed that AIRS and IASI provide a clear and consistent picture of the temporal development of individual gravity wave events. Statistical comparisons based on a 5-year period of measurements (2008–2012) showed similar spatial and temporal patterns of gravity wave activity. However, the statistical comparisons also revealed systematic differences of variances between AIRS and IASI that we attribute to the different spatial measurement characteristics of both instruments. We also found differences between day- and nighttime data that are partly due to the local time variations of the gravity wave sources. While AIRS has been used successfully in many previous gravity wave studies, IASI data are applied here for the first time for that purpose. Our study shows that gravity wave observations from different hyperspectral infrared sounders such as AIRS and IASI can be directly related to each other, if instrument-specific characteristics such as different noise levels and spatial resolution and sampling are carefully considered. The ability to combine observations from different satellites provides an opportunity to create a long-term record, which is an exciting prospect for future climatological studies of stratospheric gravity wave activity.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2014-12-19
    Description: Collection efficiency of the soot-particle aerosol mass spectrometer (SP-AMS) for internally mixed particulate black carbon Atmospheric Measurement Techniques, 7, 4507-4516, 2014 Author(s): M. D. Willis, A. K. Y. Lee, T. B. Onasch, E. C. Fortner, L. R. Williams, A. T. Lambe, D. R. Worsnop, and J. P. D. Abbatt The soot-particle aerosol mass spectrometer (SP-AMS) uses an intra-cavity infrared laser to vaporize refractory black carbon (rBC) containing particles, making the particle beam–laser beam overlap critical in determining the collection efficiency (CE) for rBC and associated non-refractory particulate matter (NR-PM). This work evaluates the ability of the SP-AMS to quantify rBC and NR-PM mass in internally mixed particles with different thicknesses of organic coating. Using apparent relative ionization efficiencies for uncoated and thickly coated rBC particles, we report measurements of SP-AMS sensitivity to NR-PM and rBC, for Regal Black, the recommended particulate calibration material. Beam width probe (BWP) measurements are used to illustrate an increase in sensitivity for highly coated particles due to narrowing of the particle beam, which enhances the CE of the SP-AMS by increasing the laser beam–particle beam overlap. Assuming complete overlap for thick coatings, we estimate CE for bare Regal Black particles of 0.6 ± 0.1, which suggests that previously measured SP-AMS sensitivities to Regal Black were underestimated by up to a factor of 2. The efficacy of the BWP measurements is highlighted by studies at a busy road in downtown Toronto and at a non-roadside location, which show particle beam widths similar to, but greater than that of bare Regal Black and coated Regal Black, respectively. Further BWP measurements at field locations will help to constrain the range of CE for fresh and aged rBC-containing particles. The ability of the SP-AMS to quantitatively assess the composition of internally mixed particles is validated through measurements of laboratory-generated organic coated particles, which demonstrate that the SP-AMS can quantify rBC and NR-PM over a wide range of particle compositions and rBC core sizes.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2014-12-19
    Description: Reference quality upper-air measurements: GRUAN data processing for the Vaisala RS92 radiosonde Atmospheric Measurement Techniques, 7, 4463-4490, 2014 Author(s): R. J. Dirksen, M. Sommer, F. J. Immler, D. F. Hurst, R. Kivi, and H. Vömel The GCOS (Global Climate Observing System) Reference Upper-Air Network (GRUAN) data processing for the Vaisala RS92 radiosonde was developed to meet the criteria for reference measurements. These criteria stipulate the collection of metadata, the use of well-documented correction algorithms, and estimates of the measurement uncertainty. An important and novel aspect of the GRUAN processing is that the uncertainty estimates are vertically resolved. This paper describes the algorithms that are applied in version 2 of the GRUAN processing to correct for systematic errors in radiosonde measurements of pressure, temperature, humidity, and wind, as well as how the uncertainties related to these error sources are derived. Currently, the RS92 is launched on a regular basis at 13 out of 15 GRUAN sites. An additional GRUAN requirement for performing reference measurements with the RS92 is that the manufacturer-prescribed procedure for the radiosonde's preparation, i.e. heated reconditioning of the sensors and recalibration during ground check, is followed. In the GRUAN processing however, the recalibration of the humidity sensors that is applied during ground check is removed. For the dominant error source, solar radiation, laboratory experiments were performed to investigate and model its effect on the RS92's temperature and humidity measurements. GRUAN uncertainty estimates are 0.15 K for night-time temperature measurements and approximately 0.6 K at 25 km during daytime. The other uncertainty estimates are up to 6% relative humidity for humidity, 10–50 m for geopotential height, 0.6 hPa for pressure, 0.4–1 m s −1 for wind speed, and 1° for wind direction. Daytime temperature profiles for GRUAN and Vaisala processing are comparable and consistent within the estimated uncertainty. GRUAN daytime humidity profiles are up to 15% moister than Vaisala processed profiles, of which two-thirds is due to the radiation dry bias correction and one-third is due to an additional calibration correction. Redundant measurements with frost point hygrometers (CFH and NOAA FPH) show that GRUAN-processed RS92 humidity profiles and frost point data agree within 15% in the troposphere. No systematic biases occur, apart from a 5% dry bias for GRUAN data around −40 °C at night.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2014-12-09
    Description: Deployment of a sequential two-photon laser-induced fluorescence sensor for the detection of gaseous elemental mercury at ambient levels: fast, specific, ultrasensitive detection with parts-per-quadrillion sensitivity Atmospheric Measurement Techniques, 7, 4251-4265, 2014 Author(s): D. Bauer, S. Everhart, J. Remeika, C. Tatum Ernest, and A. J. Hynes The operation of a laser-based sensor for gas-phase elemental mercury, Hg(0), is described. It utilizes sequential two-photon laser excitation with detection of blue-shifted laser-induced fluorescence (LIF) to provide a highly specific detection scheme that precludes detection of anything other than atomic mercury. It has high sensitivity, fast temporal resolution, and can be deployed for in situ measurements in the open atmosphere with essentially no perturbation of the environment. An ambient sample can also be pulled through a fluorescence cell, allowing for standard addition calibrations of the concentration. No type of preconcentration is required and there appears to be no significant interferences from other atmospheric constituents, including gas-phase oxidized mercury species. As a consequence, it is not necessary to remove oxidized mercury, commonly referred to as reactive gaseous mercury (RGM), from the air sample. The instrument has been deployed as part of an instrument intercomparison and compares well with conventional instrumentation that utilizes preconcentration on gold followed by analysis using cold-vapor atomic fluorescence spectroscopy (CVAFS). Currently, the achievable detection sensitivity is ~ 15 pg m −3 (~ 5 × 10 4 atoms cm −3 , ~ 2 ppq) at a sampling rate of 0.1 Hz, i.e., averaging 100 shots with a 10 Hz laser system. Preliminary results are described for a 50 Hz instrument that utilizes a modified excitation sequence and has monitored ambient elemental mercury with an effective sampling rate of 10 Hz. Additional work is required to produce the precision necessary to perform eddy correlation measurements. Addition of a pyrolysis channel should allow for the measurement of total gaseous mercury (TGM) and hence RGM (by difference) with good sensitivity and time resolution.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2014-12-09
    Description: Prerequisites for application of hyperbolic relaxed eddy accumulation on managed grasslands and alternative net ecosystem exchange flux partitioning Atmospheric Measurement Techniques, 7, 4237-4250, 2014 Author(s): M. Riederer, J. Hübner, J. Ruppert, W. A. Brand, and T. Foken Relaxed eddy accumulation is still applied in ecosystem sciences for measuring trace gas fluxes. On managed grasslands, the length of time between management events and the application of relaxed eddy accumulation has an essential influence on the determination of the proportionality factor b and thus on the resulting flux. In this study this effect is discussed for the first time. Also, scalar similarity between proxy scalars and scalars of interest is affected until the ecosystem has completely recovered. Against this background, CO 2 fluxes were continuously measured and 13 CO 2 isofluxes were determined with a high measurement precision on two representative days in summer 2010. Moreover, a common method for the partitioning of the net ecosystem exchange into assimilation and respiration based on temperature and light response was compared with an isotopic approach directly based on the isotope discrimination of the biosphere. This approach worked well on the grassland site and could enhance flux partitioning results by better reproducing the environmental conditions.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2014-12-09
    Description: Extending the satellite data record of tropospheric ozone profiles from Aura-TES to MetOp-IASI: characterisation of optimal estimation retrievals Atmospheric Measurement Techniques, 7, 4223-4236, 2014 Author(s): H. Oetjen, V. H. Payne, S. S. Kulawik, A. Eldering, J. Worden, D. P. Edwards, G. L. Francis, H. M. Worden, C. Clerbaux, J. Hadji-Lazaro, and D. Hurtmans We apply the Tropospheric Emission Spectrometer (TES) ozone retrieval algorithm to Infrared Atmospheric Sounding Instrument (IASI) radiances and characterise the uncertainties and information content of the retrieved ozone profiles. This study focuses on mid-latitudes for the year 2008. We validate our results by comparing the IASI ozone profiles to ozone sondes. In the sonde comparisons, we find a negative bias (1–10%) in the IASI profiles in the lower to mid-troposphere and a positive bias (up to 14%) in the upper troposphere/lower stratosphere (UTLS) region. For the described cases, the degrees of freedom for signal are on average 3.2, 0.3, 0.8, and 0.9 for the columns 0 km – top of atmosphere, (0–6), (0–11), and (8–16) km, respectively. We find that our biases with respect to sondes and our degrees of freedom for signal for ozone are comparable to previously published results from other IASI ozone algorithms. In addition to evaluating biases, we validate the retrieval errors by comparing predicted errors to the sample covariance matrix of the IASI observations themselves. For the predicted versus empirical error comparison, we find that these errors are consistent and that the measurement noise and the interference of temperature and water vapour on the retrieval together mostly explain the empirically derived random errors. In general, the precision of the IASI ozone profiles is better than 20%.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2014-12-09
    Description: Solar irradiances measured using SPN1 radiometers: uncertainties and clues for development Atmospheric Measurement Techniques, 7, 4267-4283, 2014 Author(s): J. Badosa, J. Wood, P. Blanc, C. N. Long, L. Vuilleumier, D. Demengel, and M. Haeffelin The fast development of solar radiation and energy applications, such as photovoltaic and solar thermodynamic systems, has increased the need for solar radiation measurement and monitoring, for not only the global but also the diffuse and direct components. End users look for the best compromise between getting close to state-of-the-art measurements and keeping low capital, maintenance and operating costs. Among the existing commercial options, SPN1 is a relatively low cost solar radiometer that estimates global and diffuse solar irradiances from seven thermopile sensors under a shading mask and without moving parts. This work presents a comprehensive study of SPN1 accuracy and sources of uncertainty, drawing on laboratory experiments, numerical modelling and comparison studies between measurements from this sensor and state-of-the art instruments for six diverse sites. Several clues are provided for improving the SPN1 accuracy and agreement with state-of-the art measurements.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2014-12-09
    Description: Differences in aerosol absorption Ångström exponents between correction algorithms for a particle soot absorption photometer measured on the South African Highveld Atmospheric Measurement Techniques, 7, 4285-4298, 2014 Author(s): J. Backman, A. Virkkula, V. Vakkari, J. P. Beukes, P. G. Van Zyl, M. Josipovic, S. Piketh, P. Tiitta, K. Chiloane, T. Petäjä, M. Kulmala, and L. Laakso Absorption Ångström exponents (AAEs) calculated from filter-based absorption measurements are often used to give information on the origin of the ambient aerosol, for example, to distinguish between urban pollution and biomass burning aerosol. Filter-based absorption measurements are widely used and are common at aerosol monitoring stations globally. Several correction algorithms are used to account for artefacts associated with filter-based absorption techniques. These algorithms are of profound importance when determining the absolute amount of absorption by the aerosol. However, this study shows that there are substantial differences between the AAEs calculated from these corrections. Depending on the used correction, AAEs can change by as much as 46%. The study also highlights that the difference between AAEs calculated using different corrections can lead to conflicting conclusions on the type of aerosol when using the same data set. The AAE ranged between 1.17 for non-corrected data to 1.96 for the correction that gave the greatest values. Furthermore, the study implies that the AAEs reported for a site depend on at which filter transmittance the filter is changed. In this work, the AAEs were calculated from data measured with a three-wavelength particle soot absorption photometer (PSAP) at Elandsfontein on the South African Highveld for 23 months. The sample air of the PSAP was diluted to prolong filter change intervals, by a factor of 15. The correlation coefficient between the dilution-corrected PSAP and a non-diluted Multi-Angle Absorption Photometer (MAAP) was 0.9. Thus, the study also shows that the applicability of the PSAP can be extended to remote sites that are not often visited or suffer from high levels of pollution.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2014-12-06
    Description: Comparison of aeolian snow transport events and snow mass fluxes between observations and simulations made by the regional climate model MAR in Adélie Land, East Antarctica The Cryosphere Discussions, 8, 6007-6032, 2014 Author(s): A. Trouvilliez, H. Gallée, F. Naaim-Bouvet, C. Genthon, C. Amory, V. Favier, C. Agosta, L. Piard, and H. Bellot The regional climate model MAR including a coupled snow pack/aeolian snow transport parameterisation is compared with aeolian snow mass fluxes at a fine spatial resolution (5 km horizontally and 2 m vertically) and at a fine temporal resolution (30 min) over 1 month in Antarctica. Numerous feedbacks are taken into account in the MAR including the drag partitioning caused by the roughness elements. Wind speed is correctly simulated with a positive value of the Nash test (0.60 and 0.37) but the wind speeds above 10 m s −1 are underestimated. The aeolian snow transport events are correctly reproduced with a good temporal resolution except for the aeolian snow transport events with a particles' maximum height below 1 m. The simulated threshold friction velocity, calculated without snowfall, is overestimated. The simulated aeolian snow mass fluxes between 0 to 2 m have the same variations but are underestimated compared to the second-generation FlowCapt values and so is the simulated relative humidity at 2 m. This underestimation is not entirely due to the underestimation of the simulated wind speed. The MAR underestimates the aeolian snow quantity that pass through the first two meters by a factor ten compared to the second-generation FlowCapt value (13 990 kg m −1 and 151 509 kg m −1 respectively). It will conduct the MAR, with this parametrisation, to underestimate the effect of the aeolian snow transport on the Antarctic surface mass balance.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2014-12-06
    Description: Influence of weak layer heterogeneity and slab properties on slab tensile failure propensity and avalanche release area The Cryosphere Discussions, 8, 6033-6057, 2014 Author(s): J. Gaume, G. Chambon, N. Eckert, M. Naaim, and J. Schweizer Dry-snow slab avalanches are generally caused by a sequence of fracture processes including failure initiation in a weak snow layer underlying a cohesive slab followed by crack propagation within the weak layer (WL) and tensile fracture through the slab. During past decades, theoretical and experimental work has gradually improved our knowledge of the fracture process in snow. However, our limited understanding of crack propagation and fracture arrest propensity prevents the evaluation of avalanche release sizes and thus impedes hazard assessment. To address this issue, slab tensile failure propensity is examined using a mechanically-based statistical model of the slab–WL system based on the finite element method. This model accounts for WL heterogeneity, stress redistribution by elasticity of the slab and the slab possible tensile failure. Two types of avalanche release are distinguished in the simulations: (1) full-slope release if the heterogeneity is not sufficient to stop crack propagation and to trigger a tensile failure within the slab, (2) partial-slope release if fracture arrest and slab tensile failure occurs due to the WL heterogeneity. The probability of these two release types is presented as a function of the characteristics of WL heterogeneity and of the slab. One of the main outcomes is that, for realistic values of the parameters, the tensile failure propensity is mainly influenced by slab properties. Hard and thick snow slabs are more prone to wide-scale crack propagation and thus lead to larger avalanches (full-slope release). In this case, the avalanche size is mainly influenced by topographical and morphological features such as rocks, trees, slope curvature and the spatial variability of the snow depth as it is often claimed in the literature.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2014-12-10
    Description: Looking through the haze: evaluating the CALIPSO level 2 aerosol optical depth using airborne high spectral resolution lidar data Atmospheric Measurement Techniques, 7, 4317-4340, 2014 Author(s): R. R. Rogers, M. A. Vaughan, C. A. Hostetler, S. P. Burton, R. A. Ferrare, S. A. Young, J. W. Hair, M. D. Obland, D. B. Harper, A. L. Cook, and D. M. Winker The Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument onboard the Cloud–Aerosol Lidar and Pathfinder Satellite Observations (CALIPSO) spacecraft has provided over 8 yr of nearly continuous vertical profiling of Earth's atmosphere. In this paper we investigate the V3.01 and V3.02 CALIOP 532 nm aerosol layer optical depth (AOD) product (i.e the AOD of individual layers) and the column AOD product (i.e., the sum AOD of the complete column) using an extensive database of coincident measurements. The CALIOP AOD measurements and AOD uncertainty estimates are compared with collocated AOD measurements collected with the NASA High Spectral Resolution Lidar (HSRL) in the North American and Caribbean regions. In addition, the CALIOP aerosol lidar ratios are investigated using the HSRL measurements. In general, compared with the HSRL values, the CALIOP layer AOD are biased high by less than 50% for AOD 〈 0.3 with higher errors for higher AOD. Less than 60% of the HSRL AOD measurements are encompassed within the CALIOP layer 1 SD uncertainty range (around the CALIOP layer AOD), so an error estimate is created to encompass 68% of the HSRL data. Using this new metric, the CALIOP layer AOD error is estimated using the HSRL layer AOD as ±0.035 ± 0.05 · (HSRL layer AOD) at night and ±0.05 ± 0.05 · (HSRL layer AOD) during the daytime. Furthermore, the CALIOP layer AOD error is found to correlate with aerosol loading as well as aerosol subtype, with the AODs in marine and dust layers agreeing most closely with the HSRL values. The lidar ratios used by CALIOP for polluted dust, polluted continental, and biomass burning layers are larger than the values measured by the HSRL in the CALIOP layers, and therefore the AODs for these types retrieved by CALIOP were generally too large. We estimated the CALIOP column AOD error can be expressed as ±0.05 ± 0.07 · (HSRL column AOD) at night and ±0.08 ± 0.1 · (HSRL column AOD) during the daytime. Multiple sources of error contribute to both positive and negative errors in the CALIOP column AOD, including multiple layers in the column of different aerosol types, lidar ratio errors, cloud misclassification, and undetected aerosol layers. The undetected layers were further investigated and we found that the layer detection algorithm works well at night, although undetected aerosols in the free troposphere introduce a mean underestimate of 0.02 in the column AOD in the data set examined. The decreased signal-to-noise ratio (SNR) during the daytime led to poorer performance of the layer detection. This caused the daytime CALIOP column AOD to be less accurate than during the nighttime, because CALIOP frequently does not detect optically thin aerosol layers with AOD 〈 0.1. Given that the median vertical extent of aerosol detected within any column was 1.6 km during the nighttime and 1.5 km during the daytime, we can estimate the minimum extinction detection threshold to be 0.012 km −1 at night and 0.067 km −1 during the daytime in a layer median sense. This extensive validation of level 2 CALIOP AOD products extends previous validation studies to nighttime lighting conditions and provides independent measurements of the lidar ratio; thus, allowing the assessment of the effect on the CALIOP AOD of using inappropriate lidar ratio values in the extinction retrieval.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2014-12-10
    Description: The use of NO 2 absorption cross section temperature sensitivity to derive NO 2 profile temperature and stratospheric–tropospheric column partitioning from visible direct-sun DOAS measurements Atmospheric Measurement Techniques, 7, 4299-4316, 2014 Author(s): E. Spinei, A. Cede, W. H. Swartz, J. Herman, and G. H. Mount This paper presents a temperature sensitivity method (TESEM) to accurately calculate total vertical NO 2 column, atmospheric slant NO 2 profile-weighted temperature ( T ), and to separate stratospheric and tropospheric columns from direct-sun (DS), ground-based measurements using the retrieved T . TESEM is based on differential optical absorption spectroscopy (DOAS) fitting of the linear temperature-dependent NO 2 absorption cross section, σ ( T ), regression model (Vandaele et al., 2003). Separation between stratospheric and tropospheric columns is based on the primarily bimodal vertical distribution of NO 2 and an assumption that stratospheric effective temperature can be represented by temperature at 27 km ± 3 K, and tropospheric effective temperature is equal to surface temperature within 3–5 K. These assumptions were derived from the Global Modeling Initiative (GMI) chemistry-transport model (CTM) simulations over two northern midlatitude sites in 2011. TESEM was applied to the Washington State University Multi-Function DOAS instrument (MFDOAS) measurements at four midlatitude locations with low and moderate NO 2 anthropogenic emissions: (1) the Jet Propulsion Laboratory's Table Mountain Facility (JPL-TMF), CA, USA (34.38° N/117.68° W); (2) Pullman, WA, USA (46.73° N/117.17° W); (3) Greenbelt, MD, USA (38.99° N/76.84° W); and (4) Cabauw, the Netherlands (51.97° N/4.93° E) during July 2007, June–July 2009, July–August and October 2011, November 2012–May 2013, respectively. NO 2 T and total, stratospheric, and tropospheric NO 2 vertical columns were determined over each site.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2014-11-11
    Description: A Fabry–Perot interferometer-based camera for two-dimensional mapping of SO 2 distributions Atmospheric Measurement Techniques, 7, 3705-3715, 2014 Author(s): J. Kuhn, N. Bobrowski, P. Lübcke, L. Vogel, and U. Platt We examine a new imaging method for the remote sensing of volcanic gases, which relies on the regularly spaced narrow-band absorption structures in the UV–VIS of many molecules. A Fabry–Perot interferometer (FPI) is used to compare the scattered sunlight radiance at wavelengths corresponding to absorption bands with the radiance at wavelengths in between the bands, thereby identifying and quantifying the gas. In this first theoretical study, we present sample calculations for the detection of sulfur dioxide (SO 2 ). Optimum values for the FPI setup parameters are proposed. Furthermore, the performance of the FPI method is compared to SO 2 cameras. We show that camera systems using an FPI are far less influenced by changes in atmospheric radiative transfer (e.g., due to aerosol) and have a great potential as a future technique for examining emissions of SO 2 (or other gases) from volcanic sources and other point sources.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2014-12-19
    Description: Middle-atmospheric zonal and meridional wind profiles from polar, tropical and midlatitudes with the ground-based microwave Doppler wind radiometer WIRA Atmospheric Measurement Techniques, 7, 4491-4505, 2014 Author(s): R. Rüfenacht, A. Murk, N. Kämpfer, P. Eriksson, and S. A. Buehler WIRA is a ground-based microwave Doppler spectroradiometer specifically designed for the measurement of profiles of horizontal wind in the upper stratosphere and lower mesosphere region where no other continuously running measurement technique exists. A proof of principle has been delivered in a previous publication. A technical upgrade including a new high-frequency amplifier and sideband filter has improved the signal to noise ratio by a factor of 2.4. Since this upgrade the full horizontal wind field comprising zonal and meridional wind profiles is continuously measured. A completely new retrieval based on optimal estimation has been set up. Its characteristics are detailed in the present paper. Since the start of the routine operation of the first prototype in September 2010, WIRA has been measuring at four different locations at polar, mid- and tropical latitudes (67°22' N/26°38' E, 46°57' N/7°26' E, 43°56' N/5°43' E and 21°04' S/55°23' E) for time periods between 5.5 and 11 months. The data presented in this paper are daily average wind profiles with typical uncertainties and resolutions of 10 to 20 m s −1 and 10 to 16 km, respectively. A comparison between the data series from WIRA and European Centre for Medium-Range Weather Forecasts (ECMWF) model data revealed agreement within 10% in the stratospheric zonal wind. The meridional wind profiles agree within their error bars over the entire sensitive altitude range of WIRA. However, significant differences in the mesospheric zonal wind speed of up to 50% have been found.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2014-12-03
    Description: Climatic signals from 76 shallow firn cores in Dronning Maud Land, East Antarctica The Cryosphere Discussions, 8, 5961-6005, 2014 Author(s): S. Altnau, E. Schlosser, E. Isaksson, and D. Divine The spatial and temporal distribution of surface mass balance (SMB) and δ 18 O were investigated in the first comprehensive study of a set of 76 firn cores retrieved by various expeditions during the past three decades in Dronning Maud Land, East Antarctica. The large number of cores was used to calculate stacked records of SMB and δ 18 O, which considerably increased the signal-to-noise ratio compared to earlier studies and facilitated the detection of climatic signals. Considerable differences between cores from the interior plateau and the coastal cores were found. The δ 18 O of both the plateau and the ice shelf cores exhibit a slight positive trend over the second half of the 20th century. In the corresponding period, the SMB has a negative trend in the ice shelf cores, but increases on the plateau. Comparison with meteorological data from Neumayer Station revealed that for the ice shelf regions atmospheric dynamic effects are more important than thermodynamics, while on the plateau, the temporal variations of SMB and δ 18 O occur mostly in parallel, thus can be explained by thermodynamic effects. The Southern Annular Mode (SAM) exhibits a positive trend since the mid-1960s, which is assumed to lead to a cooling of East Antarctica. This is not confirmed by the firn core data in our data set. Changes in the atmospheric circulation that result in a changed seasonal distribution of precipitation/accumulation could partly explain the observed features in the ice shelf cores.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2014-12-04
    Description: Analysis of internal gravity waves with GPS RO density profiles Atmospheric Measurement Techniques, 7, 4123-4132, 2014 Author(s): P. Šácha, U. Foelsche, and P. Pišoft GPS radio occultation (RO) data have proved to be a great tool for atmospheric monitoring and studies. In the past decade, they were frequently used for analyses of the internal gravity waves in the upper troposphere and lower stratosphere region. Atmospheric density is the first quantity of state gained in the retrieval process and is not burdened by additional assumptions. However, there are no studies elaborating in detail the utilization of GPS RO density profiles for gravity wave analyses. In this paper, we introduce a method for density background separation and a methodology for internal gravity wave analysis using the density profiles. Various background choices are discussed and the correspondence between analytical forms of the density and temperature background profiles is examined. In the stratosphere, a comparison between the power spectrum of normalized density and normalized dry temperature fluctuations confirms the suitability of the density profiles' utilization. In the height range of 8–40 km, results of the continuous wavelet transform are presented and discussed. Finally, the limits of our approach are discussed and the advantages of the density usage are listed.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2014-12-04
    Description: Characterization of model errors in the calculation of tangent heights for atmospheric infrared limb measurements Atmospheric Measurement Techniques, 7, 4117-4122, 2014 Author(s): M. Ridolfi and L. Sgheri We review the main factors driving the calculation of the tangent height of spaceborne limb measurements: the ray-tracing method, the refractive index model and the assumed atmosphere. We find that commonly used ray tracing and refraction models are very accurate, at least in the mid-infrared. The factor with largest effect in the tangent height calculation is the assumed atmosphere. Using a climatological model in place of the real atmosphere may cause tangent height errors up to ± 200 m. Depending on the adopted retrieval scheme, these errors may have a significant impact on the derived profiles.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2014-12-04
    Description: Recovering long-term aerosol optical depth series (1976–2012) from an astronomical potassium-based resonance scattering spectrometer Atmospheric Measurement Techniques, 7, 4103-4116, 2014 Author(s): A. Barreto, E. Cuevas, P. Pallé, P. M. Romero, C. Guirado, C. J. Wehrli, and F. Almansa A 37-year long-term series of monochromatic aerosol optical depth (AOD) has been recovered from solar irradiance measurements performed with the solar spectrometer Mark-I, deployed at Izaña mountain since 1976. The instrument operation is based on the method of resonant scattering, which affords wavelength absolute reference and stability (long-term stability and high precision) in comparison to other instruments based purely on interference filters. However, it has been specifically designed as a reference instrument for helioseismology, and its ability to determine AOD from transmitted and scattered monochromatic radiation at 769.9 nm inside a potassium vapour cell in the presence of a permanent magnetic field is evaluated in this paper. Particularly, the use of an exposed mirror arrangement to collect sunlight as well as the Sun–laboratory velocity dependence of the scattered component introduces some important inconveniences to overcome when we perform the instrument's calibration. We have solved this problem using a quasi-continuous Langley calibration technique and a refinement procedure to correct for calibration errors as well as for the fictitious diurnal cycle on AOD data. Our results showed similar calibration errors retrieved by means of this quasi-continuous Langley technique applied in different aerosol load events (from 0.04 to 0.3), provided aerosol concentration remains constant throughout the calibration interval. It assures the validity of this technique when it is applied in those periods with relatively high aerosol content. The comparative analysis between the recovered AOD data set from the Mark-I and collocated quasi-simultaneous data from the Cimel-AErosol RObotic NETwork (AERONET) and Precision Filter Radiometer (PFR) instruments showed an absolute mean bias ≤ 0.01 in the 10- and 12-year comparison, respectively. High correlation coefficients between AERONET and Mark-I and PFR/Mark-I pairs confirmed a very good linear relationship between instruments, proving that recovered AOD data series from Mark-I can be used together with PFR and AERONET AOD data to build a long-term AOD data series at the Izaña site (1976–now), suitable for future analysis of aerosols trends and inter-annual variability. Finally, the AOD preliminary trend analysis in the 29-year period from 1984 to 2012 with Mark-I AOD revealed no significant trends.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2014-12-04
    Description: Multistation intercomparison of column-averaged methane from NDACC and TCCON: impact of dynamical variability Atmospheric Measurement Techniques, 7, 4081-4101, 2014 Author(s): A. Ostler, R. Sussmann, M. Rettinger, N. M. Deutscher, S. Dohe, F. Hase, N. Jones, M. Palm, and B.-M. Sinnhuber Dry-air column-averaged mole fractions of methane (XCH 4 ) retrieved from ground-based solar Fourier transform infrared (FTIR) measurements provide valuable information for satellite validation, evaluation of chemical-transport models, and source-sink-inversions. In this context, Sussmann et al. (2013) have shown that midinfrared (MIR) soundings from the Network for the Detection of Atmospheric Composition Change (NDACC) can be combined with near-infrared (NIR) soundings from the Total Carbon Column Observing Network (TCCON) without the need to apply an overall intercalibration factor. However, in spite of efforts to reduce a priori impact, some residual seasonal biases were identified, and the reasons behind remained unclear. In extension to this previous work, which was based on multiannual quasi-coincident MIR and NIR measurements from the stations Garmisch (47.48° N, 11.06° E, 743 m a.s.l.) and Wollongong (34.41° S, 150.88° E, 30 m a.s.l.), we now investigate upgraded retrievals with longer temporal coverage and include three additional stations (Ny-Ålesund, 78.92° N, 11.93° E, 20 m a.s.l.; Karlsruhe, 49.08° N, 8.43° E, 110 m a.s.l.; Izaña, 28.31° N, 16.45° W, 2.370 m a.s.l.). Our intercomparison results (except for Ny-Ålesund) confirm that there is no overall bias between MIR and NIR XCH 4 retrievals, and all MIR and NIR time series reveal a quasi-periodic seasonal bias for all stations, except for Izaña. We find that dynamical variability causes MIR–NIR differences of up to ~ 30 ppb (parts per billion) for Ny-Ålesund, ~ 20 ppb for Wollongong, ~ 18 ppb for Garmisch, and ~ 12 ppb for Karlsruhe. The mechanisms behind this variability are elaborated via two case studies, one dealing with stratospheric subsidence induced by the polar vortex at Ny-Ålesund and the other with a deep stratospheric intrusion event at Garmisch. Smoothing effects caused by the dynamical variability during these events are different for MIR and NIR retrievals depending on the altitude of the perturbation area. MIR retrievals appear to be more realistic in the case of stratospheric subsidence, while NIR retrievals are more accurate in the case of stratosphere–troposphere exchange (STE) in the upper troposphere/lower stratosphere (UTLS) region. About 35% of the FTIR measurement days at Garmisch are impacted by STE, and about 23% of the measurement days at Ny-Ålesund are influenced by polar vortex subsidence. The exclusion of data affected by these dynamical situations resulted in improved agreement of MIR and NIR seasonal cycles for Ny-Ålesund and Garmisch. We found that dynamical variability is a key factor in constraining the accuracy of MIR and NIR seasonal cycles. To mitigate this impact it is necessary to use more realistic a priori profiles that take these dynamical events into account (e.g., via improved models), and/or to improve the FTIR retrievals to achieve a more uniform sensitivity at all altitudes (possibly including profile retrievals for the TCCON data).
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2011-02-24
    Description: Assessment of BSRN radiation records for the computation of monthly means Atmospheric Measurement Techniques, 4, 339-354, 2011 Author(s): A. Roesch, M. Wild, A. Ohmura, E. G. Dutton, C. N. Long, and T. Zhang The integrity of the Baseline Surface Radiation Network (BSRN) radiation monthly averages are assessed by investigating the impact on monthly means due to the frequency of data gaps caused by missing or discarded high time resolution data. The monthly statistics, especially means, are considered to be important and useful values for climate research, model performance evaluations and for assessing the quality of satellite (time- and space-averaged) data products. The study investigates the spread in different algorithms that have been applied for the computation of monthly means from 1-min values. The paper reveals that the computation of monthly means from 1-min observations distinctly depends on the method utilized to account for the missing data. The intra-method difference generally increases with an increasing fraction of missing data. We found that a substantial fraction of the radiation fluxes observed at BSRN sites is either missing or flagged as questionable. The percentage of missing data is 4.4%, 13.0%, and 6.5% for global radiation, direct shortwave radiation, and downwelling longwave radiation, respectively. Most flagged data in the shortwave are due to nighttime instrumental noise and can reasonably be set to zero after correcting for thermal offsets in the daytime data. The study demonstrates that the handling of flagged data clearly impacts on monthly mean estimates obtained with different methods. We showed that the spread of monthly shortwave fluxes is generally clearly higher than for downwelling longwave radiation. Overall, BSRN observations provide sufficient accuracy and completeness for reliable estimates of monthly mean values. However, the value of future data could be further increased by reducing the frequency of data gaps and the number of outliers. It is shown that two independent methods for accounting for the diurnal and seasonal variations in the missing data permit consistent monthly means to within less than 1 W m −2 in most cases. The authors suggest using a standardized method for the computation of monthly means which addresses diurnal variations in the missing data in order to avoid a mismatch of future published monthly mean radiation fluxes from BSRN. The application of robust statistics would probably lead to less biased results for data records with frequent gaps and/or flagged data and outliers. The currently applied empirical methods should, therefore, be completed by the development of robust methods.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2011-05-06
    Description: Warming of waters in an East Greenland fjord prior to glacier retreat: mechanisms and connection to large-scale atmospheric conditions The Cryosphere Discussions, 5, 1335-1364, 2011 Author(s): P. Christoffersen, R. I. Mugford, K. J. Heywood, I. Joughin, J. A. Dowdeswell, J. P. M. Syvitski, A. Luckman, and T. J. Benham Hydrographic data acquired in Kangerlugssuaq Fjord and adjacent seas in 1993 and 2004 are used together with ocean reanalysis to elucidate water mass change and ice-ocean-atmosphere interactions in East Greenland. The hydrographic data show substantial warming of fjord waters between 1993 and 2004 and warm subsurface conditions coincide with the rapid retreat of Kangerlugssuaq Glacier in 2004–2005. The ocean reanalysis shows that the warm properties of fjord waters in 2004 are related to a major peak in oceanic shoreward heat flux into a cross-shelf trough on the outer continental shelf. The heat flux into this trough varies according to seasonal exchanges with the atmosphere as well as from deep seasonal intrusions of subtropical waters. Both mechanisms contribute to high (low) shoreward heat flux when winds from the northeast are weak (strong). The combined effect of surface heating and inflow of subtropical waters is seen in the hydrographic data, which were collected after periods when along-shore coastal winds from the north were strong (1993) and weak (2004). We show that coastal winds vary according to the pressure gradient defined by a semi-permanent atmospheric pressure system over Greenland and a persistent atmospheric low situated near Iceland. The magnitude of this pressure gradient is controlled by longitudinal variability in the position of the Icelandic Low.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2011-05-06
    Description: Recent wind driven high sea ice export in the Fram Strait contributes to Arctic sea ice decline The Cryosphere Discussions, 5, 1311-1334, 2011 Author(s): L. H. Smedsrud, A. Sirevaag, K. Kloster, A. Sorteberg, and S. Sandven Arctic sea ice area decrease has been visible for two decades, and continues at a steady rate. Apart from melting, the southward drift through Fram Strait is the main loss. We present high resolution sea ice drift across 79° N from 2004 to 2010. The ice drift is based on radar satellite data and correspond well with variability in local geostrophic wind. The underlying current contributes with a constant southward speed close to 5 cm s −1 , and drives about 33 % of the ice export. We use geostrophic winds derived from reanalysis data to calculate the Fram Strait ice area export back to 1957, finding that the sea ice area export recently is about 25 % larger than during the 1960's. The increase in ice export occurred mostly during winter and is directly connected to higher southward ice drift velocities, due to stronger geostrophic winds. The increase in ice drift is large enough to counteract a decrease in ice concentration of the exported sea ice. Using storm tracking we link changes in geostrophic winds to more intense Nordic Sea low pressure systems. Annual sea ice export likely has a significant influence on the summer sea ice variability and we find low values in the 60's, the late 80's and 90's, and particularly high values during 2005–2008. The study highlight the possible role of variability in ice export as an explanatory factor for understanding the dramatic loss of Arctic sea ice the last decades.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2011-05-07
    Description: Characterisation of a new Fast CPC and its application for atmospheric particle measurements Atmospheric Measurement Techniques, 4, 823-833, 2011 Author(s): B. Wehner, H. Siebert, M. Hermann, F. Ditas, and A. Wiedensohler A new Fast CPC (FCPC) using butanol as working fluid has been built based on the setup described by Wang et al. (2002). In this study, we describe the new instrument. The functionality and stable operation of the FCPC in the laboratory, as well as under atmospheric conditions, is demonstrated. The counting efficiency was measured for three temperature differences between FCPC saturator and condenser, 25, 27, and 29 K, subsequently resulting in a lower detection limit between 6.1 and 8.5 nm. Above 25 nm the FCPC reached 98–100% counting efficiency compared to an electrometer used as the reference instrument. The FCPC demonstrated its ability to perform continuous measurements over a few hours in the laboratory with respect to the total particle counting. The instrument has been implemented into the airborne measurement platform ACTOS to perform measurements in the atmospheric boundary layer. Therefore, a stable operation over two hours is required. The mixing time of the new FCPC was estimated in two ways using a time series with highly fluctuating particle number concentrations. The analysis of a sharp ramp due to a concentration change results in a mixing time of 5 ms while a spectral analysis of atmospheric data demonstrates that for frequencies up to 10 Hz coherent structures can be resolved before sampling noise dominates.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2011-05-07
    Description: Spatio-temporal measurements and analysis of snow depth in a rock face The Cryosphere Discussions, 5, 1383-1418, 2011 Author(s): V. Wirz, M. Schirmer, S. Gruber, and M. Lehning Snow in rock faces plays a key role in the alpine environment for permafrost distribution, snow water storage or run off in spring. However, a detailed assessment of snow depths in steep rock walls has never been attempted. To understand snow distribution in rock walls a high-resolution terrestrial laser scanner (TLS), including a digital camera, was used to obtain snow depth (HS) data with a resolution of one metre. The mean HS, the snow covered area and their evolution in the rock face were compared to a neighbouring smoother catchment and a flat field station at similar elevation. Further we analyzed the patterns of HS distribution in the rock face after different periods and investigated the main factors contributing to them. In a first step we could show that with TLS reliable information on surface data of a steep rocky surface can be obtained. In comparison to the flatter sites in the vicinity, mean HS in the rock face was lower during the entire winter, but trends of snow depth changes were similar. We observed repeating accumulation and ablation patterns in the rock face, while maximum snow depth loss always occurred at those places with maximum snow depth gain. Further analysis of the main factors contributing to the snow depth distribution in the rock face revealed terrain-wind-interaction processes to be dominant. Processes related to slope angle seem to play a role, but no linear function of slope angle and snow depth was found. Further analyses should involve measurements in rock faces with other characteristics and higher temporal resolutions to be able to distinguish individual processes better. Additionally the relation of spatial and temporal distribution of snow depth to terrain-wind interactions should be tested.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2011-05-07
    Description: Utility of late summer transient snowline migration rate on Taku Glacier, Alaska The Cryosphere Discussions, 5, 1365-1382, 2011 Author(s): M. Pelto On Taku Glacier, Alaska a combination of field observations of snow water equivalent (SWE) from snowpits and probing in the vicinity of the transient snowline (TSL) are used to quantify the mass balance gradient. The balance gradient is determined from the difference in elevation and SWE from the TSL to snowpits at 1000 m from 1998–2010 and ranges from 2.6–3.8 mm m −1 . Probing transects from 950 m–1100 m directly measure SWE and yield a slightly higher balance gradient of 3.3–3.8 mm m −1 . TSL is identified in MODIS and Landsat 4 and 7 Thematic Mapper imagery for 31 dates during the 2004–2010 period on Taku Glacier to assess the consistency of its rate of rise and usefulness in assessing mass balance. In 2010, the TSL rose from 750 m on 28 July, 800 m on 5 August, 875 m on 14 August, 925 m on 30 August, and to 975 m on 20 September. The mean observed probing balance gradient was 3.3 mm m −1 and TSL rise was 3.7 m day −1 , yielding an ablation rate of 12.2 mm day −1 on Taku Glacier from mid-July to mid-September. A comparison of the TSL rise in the region from 750–1100 m on Taku Glacier during eleven different periods of more than 14 days during the ablation season with repeat imagery indicates a mean TSL rise of 3.7 m day −1 on Taku Glacier, the rate of rise is relatively consistent ranging from 3.0 to 4.8 m day −1 . This is useful for ascertaining the final ELA if imagery or observations are not available within a week or two of the end of the ablation season. From mid-July-mid-September the mean ablation from 750–1100 m determined from the TSL rise and the observed balance gradient varied from 11 to 18 mm day −1 on Taku Glacier during the 2004–2010 period.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2011-04-02
    Description: A network of autonomous surface ozone monitors in Antarctica: technical description and first results Atmospheric Measurement Techniques, 4, 645-658, 2011 Author(s): S. J.-B. Bauguitte, N. Brough, M. M. Frey, A. E. Jones, D. J. Maxfield, H. K. Roscoe, M. C. Rose, and E. W. Wolff A suite of 10 autonomous ozone monitoring units, each powered using renewable energy, was developed and built to study surface ozone in Antarctica during the International Polar Year (2007–2009). The monitoring systems were deployed in a network around the Weddell Sea sector of coastal Antarctica with a transect up onto the Antarctic Plateau. The aim was to measure for a full year, thus gaining a much-improved broader view of boundary layer ozone seasonality at different locations as well as of factors affecting the budget of surface ozone in Antarctica. Ozone mixing ratios were measured based on UV photometry using a modified version of the commercial 2B Technologies Inc. Model 202 instrument. All but one of the autonomous units measured successfully within its predefined duty cycle throughout the year, with some differences in performance dependent on power availability and ambient temperature. Mean data recovery after removal of outliers was on average 70% (range 44–83%) and precision varied between 1.5 and 8 ppbv, thus was sufficiently good to resolve year-round the main ozone features of scientific interest. We conclude that, with adequate power, and noting a minor communication problem, our units would be able to operate successfully at ambient temperatures down to −60 °C. Systems such as the one described in this paper, or derivatives of it, could therefore be deployed either as local or regional networks elsewhere in the Arctic or Antarctic. Here we present technical information and first results from the experiment.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2011-05-11
    Description: Analysis of the application of the optical method to the measurements of the water vapor content in the atmosphere – Part 1: Basic concepts of the measurement technique Atmospheric Measurement Techniques, 4, 843-856, 2011 Author(s): V. D. Galkin, F. Immler, G. A. Alekseeva, F.-H. Berger, U. Leiterer, T. Naebert, I. N. Nikanorova, V. V. Novikov, V. P. Pakhomov, and I. B. Sal'nikov We retrieved the total content of the atmospheric water vapor (or Integrated Water Vapor, IWV) from extensive sets of photometric data obtained since 1995 at Lindenberg Meteorological Observatory with star and sun photometers. Different methods of determination of the empirical parameters that are necessary for the retrieval are discussed. The instruments were independently calibrated using laboratory measurements made at Pulkovo Observatory with the VKM-100 multi-pass vacuum cell. The empirical parameters were also calculated by the simulation of the atmospheric absorption by water vapor, using the MODRAN-4 program package for different model atmospheres. The results are compared to those presented in the literature, obtained with different instruments and methods of the retrieval. The reliability of the empirical parameters, used for the power approximation that links the water vapor content with the observed absorption, is analyzed. Currently, the total (from measurements, calibration, and calculations) errors yield the standard uncertainty of about 10 % in the total column water vapor. We discuss the possibilities for improving the accuracy of calibration to ~1 % as indispensable condition in order to make it possible to use data obtained by optical photometry as an independent reference for other methods (GPS, MW-radiometers, lidar, etc).
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...