ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,408)
  • MDPI Publishing  (1,408)
  • American Meteorological Society
  • Copernicus
  • 2010-2014  (1,408)
  • 1960-1964
  • Energies  (1,408)
  • 109050
  • 1
    Publication Date: 2014-12-13
    Description: We estimate the contamination risks from the atmospheric dispersion of radionuclides released by severe nuclear power plant accidents using the ECHAM/Modular Earth Submodel System (MESSy) atmospheric chemistry (EMAC) atmospheric chemistry-general circulation model at high resolution (50 km). We present an overview of global risks and also a case study of nuclear power plants that are currently under construction, planned and proposed in the Eastern Mediterranean and Middle East, a region prone to earthquakes. We implemented continuous emissions from each location, making the simplifying assumption that all potential accidents release the same amount of radioactivity. We simulated atmospheric transport and decay, focusing on 137Cs and 131I as proxies for particulate and gaseous radionuclides, respectively. We present risk maps for potential surface layer concentrations, deposition and doses to humans from the inhalation exposure of 131I. The estimated risks exhibit seasonal variability, with the highest surface level concentrations of gaseous radionuclides in the Northern Hemisphere during winter.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-18
    Description: Enhanced geothermal systems (EGS) extract heat from underground hot dry rock (HDR) by first fracturing the HDR and then circulating a geofluid (typically water) into it and bringing the heated geofluid to a power plant to generate electricity. This study focuses on analysis, examination, and comparison of leading geothermal power plant configurations with a geofluid temperature from 200 to 800 °C, and also analyzes the embodied energy of EGS surface power plants. The power generation analysis is focused on flash type cycles for using subcritical geofluid (〈374 °C) and expansion type cycles for using supercritical geofluid (>374 °C). Key findings of this study include: (i) double-flash plants have 24.3%–29.0% higher geofluid effectiveness than single-flash ones, and 3%–10% lower specific embodied energy; (ii) the expansion type plants have geofluid effectiveness > 750 kJ/kg, significantly higher than flash type plants (geofluid effectiveness 〈 300 kJ/kg) and the specific embodied energy is lower; (iii) to increase the turbine outlet vapor fraction from 0.75 to 0.90, we include superheating by geofluid but that reduces the geofluid effectiveness by 28.3%; (iv) for geofluid temperatures above 650 °C, double-expansion plants have a 2% higher geofluid effectiveness and 5%–8% lower specific embodied energy than single-expansion ones.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-11-07
    Description: This paper proposes a polygeneration system based on a multi-input chemical looping combustion system, which generates methanol and electricity, through the use of natural gas and coal. In this system, the chemical looping hydrogen (CLH) production system and the coal-based methanol production system are integrated. A high quality fuel, natural gas, is used to improve the conversion ratio of coal. The Gibbs energy of the two kinds of fuels is fully used. Benefitting from the chemical looping process, 27% CO2 can be captured without energy penalty. With the same outputs of methanol and electricity, the energy savings ratio of the new system is about 12%. Based on the exergy analyses, it is disclosed that the integration of synthetic utilization of natural gas and coal plays a significant role in reducing the exergy destruction of the new system. The promising results obtained in this paper may lead to a clean coal technology that will utilize natural gas and coal more efficiently and economically.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-11-08
    Description: In order to meet the needs of wind speed prediction in wind farms, we consider the influence of random atmospheric disturbances on wind variations. Considering a simplified fluid convection mode, a Lorenz system can be employed as an atmospheric disturbance model. Here Lorenz disturbance is defined as the European norm of the solutions of the Lorenz equation. Grey generating and accumulated generating models are employed to explore the relationship between wind speed and its related disturbance series. We conclude that a linear or quadric polynomial generating model are optimal through the verification of short-term wind speed prediction in the Sotavento wind farm. The new proposed model not only greatly improves the precision of short-term wind speed prediction, but also has great significance for the maintenance and stability of wind power system operation.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-11-05
    Description: H-type finned tube heat exchanger elements maintain a high capacity for heat transfer, possess superior self-cleaning properties and retain the ability to effect flue gas waste heat recovery in boiler renovations. In this paper, the heat transfer and pressure drop characteristics of H-type finned tube banks are studied via an experimental open high-temperature wind tunnel system. The effects of fin width, fin height, fin pitch and air velocity on fin efficiency, convective heat transfer coefficient, integrated heat transfer capacity and pressure drop are examined. The results indicate that as air velocity, fin height and fin width increase, fin efficiency decreases. Convective heat transfer coefficient is proportional to fin pitch, but inversely proportional to fin height and fin width. Integrated heat transfer capacity is related to fin efficiency, convective heat transfer coefficient and finned ratio. Pressure drop increases with the increase of fin height and fin width. Finally, predictive correlations of fin efficiency, Nusselt number and Euler Number are developed based on the experimental data.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-11-05
    Description: This paper is devoted to the analysis and design of high performance permanent-magnet synchronous wind generators (PSWGs). A systematic and sequential methodology for the design of PMSGs is proposed with a high performance wind generator as a design model. Aiming at high induced voltage, low harmonic distortion as well as high generator efficiency, optimal generator parameters such as pole-arc to pole-pitch ratio and stator-slot-shoes dimension, etc. are determined with the proposed technique using Maxwell 2-D, Matlab software and the Taguchi method. The proposed double three-phase and six-phase winding configurations, which consist of six windings in the stator, can provide evenly distributed current for versatile applications regarding the voltage and current demands for practical consideration. Specifically, windings are connected in series to increase the output voltage at low wind speed, and in parallel during high wind speed to generate electricity even when either one winding fails, thereby enhancing the reliability as well. A PMSG is designed and implemented based on the proposed method. When the simulation is performed with a 6 Ω load, the output power for the double three-phase winding and six-phase winding are correspondingly 10.64 and 11.13 kW. In addition, 24 Ω load experiments show that the efficiencies of double three-phase winding and six-phase winding are 96.56% and 98.54%, respectively, verifying the proposed high performance operation.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-11-05
    Description: To meet Energy Independence and Security Act (EISA) cellulosic biofuel mandates, the United States will require an annual domestic supply of about 242 million Mg of biomass by 2022. To improve the feedstock logistics of lignocellulosic biofuels in order to access available biomass resources from areas with varying yields, commodity systems have been proposed and designed to deliver quality-controlled biomass feedstocks at preprocessing “depots”. Preprocessing depots densify and stabilize the biomass prior to long-distance transport and delivery to centralized biorefineries. The logistics of biomass commodity supply chains could introduce spatially variable environmental impacts into the biofuel life cycle due to needing to harvest, move, and preprocess biomass from multiple distances that have variable spatial density. This study examines the uncertainty in greenhouse gas (GHG) emissions of corn stover logistics within a bio-ethanol supply chain in the state of Kansas, where sustainable biomass supply varies spatially. Two scenarios were evaluated each having a different number of depots of varying capacity and location within Kansas relative to a central commodity-receiving biorefinery to test GHG emissions uncertainty. The first scenario sited four preprocessing depots evenly across the state of Kansas but within the vicinity of counties having high biomass supply density. The second scenario located five depots based on the shortest depot-to-biorefinery rail distance and biomass availability. The logistics supply chain consists of corn stover harvest, collection and storage, feedstock transport from field to biomass preprocessing depot, preprocessing depot operations, and commodity transport from the biomass preprocessing depot to the biorefinery. Monte Carlo simulation was used to estimate the spatial uncertainty in the feedstock logistics gate-to-gate sequence. Within the logistics supply chain GHG emissions are most sensitive to the transport of the densified biomass, which introduces the highest variability (0.2–13 g CO2e/MJ) to life cycle GHG emissions. Moreover, depending upon the biomass availability and its spatial density and surrounding transportation infrastructure (road and rail), logistics can increase the variability in life cycle environmental impacts for lignocellulosic biofuels. Within Kansas, life cycle GHG emissions could range from 24 g CO2e/MJ to 41 g CO2e/MJ depending upon the location, size and number of preprocessing depots constructed. However, this range can be minimized through optimizing the siting of preprocessing depots where ample rail infrastructure exists to supply biomass commodity to a regional biorefinery supply system.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-11-29
    Description: In three-phase inverters used in uninterruptible power supplies (UPSs), three-limb inductors and three-limb transformers are commonly used in consideration of cost and size. However, magnetic coupling exists between the three phases of the inverter, which can result in complex models. When instantaneous feedback control strategies are introduced to achieve high quality output waveforms, the transient analysis of the closed-loop inverters becomes difficult. In this paper, the phenomenon of magnetic coupling in three-phase inverters due to three-limb inductors and three-limb transformers is analyzed. A decoupled dynamic model is derived based on the instantaneous symmetrical components transformation, which comprises three decoupled equivalent circuits of instantaneous symmetrical components. Analyses based on this model indicate that magnetic coupling may have a significant impact on the performance of three-phase inverters under unbalanced load conditions and transient responses. For three-phase inverters in UPSs with Proportional-Integral-Differential (PID) closed-loop control strategies, the interactive influence between instantaneous closed-loop regulation and magnetic coupling is researched. Finally, a method of reliability analysis and PID controller design for inverters with magnetic coupling is derived. Simulation and experiment results validate the model and conclusions.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-11-29
    Description: The aim of this paper is to present a thermodynamic cycle for the production of electrical power in the 2–5 kW range, suitable for all types of thermally propelled vehicles. The sensible heat recovered from the exhaust gases feeds the energy recovery system, which is able to produce sufficient power to sustain the air conditioning system or other auxiliaries. The working fluids R134a and R245fa have been used in the ORC system, and the systems are simulated by CAMEL-ProTM software. The cycles are generated starting from the same heat source: the exhaust gas of a typical 2.0 L Diesel engine (or from a small size turbine engine). The design of the condenser has been performed to obtain a very compact component, evaluating the heat exchanger tube and fins type design. Through empirical formulas, the area of heat exchange, the heat required to exchange and the pressure drop in the element have been calculated. A commercial software package is used to build the model of the condenser, then a thermal and mechanical analysis and a CFD analysis are realized to estimate the heat exchange. Finally the evaluations, the possible future studies and possible improvements of the system are shown.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-01-17
    Description: Three of the major players in the discussion of the production of oil and gas are: (1) government; (2) the oil and gas industry and (3) non-governmental organizations (NGOs). A comparison of contributions from these three sources using a list of positive and negative words from the General Inquirer Category Listings showed that industry provided a very positive message about the production and consumption of oil and gas that is generally reinforced by government whereas NGOs advocated for a reduction in the use of oil and gas. Messages delivered by each player are focused on the same topics in either a positive or negative way and are often contradictory. The authors submit to be properly informed the public must consider all the sources in order to avoid bias. A mind map is presented in a supplementary file which summarizes information from each source in a comprehensive way. This approach can be used by consumers when considering the choice of using oil and gas and can be extended to the discourse beyond Canada.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2014-01-17
    Description: We develop a semi-analytical model for polarization curve of a polymer electrolyte membrane (PEM) fuel cell with distributed (aged) along the oxygen channel MEA transport and kinetic parameters of the membrane–electrode assembly (MEA). We show that the curve corresponding to varying along the channel parameter, in general, does not reduce to the curve for a certain constant value of this parameter. A possibility to determine the shape of the deteriorated MEA parameter along the oxygen channel by fitting the model equation to the cell polarization data is demonstrated.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2014-01-21
    Description: A microgrid is an eco-friendly power system because renewable sources are used as main power sources. In the islanded operation mode of a microgrid, maintaining the balance between power supply and power demand is a very important problem. In the case of surplus supply, decreased generation output and/or charge of distributed storages can be applied to solve the imbalance between power supply and demand. In the case of supply shortages, increased generation output and/or discharge of distributed storages can be applied. Especially in the case of critical supply shortages, load shedding should be applied. In a distributed load-shedding approach, microgrid components need to make decisions autonomously. For autonomous microgrid operation, a multi-agent system has been investigated. In this paper, a distributed load-shedding system for agent-based autonomous operation of a microgrid is designed. The designed system is implemented and tested to show the functionality and feasibility of the proposed system.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2014-01-22
    Description: As a result of the increase in energy demand and government subsidies, the usage of wind turbine system (WTS) has increased dramatically. Due to the higher energy production of a variable-speed WTS as compared to a fixed-speed WTS, the demand for this type of WTS has increased. In this study, a new method for the calculation of the power output of variable-speed WTSs is proposed. The proposed model is developed from the S-type curve used for population growth, and is only a function of the rated power and rated (nominal) wind speed. It has the advantage of enabling the user to calculate power output without using the rotor power coefficient. Additionally, by using the developed model, a mathematical method to calculate the value of rated wind speed in terms of turbine capacity factor and the scale parameter of the Weibull distribution for a given wind site is also proposed. Design optimization studies are performed by using the particle swarm optimization (PSO) and artificial bee colony (ABC) algorithms, which are applied into this type of problem for the first time. Different sites such as Northern and Mediterranean sites of Europe have been studied. Analyses for various parameters are also presented in order to evaluate the effect of rated wind speed on the design parameters and produced energy cost. Results show that proposed models are reliable and very useful for modeling and optimization of WTSs design by taking into account the wind potential of the region. Results also show that the PSO algorithm has better performance than the ABC algorithm for this type of problem.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2014-01-11
    Description: A comprehensive mathematical model of the performance of the cathode-supported solid oxide fuel cell (SOFC) with syngas fuel is presented. The model couples the intricate interdependency between the ionic conduction, electronic conduction, gas transport, the electrochemical reaction processes in the functional layers and on the electrode/electrolyte interfaces, methane steam reforming (MSR) and the water gas shift reaction (WGSR). The validity of the mathematical model is demonstrated by the excellent agreement between the numerical and experimental I-V curves. The effect of anode rib width and cathode rib width on gas diffusion and cell performance is examined. The results show conclusively that the cell performance is strongly influenced by the rib width. Furthermore, the anode optimal rib width is smaller than that for cathode, which is contrary to anode-supported SOFC. Finally, the formulae for the anode and cathode optimal rib width are given, which provide an easy to use guidance for the broad SOFC engineering community.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2014-01-17
    Description: Currently, alternative fuels are being investigated in detail for application in compression ignition (CI) engines resulting in exciting potential opportunities to increase energy security and reduce gas emissions. Biodiesel is one of the alternative fuels which is renewable and environmentally friendly and can be used in diesel engines with little or no modifications. The objective of this study is to investigate the effects of biodiesel types and biodiesel fraction on the emission characteristics of a CI engine. The experimental work was carried out on a four-cylinder, four-stroke, direct injection (DI) and turbocharged diesel engine by using biodiesel made from waste oil, rapeseed oil, corn oil and comparing them to normal diesel. The fuels used in the analyses are B10, B20, B50, B100 and neat diesel. The engine was operated over a range of engine speeds. Based on the measured parameters, detailed analyses were carried out on major regulated emissions such as NOx, CO, CO2, and THC. It has been seen that the biodiesel types (sources) do not result in any significant differences in emissions. The results also clearly indicate that the engine running with biodiesel and blends have higher NOx emission by up to 20%. However, the emissions of the CI engine running on neat biodiesel (B100) were reduced by up to 15%, 40% and 30% for CO, CO2 and THC emissions respectively, as compared to diesel fuel at various operating conditions.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2014-01-21
    Description: Due to the unbalanced features of distribution systems, a three-phase harmonic analysis method is essential to accurately analyze the harmonic impact on distribution systems. Moreover, harmonic analysis is the basic tool for harmonic filter design and harmonic resonance mitigation; therefore, the computational performance should also be efficient. An accurate and efficient three-phase harmonic analysis method for unbalanced distribution systems is proposed in this paper. The variations of bus voltages, bus current injections and branch currents affected by harmonic current injections can be analyzed by two relationship matrices developed from the topological characteristics of distribution systems. Some useful formulas are then derived to solve the three-phase harmonic propagation problem. After the harmonic propagation for each harmonic order is calculated, the total harmonic distortion (THD) for bus voltages can be calculated accordingly. The proposed method has better computational performance, since the time-consuming full admittance matrix inverse employed by the commonly-used harmonic analysis methods is not necessary in the solution procedure. In addition, the proposed method can provide novel viewpoints in calculating the branch currents and bus voltages under harmonic pollution which are vital for harmonic filter design. Test results demonstrate the effectiveness and efficiency of the proposed method.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2014-01-23
    Description: The present work focuses on the numerical modeling of combustion in liquid-propellant rocket engines. Pressure and temperature are well above thermodynamic critical points of both the propellants and then the reactants show liquid-like characteristics of density and gas-like characteristics for diffusivity. The aim of the work is an efficient numerical description of the phenomena and RANS simulations were performed for this purpose. Hence, in the present work different kinetics, combustion models and thermodynamic approaches were used for combustion modeling first in a trans-critical environment, then in the sub-critical state. For phases treatment the pure Eulerian single phase approach was compared with the Lagrangian/Eulerian description. For modeling combustion, the Probability Density Function (PDF) equilibrium and flamelet approaches and the Eddy Dissipation approach, with two different chemical kinetic mechanisms (the Jones-Lindstedt and the Skeletal model), were used. Real Gas (Soave-Redlich-Kwong and Peng-Robinson) equations were applied. To estimate the suitability of different strategies in phenomenon description, a comparison with experimental data from the literature was performed, using the results for different operative conditions of the Mascotte test bench: trans-critical and subcritical condition for oxygen injection. The main result of this study is the individuation of the DPM approach of the most versatile methods to reproduce cryogenic combustion adapted for different operating conditions and producing good results.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2014-01-24
    Description: Remaining useful life (RUL) prediction is central to the prognostics and health management (PHM) of lithium-ion batteries. This paper proposes a novel RUL prediction method for lithium-ion batteries based on the Wiener process with measurement error (WPME). First, we use the truncated normal distribution (TND) based modeling approach for the estimated degradation state and obtain an exact and closed-form RUL distribution by simultaneously considering the measurement uncertainty and the distribution of the estimated drift parameter. Then, the traditional maximum likelihood estimation (MLE) method for population based parameters estimation is remedied to improve the estimation efficiency. Additionally, we analyze the relationship between the classic MLE method and the combination of the Bayesian updating algorithm and the expectation maximization algorithm for the real time RUL prediction. Interestingly, it is found that the result of the combination algorithm is equal to the classic MLE method. Inspired by this observation, a heuristic algorithm for the real time parameters updating is presented. Finally, numerical examples and a case study of lithium-ion batteries are provided to substantiate the superiority of the proposed RUL prediction method.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2014-01-11
    Description: Incentives, such as the Feed-in-tariff are expected to lead to continuous increase in the deployment of Small Scale Embedded Generation (SSEG) in the distribution network. Self-Excited Induction Generators (SEIG) represent a significant segment of potential SSEG. The quality of SEIG output voltage magnitude and frequency is investigated in this paper to support the SEIG operation for different network operating conditions. The dynamic behaviour of the SEIG resulting from disconnection, reconnection from/to the grid and potential operation in islanding mode is studied in detail. The local load and reactive power supply are the key factors that determine the SEIG performance, as they have significant influence on the voltage and frequency change after disconnection from the grid. Hence, the aim of this work is to identify the optimum combination of the reactive power supply (essential for self excitation of the SEIG) and the active load (essential for balancing power generation and demand). This is required in order to support the SEIG operation after disconnection from the grid, during islanding and reconnection to the grid. The results show that the generator voltage and speed (frequency) can be controlled and maintained within the statuary limits. This will enable safe disconnection and reconnection of the SEIG from/to the grid and makes it easier to operate in islanding mode.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2014-01-23
    Description: In Part I of this work, a static voltage security region was introduced to guarantee the safety of wind farm reactive power outputs under both base conditions and N-1 contingency. In this paper, a mathematical representation of the approximate N-1 security region has further studied to provide better coordination among wind farms and help prevent cascading tripping following a single wind farm trip. Besides, the influence of active power on the security region is studied. The proposed methods are demonstrated for N-1 contingency cases in a nine-bus system. The simulations verify that the N-1 security region is a small subset of the security region under base conditions. They also illustrate the fact that if the system is simply operated below the reactive power limits, without coordination among the wind farms, the static voltage is likely to exceed its limit. A two-step optimal adjustment strategy is introduced to shift insecure operating points into the security region under N-1 contingency. Through extensive numerical studies, the effectiveness of the proposed technique is confirmed.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2014-01-23
    Description: Organic and inorganic contaminants in sewage sludge may cause their presence also in the by-products formed during gasification processes. Thus, this paper presents multidirectional chemical instrumental activation analyses of dried sewage sludge as well as both solid (ash, char coal) and liquid (tar) by-products formed during sewage gasification in a fixed bed reactor which was carried out to assess the extent of that phenomenon. Significant differences were observed in the type of contaminants present in the solid and liquid by-products from the dried sewage sludge gasification. Except for heavy metals, the characteristics of the contaminants in the by-products, irrespective of their form (solid and liquid), were different from those initially determined in the sewage sludge. It has been found that gasification promotes the migration of certain valuable inorganic compounds from sewage sludge into solid by-products which might be recovered. On the other hand, the liquid by-products resulting from sewage sludge gasification require a separate process for their treatment or disposal due to their considerable loading with toxic and hazardous organic compounds (phenols and their derivatives).
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2014-03-12
    Description: How to compare the environmental performance of different vehicle technologies? Vehicles with lower tailpipe emissions are perceived as cleaner. However, does it make sense to look only to tailpipe emissions? Limiting the comparison only to these emissions denies the fact that there are emissions involved during the production of a fuel and this approach gives too much advantage to zero-tailpipe vehicles like battery electric vehicles (BEV) and fuel cell electric vehicle (FCEV). Would it be enough to combine fuel production and tailpipe emissions? Especially when comparing the environmental performance of alternative vehicle technologies, the emissions during production of the specific components and their appropriate end-of-life treatment processes should also be taken into account. Therefore, the complete life cycle of the vehicle should be included in order to avoid problem shifting from one life stage to another. In this article, a full life cycle assessment (LCA) of petrol, diesel, fuel cell electric (FCEV), compressed natural gas (CNG), liquefied petroleum gas (LPG), hybrid electric, battery electric (BEV), bio-diesel and bio-ethanol vehicles has been performed. The aim of the manuscript is to investigate the impact of the different vehicle technologies on the environment and to develop a range-based modeling system that enables a more robust interpretation of the LCA results for a group of vehicles. Results are shown for climate change, respiratory effects, acidification and mineral extraction damage of the different vehicle technologies. A broad range of results is obtained due to the variability within the car market. It is concluded that it is essential to take into account the influence of all the vehicle parameters on the LCA results.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2014-03-13
    Description: There are currently no international norms which define a method for characterizing photovoltaic solar cells for indoor applications. The current standard test conditions are not relevant indoors. By performing efficiency simulations based on the quantum efficiency of typical solar cells and the light spectra of typical artificial light sources, we are able to propose the first step for developing a standard by determining which light sources are relevant for indoor PV characterization and which are not or are redundant. Our simulations lead us to conclude that indoor light sources can be divided into three different categories. For the characterization of photovoltaic solar cells in indoor environments, we propose that solar cells be measured under one light source from each group.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2014-03-13
    Description: False data injection (FDI) is considered to be one of the most dangerous cyber-attacks in smart grids, as it may lead to energy theft from end users, false dispatch in the distribution process, and device breakdown during power generation. In this paper, a novel kind of FDI attack, named tolerable false data injection (TFDI), is constructed. Such attacks exploit the traditional detector’s tolerance of observation errors to bypass the traditional bad data detection. Then, a method based on extended distributed state estimation (EDSE) is proposed to detect TFDI in smart grids. The smart grid is decomposed into several subsystems, exploiting graph partition algorithms. Each subsystem is extended outward to include the adjacent buses and tie lines, and generate the extended subsystem. The Chi-squares test is applied to detect the false data in each extended subsystem. Through decomposition, the false data stands out distinctively from normal observation errors and the detection sensitivity is increased. Extensive TFDI attack cases are simulated in the Institute of Electrical and Electronics Engineers (IEEE) 14-, 39-, 118- and 300-bus systems. Simulation results show that the detection precision of the EDSE-based method is much higher than that of the traditional method, while the proposed method significantly reduces the associated computational costs.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2014-03-14
    Description: This paper proposes a new electrically controlled magnetic variable-speed gearing (EC-MVSG) machine, which is capable of providing controllable gear ratios for hybrid electric vehicle (HEV) applications. The key design feature involves the adoption of a magnetic gearing structure and acceptance of the memory machine flux-mnemonic concept. Hence, the proposed machine can not only offer a gear-shifting mechanism for torque and speed transmission, but also provide variable gear ratios for torque and speed variation. The electromagnetic design is studied and discussed. The finite-element method is developed with the hysteresis model to verify the validity of the machine design.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2014-04-24
    Description: The Weibull probability density function (PDF) has mostly been used to fit wind speed distributions for wind energy applications. The goodness of fit of the results depends on the estimation method that was used and the wind type of the analyzed area. In this paper, a study on a particular area (Galicia) was performed to test the performance of several fitting methods. The goodness of fit was evaluated by well-known indicators that use the wind speed or the available wind power density. However, energy production must be a critical parameter in wind energy applications. Hence, a fitting method that accounts for the power density distribution is proposed. To highlight the usefulness of this method, indicators that use energy production values are also presented.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2014-04-24
    Description: Microgrids are a highly efficient means of embedding distributed generation sources in a power system. However, if a fault occurs inside or outside the microgrid, the microgrid should be immediately disconnected from the main grid using a static switch installed at the secondary side of the main transformer near the point of common coupling (PCC). The static switch should have a reliable module implemented in a chip to detect/locate the fault and activate the breaker to open the circuit immediately. This paper proposes a novel approach to design this module in a static switch using the discrete wavelet transform (DWT) and adaptive network-based fuzzy inference system (ANFIS). The wavelet coefficient of the fault voltage and the inference results of ANFIS with the wavelet energy of the fault current at the secondary side of the main transformer determine the control action (open or close) of a static switch. The ANFIS identifies the faulty zones inside or outside the microgrid. The proposed method is applied to the first outdoor microgrid test bed in Taiwan, with a generation capacity of 360.5 kW. This microgrid test bed is studied using the real-time simulator eMegaSim developed by Opal-RT Technology Inc. (Montreal, QC, Canada). The proposed method based on DWT and ANFIS is implemented in a field programmable gate array (FPGA) by using the Xilinx System Generator. Simulation results reveal that the proposed method is efficient and applicable in the real-time control environment of a power system.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2014-04-24
    Description: Controlled islanding is the last countermeasure for a bulk power system when it suffers from severe cascading contingencies. The objective of controlled islanding is to maintain the stability of each island and to keep the total loss of loads of the whole system to a minimum. This paper presents a novel integrated wide-area measurement systems (WAMS)-based adaptive controlled islanding strategy, which depends on the dynamic post-fault trajectories under different failure modes. We first utilize an improved Laplacian eigenmap algorithm (ILEA) to identify the coherent generators and use the slow coherency grouping algorithm to guarantee coherent stability within an island. Using the identification result, we then define the minimum coherent generator virtual nodes to reduce the searching space in a graph and utilize the k-way partitioning (KWP) algorithm to obtain a preliminary partition of the simplified graph. Based on the preliminary partition, we consider the direction of power flow and propose a variable neighborhood heuristic searching algorithm to search the optimal separation surfaces so that the net imbalanced power of islands is minimized. Finally, the bidirectional power flow tracing algorithm and PQ decomposition power flow analysis are utilized to determine the corrective controls within each island. The test results with the New England 39-bus system and the IEEE 118-bus system show that the proposed integrated controlled islanding strategy can automatically adapt to different fault modes through generator coherency identification and effectively group the different coherent generators into different islands.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2014-05-07
    Description: Data collected from the supervisory control and data acquisition (SCADA) system, used widely in wind farms to obtain operational and condition information about wind turbines (WTs), is of important significance for anomaly detection in wind turbines. The paper presents a novel model for wind turbine anomaly detection mainly based on SCADA data and a back-propagation neural network (BPNN) for automatic selection of the condition parameters. The SCADA data sets are determined through analysis of the cumulative probability distribution of wind speed and the relationship between output power and wind speed. The automatic BPNN-based parameter selection is for reduction of redundant parameters for anomaly detection in wind turbines. Through investigation of cases of WT faults, the validity of the automatic parameter selection-based model for WT anomaly detection is verified.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2014-05-06
    Description: This study presents the auxiliary damping control with the reactive power loop on the rotor-side converter of doubly-fed induction generator (DFIG)-based wind farms to depress the sub-synchronous resonance oscillations in nearby turbogenerators. These generators are connected to a series capacitive compensation transmission system. First, the damping effect of the reactive power control of the DFIG-based wind farms was theoretically analyzed, and a transfer function between turbogenerator speed and the output reactive power of the wind farms was introduced to derive the analytical expression of the damping coefficient. The phase range to obtain positive damping was determined. Second, the PID phase compensation parameters of the auxiliary damping controller were optimized by a genetic algorithm to obtain the optimum damping in the entire subsynchronous frequency band. Finally, the validity and effectiveness of the proposed auxiliary damping control were demonstrated on a modified version of the IEEE first benchmark model by time domain simulation analysis with the use of DigSILENT/PowerFactory. Theoretical analysis and simulation results show that this derived damping factor expression and the condition of the positive damping can effectively analyze their impact on the system sub-synchronous oscillations, the proposed wind farms reactive power additional damping control strategy can provide the optimal damping effect over the whole sub-synchronous frequency band, and the control effect is better than the active power additional damping control strategy based on the power system stabilizator.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2014-04-30
    Description: Lithium-based batteries are considered as the most advanced batteries technology, which can be designed for high energy or high power storage systems. However, the battery cells are never fully identical due to the fabrication process, surrounding environment factors and differences between the cells tend to grow if no measures are taken. In order to have a high performance battery system, the battery cells should be continuously balanced for maintain the variation between the cells as small as possible. Without an appropriate balancing system, the individual cell voltages will differ over time and battery system capacity will decrease quickly. These issues will limit the electric range of the electric vehicle (EV) and some cells will undergo higher stress, whereby the cycle life of these cells will be shorter. Quite a lot of cell balancing/equalization topologies have been previously proposed. These balancing topologies can be categorized into passive and active balancing. Active topologies are categorized according to the active element used for storing the energy such as capacitor and/or inductive component as well as controlling switches or converters. This paper proposes an intelligent battery management system (BMS) including a battery pack charging and discharging control with a battery pack thermal management system. The BMS user input/output interfacing. The battery balancing system is based on battery pack modularization architecture. The proposed modularized balancing system has different equalization systems that operate inside and outside the modules. Innovative single switched capacitor (SSC) control strategy is proposed to balance between the battery cells in the module (inside module balancing, IMB). Novel utilization of isolated bidirectional DC/DC converter (IBC) is proposed to balance between the modules with the aid of the EV auxiliary battery (AB). Finally an experimental step-up has been implemented for the validation of the proposed balancing system.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2014-05-01
    Description: This paper set out to identify the significant variables which affect residential low voltage (LV) network demand and develop next day total energy use (NDTEU) and next day peak demand (NDPD) forecast models for each phase. The models were developed using both autoregressive integrated moving average with exogenous variables (ARIMAX) and neural network (NN) techniques. The data used for this research was collected from a LV transformer serving 128 residential customers. It was observed that temperature accounted for half of the residential LV network demand. The inclusion of the double exponential smoothing algorithm, autoregressive terms, relative humidity and day of the week dummy variables increased model accuracy. In terms of R2 and for each modelling technique and phase, NDTEU hindcast accuracy ranged from 0.77 to 0.87 and forecast accuracy ranged from 0.74 to 0.84. NDPD hindcast accuracy ranged from 0.68 to 0.74 and forecast accuracy ranged from 0.56 to 0.67. The NDTEU models were more accurate than the NDPD models due to the peak demand time series being more variable in nature. The NN models had slight accuracy gains over the ARIMAX models. A hybrid model was developed which combined the best traits of the ARIMAX and NN techniques, resulting in improved hindcast and forecast fits across the all three phases.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2014-04-30
    Description: This study investigates a new hybrid energy storage system (HESS), which consists of a battery bank and an ultra-capacitor (UC) bank, and a control strategy for this system. The proposed topology uses a bi-directional DC-DC converter with a lower power rating than those used in the traditional HESS topology. The proposed HESS has four operating modes, and the proposed control strategy chooses the appropriate operating mode and regulates the distribution of power between the battery bank and the UC bank. Additionally, the control system prevents surges during mode switching and ensures that both the battery bank and the bi-directional DC-DC converter operate within their power limits. The proposed HESS is used to improve the performance of an existing power-split hybrid electric vehicle (HEV). A method for calculating the parameters of the proposed HESS is presented. A simulation model of the proposed HESS and control strategy was developed, and a scaled-down experimental platform was constructed. The results of the simulations and the experiments provide strong evidence for the feasibility of the proposed topology and the control strategy. The performance of the HESS is not influenced by the power limits of the bi-directional DC-DC converter.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2014-05-01
    Description: In Beijing, China, the rational consumption of energy is affected by the insufficient linkage mechanism of the energy pricing system, the unreasonable price ratio and other issues. This paper combines the characteristics of Beijing’s energy market, putting forward the society-economy equilibrium indicator R maximization taking into consideration the mitigation cost to determine a reasonable price ratio range. Based on the computable general equilibrium (CGE) model, and dividing four kinds of energy sources into three groups, the impact of price fluctuations of electricity and natural gas on the Gross Domestic Product (GDP), Consumer Price Index (CPI), energy consumption and CO2 and SO2 emissions can be simulated for various scenarios. On this basis, the integrated effects of electricity and natural gas price shocks on the Beijing economy and environment can be calculated. The results show that relative to the coal prices, the electricity and natural gas prices in Beijing are currently below reasonable levels; the solution to these unreasonable energy price ratios should begin by improving the energy pricing mechanism, through means such as the establishment of a sound dynamic adjustment mechanism between regulated prices and market prices. This provides a new idea for exploring the rationality of energy price ratios in imperfect competitive energy markets.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2014-03-05
    Description: Irrigated agriculture has the potential to alter regional to global climate significantly. We investigate how irrigation will affect regional climate in the future in an inland irrigation area of northern China, focusing on its effects on heat fluxes and near-surface temperature. Using the Weather Research and Forecasting (WRF) model, we compare simulations among three land cover scenarios: the control scenario (CON), the irrigation scenario (IRR), and the irrigated cropland expansion scenario (ICE). Our results show that the surface energy budgets and temperature are sensitive to changes in the extent and spatial pattern of irrigated land. Conversion to irrigated agriculture at the contemporary scale leads to an increase in annual mean latent heat fluxes of 12.10 W m−2, a decrease in annual mean sensible heat fluxes of 8.85 W m−2, and a decrease in annual mean temperature of 1.3 °C across the study region. Further expansion of irrigated land increases annual mean latent heat fluxes by 18.08 W m−2, decreases annual mean sensible heat fluxes by 12.31 W m−2, and decreases annual mean temperature by 1.7 °C. Our simulated effects of irrigation show that changes in land use management such as irrigation can be an important component of climate change and need to be considered together with greenhouse forcing in climate change assessments.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2014-03-05
    Description: The Lagrange multiplier-based method is an effective network parameter error identification method. However, two full matrices with high-dimensions are involved in the calculation procedure; these create huge computational burdens for large-scale power systems. To solve this problem, a fast solution is proposed in this paper, where special treatment techniques for full matrices are used to dramatically improve the calculation efficiency. A practical parameter error identification program has been developed and used in many electric power control centers. In this paper, the results for test systems and on-site applications are given, which show that the proposed approach is very efficient.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2014-04-26
    Description: The diffusion of Electric Vehicles (EV) fostered by the evolution of the power system towards the new concept of Smart Grid introduces several technological challenges related to the synergy among electricity-propelled vehicle fleets and the energy grid ecosystem. EVs promise to reduce carbon emissions by exploiting Renewable Energy Sources (RESes) for battery recharge, and could potentially serve as storage bank to flatten the fluctuations of power generation caused by the intermittent nature of RESes by relying on a load aggregator, which intelligently schedules the battery charge/discharge of a fleet of vehicles according to the users’ requests and grid’s needs. However, the introduction of such vehicle-to-grid (V2G) infrastructure rises also privacy concerns: plugging the vehicles in the recharging infrastructures may expose private information regarding the user’s locations and travelling habits. Therefore, this paper proposes a privacy-preserving V2G infrastructure which does not disclose to the aggregator the current battery charge level, the amount of refilled energy, nor the time periods in which the vehicles are actually plugged in. The communication protocol relies on the Shamir Secret Sharing threshold cryptosystem. We evaluate the security properties of our solution and compare its performance to the optimal scheduling achievable by means of an Integer Linear Program (ILP) aimed at maximizing the ratio of the amount of charged/discharged energy to/from the EV’s batteries to the grid power availability/request. This way, we quantify the reduction in the effectiveness of the scheduling strategy due to the preservation of data privacy.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2014-04-26
    Description: This study proposes a multiple kernel learning (MKL)-based regression model for crude oil spot price forecasting and trading. We used a well-known trend-following technical analysis indicator, the moving average convergence and divergence (MACD) indicator, for extracting features from original spot prices. Additionally, we factored in the possibility that movements of target crude oil prices may be related to other important crude oil markets besides the target market for the prediction time horizon since traders may find price movement information within other relevant crude oil markets useful. We also considered multiple timeframes in this study since trends may differ across different timeframes and, in fact, traders may use their own timeframes. Therefore, for forecasting target crude oil prices, this study emphasizes on features pertaining to other important crude oil markets and different timeframes in addition to features of the target crude oil market and target timeframe. Moreover, the MKL framework has been used to fuse information extracted from different sources and timeframes of the same data source. Experimental results show that out-of-sample forecasting using the MKL method is superior to benchmark methods in terms of root mean square error (RMSE) and average percentage profit (APP). They also show that the information from multiple timeframes is useful for prediction, but that from another crude oil market is not.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2014-04-26
    Description: Fast and reliable black start plays a key role in improving the ability of the power system to resist the risk of large-scale blackouts. For a black start with high voltage and long-distance transmission lines, it is much easier to cause phenomena such as self-excitation and power frequency/operating overvoltage, which may lead to black start failure and impact the reliability of the system’s restoration. Meanwhile, the long time needed to crank up the non-black start units will impact the speed of the restoration. This paper addresses the advantages of using a thermal power unit with a fast cut back (FCB) function as a black start unit, and studies the transient process of the FCB unit during the restoration. Firstly, key problems in the power system black start process are analyzed and a practical engineering criterion of self-excitation is proposed. Secondly, the dynamic model of the FCB unit is presented. Thirdly, the field test of the FCB unit load rejection and black start is introduced, which is the first successful field test of black start with 500 kV long-distance lines in China Southern Power Grid (CSG). Finally, the transient process of this test is simulated using the PSCAD/EMTDC software, and the simulation results accord well with the field test results, which verifies the correctness of the FCB model and the self-excitation engineering criterion proposed.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2014-03-21
    Description: This paper presents a significant method and a basic idea of waste heat recovery from high temperature slags based on Time Temperature Transformation (TTT) curves. Three samples with a fixed CaO/SiO2 ratio of 1.05 and different levels of Al2O3 were designed and isothermal experiments were performed using a Single Hot Thermocouple Technique (SHTT). The TTT curves established through SHTT experiments described well the variation of slag properties during isothermal processes. In this study, we propose a multi-stage control method for waste heat recovery from high temperature slags, in which the whole temperature range from 1500 °C to 25 °C was divided into three regions, i.e., Liquid region, Crystallization region and Solid region, based on the TTT curves. Accordingly, we put forward an industrial prototype plant for the purpose of waste heat recovery and the potential of waste heat recovery was then calculated. The multi-stage control method provided not only a significant prototype, but also a basic idea to simultaneously extract high quality waste heat and obtain glassy phases on high temperature slags, which may fill the gap between slag properties and practical waste heat recovery processes.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2014-03-21
    Description: This paper compares the differences in economic feasibility and dynamic characteristics between underground (U/G) cable and overhead (O/H) line for low-voltage direct current (LVDC) distribution. Numerous low loaded long-distance distribution networks served by medium-voltage alternative current (MVAC) distribution lines exist in the Korean distribution network. This is an unavoidable choice to compensate voltage drop, therefore, excessive cost is expended for the amount of electrical power load. The Korean Electric Power Corporation (KEPCO) is consequently seeking a solution to replace the MVAC distribution line with a LVDC distribution line, reducing costs and providing better quality direct current (DC) electricity. A LVDC distribution network can be installed with U/G cables or O/H lines. In this paper, a realistic MVAC distribution network in a mountainous area was selected as the target model to replace with LVDC. A 30 year net present value (NPV) analysis of the economic feasibility was conducted to compare the cost of the two types of distribution line. A simulation study compared the results of the DC line fault with the power system computer aided design/electro-magnetic transient direct current (PSCAD/EMTDC). The economic feasibility evaluation and simulation study results will be used to select the applicable type of LVDC distribution network.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2014-04-29
    Description: With the advent of new satellite technology, the radiative energy exchanges between Sun, Earth, and space may now be quantified accurately. Nevertheless, much less is known about the magnitude of the energy flows within the climate system and at the Earth’s surface, which cannot be directly measured by satellites. This review surveys the basic theories, observational methods, and different surface energy balance algorithms for estimating evapotranspiration (ET) from landscapes and regions with remotely sensed surface temperatures, and highlights uncertainties and limitations associated with those estimation methods. Although some of these algorithms were built up for specific land covers like irrigation areas only, methods developed for other disciplines like hydrology and meteorology, are also reviewed, where continuous estimates in space and in time are needed. Temporal and spatial scaling issues associated with the use of thermal remote sensing for estimating evapotranspiration are also discussed. A review of these different satellite based remote sensing approaches is presented. The main physical bases and assumptions of these algorithms are also discussed. Some results are shown for the estimation of evapotranspiration on a rice paddy of Chiayi Plain in Taiwan using remote sensing data.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2014-04-29
    Description: All-electric ships are now a standard offering for energy/propulsion systems in boats. In this context, integrating fuel cells (FCs) as power sources in hybrid energy systems can be an interesting solution because of their high efficiency and low emission. The energy management strategy for different power sources has a great influence on the fuel consumption, dynamic performance and service life of these power sources. This paper presents a hybrid FC/battery power system for a low power boat. The hybrid system consists of the association of a proton exchange membrane fuel cell (PEMFC) and battery bank. The mathematical models for the components of the hybrid system are presented. These models are implemented in Matlab/Simulink environment. Simulations allow analyzing the dynamic performance and power allocation according to a typical driving cycle. In this system, an efficient energy management system (EMS) based on operation states is proposed. This EMS strategy determines the operating point of each component of the system in order to maximize the system efficiency. Simulation results validate the adequacy of the hybrid power system and the proposed EMS for real ship driving cycles.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2014-02-22
    Description: High power and miniaturization of motors in an in-wheel drive system, which is installed inside the wheels of a vehicle, are required for directly driving the wheels. In addition, an efficient cooling system is required to ensure high driving performance and durability. This study experimentally evaluated the heat dissipation performance of a 35-kW-class large-capacity in-wheel motor equipped with an internal-circulation-type oil-cooling system that exhibits high cooling performance and can be easily miniaturized to this motor. Temperatures of the coil and stator core of cooling systems with and without a radiator were measured in real time under in-wheel motor driving conditions. It was found that operating the cooling system at a continuous-rating maximum speed without the radiator was difficult. We confirmed that under continuous-rating base speed and continuous-rating maximum speed driving conditions, the cooling system with the radiator showed thermally stable operation. Furthermore, under maximum-rating base speed and maximum-rating maximum speed driving conditions, the cooling system with the radiator provided additional driving times of approximately 22 s and 2 s, respectively.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2014-02-25
    Description: Temperature changes and heat flows in soils that host “slinky”-type horizontal heat exchangers are complex, but need to be understood if robust quantification of the thermal energy available to a ground-source heat pump is to be achieved. Of particular interest is the capacity of the thermal energy content of the soil to regenerate when the heat exchangers are not operating. Analysis of specific heat flows and the specific thermal energy regime within the soil, including that captured by the heat-exchangers, has been characterised by meticulous measurements. These reveal that high concentrations of antifreeze mix in the heat-transfer fluid of the heat exchanger have an adverse impact on heat flows discharged into the soil.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2014-02-25
    Description: With power systems switching to smart grids, real-time and on-line monitoring technologies for underground distribution power cables have become a priority. Most distribution components have been developed with self-diagnostic sensors to realize self-healing, one of the smart grid functions in a distribution network. Nonetheless, implementing a real-time and on-line monitoring system for underground distribution cables has been difficult because of high cost and low sensitivity. Nowadays, optical fiber composite power cables (OFCPCs) are being considered for communication and power delivery to cope with the increasing communication load in a distribution network. Therefore, the application of distributed temperature sensing (DTS) technology on OFCPCs used as underground distribution lines is studied for the real-time and on-line monitoring of the underground distribution power cables. Faults can be reduced and operating ampacity of the underground distribution system can be increased. This paper presents the development and improvement of an intelligent cable monitoring system for the underground distribution power system, using DTS technology and OFCPCs as the underground distribution lines in the field.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2014-02-25
    Description: On page 1107, line 21, “Definition 4” should be in bold face, in consistency with the previous definitions. Therefore, “Definition 4:” should be “Definition 4:”.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2014-02-25
    Description: The influence of prewhirl regulation by inlet guide vanes (IGVs) on a centrifugal pump performance is investigated experimentally and numerically. The experimental results show that IGVs can obviously change the head and increase the efficiency of the tested centrifugal pump over a wide range of flow rates. Although the cavitation performance is degraded, the variation of the cavitation critical point is less than 0.5 m. Movement of the computed three-dimensional streamlines in suction pipe and impeller are analyzed in order to reveal the mechanism how the IGVs realize the prewhirl regulation. The calculated results show that the influence of IGVs on the cavitation performance of centrifugal pump is limited by a maximum total pressure drop of 1777 Pa, about 7.6% of the total pressure at the suction pipe inlet for a prewhirl angle of 24°.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2014-02-25
    Description: This paper deals with the application of an anticipating and coordinating feedback control scheme in order to mitigate the long-term voltage instability of multi-area power systems. Each local area is uniquely controlled by a control agent (CA) selecting control values based on model predictive control (MPC) and is possibly operated by an independent transmission system operator (TSO). Each MPC-based CA only knows a detailed local hybrid system model of its own area, employing reduced-order quasi steady-state (QSS) hybrid models of its neighboring areas and even simpler PV models for remote areas, to anticipate (and then optimize) the future behavior of its own area. Moreover, the neighboring CAs agree on communicating their planned future control input sequence in order to coordinate their own control actions. The feasibility of the proposed method for real-time applications is explained, and some practical implementation issues are also discussed. The performance of the method, using time-domain simulation of the Nordic32 test system, is compared with the uncoordinated decentralized MPC (no information exchange among CAs), demonstrating the improved behavior achieved by combining anticipation and coordination. The robustness of the control scheme against modeling uncertainties is also illustrated.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2014-02-27
    Description: Poor access to clean and reliable energy technologies is a major challenge to most developing countries. The decision to introduce new technologies is often faced by low adoption rates or even public opposition. In addition, the data required for effective decision making is often inadequate or even lacking, thus constraining the planning process. In this study, a methodology for participatory appraisal of technologies, integrating desirability functions to the strengths, weaknesses, opportunities and threats (SWOT)-analytical hierarchy process (AHP) methodology was developed. Application of the methodology was illustrated with an example for participatory appraisal of four bioenergy technologies in Uganda. Results showed that the methodology is effective in evaluating stakeholder preferences for bioenergy technologies. It showed a high potential to be used to identify and rate factors that stakeholders take into consideration when selecting bioenergy systems. The method could be used as a tool for technology screening, or reaching consensus in a participatory setup in a transparent manner.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2014-02-28
    Description: One of the main challenges during the development of operating strategies for modern diesel engines is the reduction of the CO2 emissions, while complying with ever more stringent limits for the pollutant emissions. The inherent trade-off between the emissions of CO2 and pollutants renders a simultaneous reduction difficult. Therefore, an optimal operating strategy is sought that yields minimal CO2 emissions, while holding the cumulative pollutant emissions at the allowed level. Such an operating strategy can be obtained offline by solving a constrained optimal control problem. However, the final-value constraint on the cumulated pollutant emissions prevents this approach from being adopted for causal control. This paper proposes a framework for causal optimal control of diesel engines. The optimization problem can be solved online when the constrained minimization of the CO2 emissions is reformulated as an unconstrained minimization of the CO2 emissions and the weighted pollutant emissions (i.e., equivalent emissions). However, the weighting factors are not known a priori. A method for the online calculation of these weighting factors is proposed. It is based on the Hamilton–Jacobi–Bellman (HJB) equation and a physically motivated approximation of the optimal cost-to-go. A case study shows that the causal control strategy defined by the online calculation of the equivalence factor and the minimization of the equivalent emissions is only slightly inferior to the non-causal offline optimization, while being applicable to online control.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2014-02-08
    Description: Cellulosic ethanol is a sustainable alternative to petroleum as a transportation fuel, which could be made biologically from agricultural and forestry residues, municipal waste, or herbaceous and woody crops. Instead of putting efforts on steps overcoming the natural resistance of plants to biological breakdown, our study proposes a unique pathway to improve the outcome of the process by co-producing high-value nanofibrillated cellulose (NFC), offering a new economic leverage for cellulosic ethanol to compete with fossil fuels in the near future. In this study, glucose has been produced by commercial enzymes while the residual solids are converted into NFC via sonification. Here, we report the morphology of fibers changed through the process and yield of glucose in the enzymatic hydrolysis step.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2014-02-22
    Description: Electric variable transmission is a new electromechanical energy conversion device structure, which is especially suitable as the driving force distribution device for hybrid electric vehicles. This paper focuses on the power management strategy of hybrid electric vehicles based on an electric variable transmission, and a kind of hierarchical control ideology is proposed. The control strategy is composed of four control levels, namely analysis of force requirement, operation mode switching, force distribution and coordinate control, which are designed respectively in this paper. Then a simulation model is built based on the notion of energetic macroscopic representation, and an experimental test bench is built. The simulation and experiment results demonstrate the feasibility of the proposed strategy, and it can be taken as a new theory and method for the study of hybrid electric vehicle based on electric variable transmission.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2014-02-25
    Description: The editors of Energies would like to express their sincere gratitude to the following reviewers for assessing manuscripts in 2013.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2014-02-25
    Description: The presence of an unbalanced voltage at the point of common coupling (PCC) results in the appearance of a negative sequence current component that deteriorates the control performance. Static synchronous compensators (STATCOMs) are well-known to be a power application capable of carrying out the regulation of the PCC voltage in distribution lines that can suffer from grid disturbances. This article proposes a novel PCC voltage controller in synchronous reference frame to compensate an unbalanced PCC voltage by means of a STATCOM, allowing an independent control of both positive and negative voltage sequences. Several works have been proposed in this line but they were not able to compensate an unbalance in the PCC voltage. Furthermore, this controller includes aspects as antiwindup and droop control to improve the control system performance.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2014-03-22
    Description: Direction-sensitive visitor counting sensors can be used in demand-controlled ventilation (DCV). The counting performance of two light beam sensors and three camera sensors, all direction sensitive, was simultaneously evaluated at an indoor location. Direction insensitive sensors (two mat sensors and one light beam sensor) were additionally tested as a reference. Bidirectional counting data of free people flow was collected for 36 days in one-hour resolution, including five hours of manual counting. Compared to the manual results, one of the light beam sensors had the most equally balanced directional overall counting errors (4.6% and 5.2%). The collected data of this sensor was used to model the air transportation energy consumption of visitor counting sensor-based DCV and constant air volume ventilation (CAV). The results suggest that potential savings in air transportation energy consumption could be gained with the modeled DCV as its total daily airflow during the test period was 54% of the total daily airflow of the modeled CAV on average. A virtually real-time control of ventilation could be realized with minute-level counting resolution. Site-specific calibration of the visitor counting sensors is advisable and they could be complemented with presence detectors to avoid unnecessary ventilation during unoccupied periods of the room. A combination of CO2 and visitor counting sensors could be exploited in DCV to always guarantee sufficient ventilation with a short response time.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2014-03-22
    Description: This paper proposes a sliding mode extremum seeking control (SMESC) of chaos embedded particle swarm optimization (CEPSO) Algorithm, applied to the design of maximum power point tracking in wind power systems. Its features are that the control parameters in SMESC are optimized by CEPSO, making it unnecessary to change the output power of different wind turbines, the designed in-repetition rate is reduced, and the system control efficiency is increased. The wind power system control is designed by simulation, in comparison with the traditional wind power control method, and the simulated dynamic response obtained by the SMESC algorithm proposed in this paper is better than the traditional hill-climbing search (HCS) and extremum seeking control (ESC) algorithms in the transient or steady states, validating the advantages and practicability of the method proposed in this paper.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2014-03-25
    Description: The high-availability seamless redundancy (HSR) protocol, a potential candidate for substation automation system (SAS) networks, provides duplicated frame copies of each sent frame, with zero fault-recovery time. This means that even in the case of node or link failure, the destination node will receive at least one copy of the sent frame. Consequently, there is no network operation down time. However, the forwarding process of the QuadBox node in HSR is not smart and relies solely on duplication and random forwarding of all received frames. Thus, if a unicast frame is sent in any closed-loop network, the frame copies will be spread through most of all the links in both directions until they reach the destination node, which inevitably results in significant, unnecessary network traffic. In this paper, we present an algorithm called the dual virtual paths (DVP) algorithm to solve such an HSR excessive traffic issue. The idea behind our DVP algorithm is to establish automatic DVP between each HSR node and all the other nodes in the network, except for the QuadBox node. These virtual paths will be used for DVP unicast traffic transmission, rather than using the standard HSR transmission process. Therefore, the DVP algorithm results in less traffic, because there is no duplication or random forwarding, contrary to standard HSR. For the sample networks selected in this paper, the DVP algorithm shows more than a 70% reduction in network traffic and about an 80% reduction in the discarded traffic compared to the standard HSR protocol.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2014-03-25
    Description: Various polybenzimidazole (PBI)-based ion-exchange films were prepared and thoroughly characterized by Fourier transform infrared (FT-IR) spectroscopy, proton conductivity, and water uptake for possible use as fuel cell membranes. Upon the increase in the flexibility of the PBI-based polymer films (e.g., poly(oxyphenylene benzimidazole) (OPBI) and sulfonated OPBI (s-OPBI)), the membranes exhibited slightly improved proton conductivity, but significantly increased dimensional changes. To reduce the dimensional changes (i.e., increase the stability), the cross-linking of the polymer films (e.g., cross-linked OPBI (c-OPBI) and sulfonated c-OPBI (sc-OPBI)) was accomplished using phosphoric acid. Interestingly, the sc-OPBI membrane possessed a greatly increased proton conductivity (0.082 S/cm), which is comparable to that of the commercially available Nafion membrane (0.09 S/cm), while still maintaining slightly better properties regarding the dimensional change and water uptake than those of the Nafion membrane.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2014-03-25
    Description: This paper presents the day-ahead energy planning of passenger cars with 100% electric vehicle (EV) penetration in the Nordic region by 2050. EVs will play an important role in the future energy systems which can both reduce the greenhouse gas (GHG) emissions from the transport sector and provide the demand side flexibility required by smart grids. On the other hand, the EVs will increase the electricity consumption. In order to quantify the electricity consumption increase due to the 100% EV penetration in the Nordic region to facilitate the power system planning studies, the day-ahead energy planning of EVs has been investigated with different EV charging scenarios. Five EV charging scenarios have been considered in the energy planning analysis which are: uncontrolled charging all day, uncontrolled charging at home, timed charging, spot price based charging all day and spot price based charging at home. The demand profiles of the five charging analysis show that timed charging is the least favorable charging option and the spot priced based EV charging might induce high peak demands. The EV charging demand will have a considerable share of the energy consumption in the future Nordic power system.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2014-03-25
    Description: The main contribution of this paper is the development of H∞ fault tolerant control for a wind energy conversion system (WECS) based on the stochastic piecewise affine (PWA) model. In this paper the normal and fault stochastic PWA models for WECS including multiple working points at different wind speeds are established. A reliable piecewise linear quadratic regulator state feedback is designed for the fault tolerant actuator and sensor. A sufficient condition for the existence of the passive fault tolerant controller is derived based on some linear matrix inequalities (LMIs). It is shown that the H∞ fault tolerant controller of WECS can control the wind turbine exposed to multiple simultaneous sensor faults or actuator faults; that is, the reliability of wind turbines can be improved.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2014-03-25
    Description: Long-term urban and rural climate data spanning January 1995 through October 2013 were analyzed to investigate the Urban Heat Island (UHI) effect in a representative mid-sized city of the central US. Locally distributed climate data were also collected at nested low density urban, recently developed, and high density urban monitoring sites from June through September 2013 to improve mechanistic understanding of spatial variability of the UHI effect based upon urban land use intensity. Long-term analyses (1995–2013) indicate significant differences (p 〈 0.001) between average air temperature (13.47 and 12.89 °C, at the urban and rural site respectively), relative humidity (69.11% and 72.51%, urban and rural respectively), and average wind speed (2.05 and 3.15 m/s urban and rural respectively). Significant differences (p 〈 0.001) between urban monitoring sites indicate an urban microclimate gradient for all climate variables except precipitation. Results of analysis of net radiation and soil heat flux data suggest distinct localized alterations in urban energy budgets due to land use intensity. Study results hold important implications for urban planners and land managers seeking to improve and implement better urban management practices. Results also reinforce the need for distributed urban energy balance investigations.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2014-03-26
    Description: In the past decade, plug-in (hybrid) electric vehicles (PHEVs) have been widely proposed as a viable alternative to internal combustion vehicles to reduce fossil fuel emissions and dependence on petroleum. Off-peak vehicle charging is frequently proposed to reduce the stress on the electric power grid by shaping the load curve. Time of use (TOU) rates have been recommended to incentivize PHEV owners to shift their charging patterns. Many utilities are not currently equipped to provide real-time use rates to their customers, but can provide two or three staggered rate levels. To date, an analysis of the optimal number of levels and rate-duration of TOU rates for a given consumer demographic versus utility generation mix has not been performed. In this paper, we propose to use the U.S. National Household Travel Survey (NHTS) database as a basis to analyze typical PHEV energy requirements. We use Monte Carlo methods to model the uncertainty inherent in battery state-of-charge and trip duration. We conclude the paper with an analysis of a different TOU rate schedule proposed by a mix of U.S. utilities. We introduce a centralized scheduling strategy for PHEV charging using a genetic algorithm to accommodate the size and complexity of the optimization.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2014-03-26
    Description: Recently, a distribution management system (DMS) that can conduct periodical system analysis and control by mounting various applications programs has been actively developed. In this paper, we summarize the development and demonstration of a database structure that can perform real-time system analysis and control of the Korean smart distribution management system (KSDMS). The developed database structure consists of a common information model (CIM)-based off-line database (DB), a physical DB (PDB) for DB establishment of the operating server, a real-time DB (RTDB) for real-time server operation and remote terminal unit data interconnection, and an application common model (ACM) DB for running application programs. The ACM DB for real-time system analysis and control of the application programs was developed by using a parallel table structure and a link list model, thereby providing fast input and output as well as high execution speed of application programs. Furthermore, the ACM DB was configured with hierarchical and non-hierarchical data models to reflect the system models that increase the DB size and operation speed through the reduction of the system, of which elements were unnecessary for analysis and control. The proposed database model was implemented and tested at the Gochaing and Jeju offices using a real system. Through data measurement of the remote terminal units, and through the operation and control of the application programs using the measurement, the performance, speed, and integrity of the proposed database model were validated, thereby demonstrating that this model can be applied to real systems.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2014-03-28
    Description: The rapid economic growth after the new millennium could be characterized by the reappearance of heavy industrialization and land urbanization. In the literatures, extensive studies have examined the impact of energy and emissions on the growth quality during the heavy industrialization process, but few have paid attention to the land dimension. This paper aims at studying the role of land use in changing the total-factor efficiency (TFE) in China’s regional economy, together with the energy factors. The basic conclusions obtained are as follows: (1) the land and energy factors do have a statistically significant influence on the total-factor integrated efficiency (TFIE), leading to a much lower and not improved efficiency performance in the sample period. The integrated efficiency is dominated by the land factor rather than energy ones; and (2) the total-factor land efficiency (TFLE) is lower than the energy efficiency and has more room to improve. The land factor has a statistically significant influence on the total-factor energy efficiency (TFEE) but not vice versa. As compared to single-factor efficiency, the total-factor energy/land efficiency provides us a more precise measure of factor efficiency in China.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2014-03-28
    Description: Wind tunnel experiments were performed, where the development of the wake of a model wind turbine was measured using stereo Particle Image Velocimetry to observe the influence of platform pitch motion. The wakes of a classical bottom fixed turbine and a streamwise oscillating turbine are compared. Results indicate that platform pitch creates an upward shift in all components of the flow and their fluctuations. The vertical flow created by the pitch motion as well as the reduced entrainment of kinetic energy from undisturbed flows above the turbine result in potentially higher loads and less available kinetic energy for a downwind turbine. Experimental results are compared with four wake models. The wake models employed are consistent with experimental results in describing the shapes and magnitudes of the streamwise velocity component of the wake for a fixed turbine. Inconsistencies between the model predictions and experimental results arise in the floating case particularly regarding the vertical displacement of the velocity components of the flow. Furthermore, it is found that the additional degrees of freedom of a floating wind turbine add to the complexity of the wake aerodynamics and improved wake models are needed, considering vertical flows and displacements due to pitch motion.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2014-03-28
    Description: The power output capacity of a local electrical utility is dictated by its customers’ cumulative peak-demand electrical consumption. Most electrical utilities in the United States maintain peak-power generation capacity by charging for end-use peak electrical demand; thirty to seventy percent of an electric utility’s bill. To reduce peak demand, a real-time energy monitoring system was designed, developed, and implemented for a large government building. Data logging, combined with an application of artificial neural networks (ANNs), provides short-term electrical load forecasting data for controlled peak demand. The ANN model was tested against other forecasting methods including simple moving average (SMA), linear regression, and multivariate adaptive regression splines (MARSplines) and was effective at forecasting peak building electrical demand in a large government building sixty minutes into the future. The ANN model presented here outperformed the other forecasting methods tested with a mean absolute percentage error (MAPE) of 3.9% as compared to the SMA, linear regression, and MARSplines MAPEs of 7.7%, 17.3%, and 7.0% respectively. Additionally, the ANN model realized an absolute maximum error (AME) of 8.2% as compared to the SMA, linear regression, and MARSplines AMEs of 26.2%, 45.1%, and 22.5% respectively.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2014-03-28
    Description: Gasification of coal or biomass with in-situ CO2 capture is an emerging technology aiming to address the problem of climate change. Development of a CO2 sorbent with desirable properties and understanding the behavior of such a material in carbonation/calcination reactions is an important part of developing the technology. In this paper, we report experimental results describing the carbonation behavior of three synthetic CaO-based sorbents. We also present a physically-based model of the reactive transport processes in sorbent particles, which have complicated pore structures. This modeling is based on the conditional approach (i.e., conditional moment closure (CMC)), which has proven to be successful in modeling reactive transport phenomena in porous media. The model predictions are in good agreement with the experimental data.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2014-03-28
    Description: In building energy simulation, indoor thermal comfort condition, energy use and equipment size are typically calculated based on the assumption that the clothing insulation is equal to a constant value of 0.5 clo during the cooling season and 1.0 clo during the heating season. The assumption is not reflected in practice and thus it may lead to errors. In reality, occupants frequently adjust their clothing depending on the thermal conditions, as opposed to the assumption of constant clothing values above, indicating that the clothing insulation variation should be captured in building simulation software to obtain more reliable and accurate results. In this study, the impact of three newly developed dynamic clothing insulation models on the building simulation is quantitatively assessed using the detailed whole-building energy simulation program, EnergyPlus version 6.0. The results showed that when the heating ventilation and air conditioning system (HVAC) is controlled based on indoor temperature the dynamic clothing models do not affect indoor operative temperatures, energy consumption and equipment sizing. When the HVAC is controlled based on the PMV model the use of a fixed clothing insulation during the cooling (0.5 clo) and heating (1.0 clo) season leads to the incorrect estimation of the indoor operative temperatures, energy consumption and equipment sizing. The dynamic clothing models significantly (p 〈 0.0001) improve the ability of energy simulation tools to assess thermal comfort. The authors recommend that the dynamic clothing models should be implemented in dynamic building energy simulation software such as EnergyPlus.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2014-04-01
    Description: This paper addresses alkaline sodium silicate (Na-silicate) behavior in porous media. One of the advantages of the Na-silicate system is its water-like injectivity during the placement stage. Mixing Na-silicate with saline water results in metal silicate precipitation as well as immediate gelation. This work demonstrated that low salinity water (LSW, sea water diluted 25 times) could be used as a pre-flush in flooding operations. A water override phenomenon was observed during gel formation which is caused by gravity segregation. Dynamic adsorption tests in the sand-packed tubes showed inconsiderable adsorbed silicon density (about 8.5 × 10−10 kg/cm3 for a solution with 33 mg/L silicon content), which is less than the estimated mono-layer adsorption density of 1.4 × 10−8 kg/cm3. Na-silicate enhanced water sweep efficiency after application in a dual-permeability sand-pack system, without leak off into the oil-bearing low permeability (LP) zone. Field-scale numerical sensitivity studies in a layered reservoir demonstrated that higher permeability and viscosity contrasts and lower vertical/horizontal permeability ratio result in lower Na-silicate leakoff into the matrix. The length of the mixing zone between reservoir water and the injected Na-silicate solution, which is formed by low salinity pre-flush, acts as a buffer zone.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2014-04-01
    Description: Electricity consumption in the world is constantly increasing, making our lives become more and more dependent on electricity. There are several new paradigms proposed in the field of power grids. In Japan, especially after the Great East Japan Earthquake in March 2011, the new power grid paradigms are expected to be more resilient to survive several difficulties during disasters. In this paper, we focus on microgrids and propose priority-based hierarchical operational management for multiagent-based microgrids. The proposed management is a new multiagent-based load shedding scheme and multiagent-based hierarchical architecture to realize such resilient microgrids. We developed a prototype system and performed an evaluation of the proposed management using the developed system. The result of the evaluation shows the effectiveness of our proposal in power shortage situations, such as disasters.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2014-04-01
    Description: This study investigated the rebound behavior of SiO2 particles normally impacting a planar surface under different temperature conditions. The system has been characterized for an aerosol inlet temperature range of 20–190 °C, flow velocities of 0–20 ms−1, and an impaction surface temperature range of 20–140 °C. For the first time, while keeping the same temperature gradient from the high- to low-temperature regions, the influences of varying temperature on the rebound behavior of SiO2 particles normally impacting a plane surface were examined. At increased temperatures, the plastic deformation increases and the coefficient of restitution reduces. The critical velocity is between 0.542 and 0.546 m/s under condition 1 (the carrier gas temperature (Tg) and the impaction surface temperature (TW) remain at room temperature of 20 °C), which increases to between 0.829 and 0.847 m/s under condition 4 (Tg and TW remain at temperatures of 190 °C and 140 °C, respectively). The experimental results show that the critical velocity increases with increasing temperature.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2014-04-01
    Description: The future smart grid is expected to be an interconnected network of small-scale and self-contained microgrids, in addition to a large-scale electric power backbone. By utilizing microsources, such as renewable energy sources and combined heat and power plants, microgrids can supply electrical and heat loads in local areas in an economic and environment friendly way. To better adopt the intermittent and weather-dependent renewable power generation, energy storage devices, such as batteries, heat buffers and plug-in electric vehicles (PEVs) with vehicle-to-grid systems can be integrated in microgrids. However, significant technical challenges arise in the planning, operation and control of microgrids, due to the randomness in renewable power generation, the buffering effect of energy storage devices and the high mobility of PEVs. The two-way communication functionalities of the future smart grid provide an opportunity to address these challenges, by offering the communication links for microgrid status information collection. However, how to utilize stochastic modeling and optimization tools for efficient, reliable and economic planning, operation and control of microgrids remains an open issue. In this paper, we investigate the key features of microgrids and provide a comprehensive literature survey on the stochastic modeling and optimization tools for a microgrid. Future research directions are also identified.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2014-04-02
    Description: In this paper, a fuzzy-logic-control (FLC) based maximum power point tracking (MPPT) algorithm for photovoltaic (PV) systems is proposed. The power variation and output voltage variation are chosen as inputs of the proposed FLC, which simplifies the calculation. Compared with the conventional perturb and observe (P&O) method, the proposed FLC-based MPPT can simultaneously improve the dynamic and steady state performance of the PV system. To further improve the performance of the proposed method, an asymmetrical membership function (MF) concept is also proposed. Two design procedures are proposed to determine the universe of discourse (UOD) of the input MF. Comparing with the proposed symmetrical FLC-based MPPT method, the transient time and the MPPT tracking accuracy are further improved by 42.8% and 0.06%, respectively.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2014-04-02
    Description: Naturally occurring gas hydrates are regarded as an important future source of energy and considerable efforts are currently being invested to develop methods for an economically viable recovery of this resource. The recovery of natural gas from gas hydrate deposits has been studied by a number of researchers. Depressurization of the reservoir is seen as a favorable method because of its relatively low energy requirements. While lowering the pressure in the production well seems to be a straight forward approach to destabilize methane hydrates, the intrinsic kinetics of CH4-hydrate decomposition and fluid flow lead to complex processes of mass and heat transfer within the deposit. In order to develop a better understanding of the processes and conditions governing the production of methane from methane hydrates it is necessary to study the sensitivity of gas production to the effects of factors such as pressure, temperature, thermal conductivity, permeability, porosity on methane recovery from naturally occurring gas hydrates. A simplified model is the base for an ensemble of reservoir simulations to study which parameters govern productivity and how these factors might interact.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2014-04-02
    Description: The authors wish to make the following correction to this paper [1].
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2014-04-02
    Description: This study analyzed the variation law of engine exhaust energy under various operating conditions to improve the thermal efficiency and fuel economy of diesel engines. An organic Rankine cycle (ORC) waste heat recovery system with internal heat exchanger (IHE) was designed to recover waste heat from the diesel engine exhaust. The zeotropic mixture R416A was used as the working fluid for the ORC. Three evaluation indexes were presented as follows: waste heat recovery efficiency (WHRE), engine thermal efficiency increasing ratio (ETEIR), and output energy density of working fluid (OEDWF). In terms of various operating conditions of the diesel engine, this study investigated the variation tendencies of the running performances of the ORC waste heat recovery system and the effects of the degree of superheat on the running performance of the ORC waste heat recovery system through theoretical calculations. The research findings showed that the net power output, WHRE, and ETEIR of the ORC waste heat recovery system reach their maxima when the degree of superheat is 40 K, engine speed is 2200 r/min, and engine torque is 1200 N·m. OEDWF gradually increases with the increase in the degree of superheat, which indicates that the required mass flow rate of R416A decreases for a certain net power output, thereby significantly decreasing the risk of environmental pollution.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2014-04-02
    Description: A chemical equilibrium model was developed to predict the product composition of a biomass gasification system using highly preheated air and steam. The advantages and limitations of this system were discussed from a thermodynamic viewpoint. The first and second law analyses have been conducted for various preheating temperatures and steam/biomass mass (S/B) ratios. The results demonstrated that the chemical energy output of the produced syngas is highest when the S/B ratio is 1.83 under the conditions used in this study. However, higher S/B ratios have a negative effect on the energy and exergy efficiencies. Higher preheating temperatures increase the chemical energy of the produced syngas and the two efficiencies. The peak values for the energy and exergy efficiencies are 81.5% and 76.2%, respectively. Based on the calculated limitation values, where the highest chemical energy (exergy) of the produced syngas and maximum achievable efficiencies are determined, a thermodynamically possible operating region is suggested.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2014-04-02
    Description: The kinetic analysis method using the non-isothermal technique was proposed to determine the kinetic parameters for the transesterification reaction of waste vegetable oil (WVO) in supercritical alcohols. To investigate the transesterification of WVO, experiments have been carried out with WVO and alcohols at three molar ratios of 1:6, 1:12 and 1:18 for both supercritical ethanol (SCE) and supercritical methanol (SCM) at temperatures between 210 °C and 350 °C in a 25 mL batch reactor. The products were analyzed by gas chromatography mass spectrometry (GC-MS). To verify the effectiveness of the proposed kinetic analysis method, the experimental values were compared with the values calculated using the kinetic parameters obtained from this work. It was found that the proposed kinetic analysis method gave reliable kinetic parameters for the transesterification of WVO in supercritical alcohols. It was also seen that SCM was a better solvent than SCE for the transesterification of WVO.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2014-09-17
    Description: The Federal Government of Brazil has ambitious plans to build a system of 58 additional hydroelectric dams in the Brazilian Amazon, with Hundreds of additional dams planned for other countries in the watershed. Although hydropower is often billed as clean energy, we argue that the environmental impacts of this project are likely to be large, and will result in substantial loss of biodiversity, as well as changes in the flows of ecological services. Moreover, the projects will generate significant greenhouse gas emissions from deforestation and decay of organic matter in the reservoirs. These emissions are equivalent to the five years of emissions that would be generated by gas powered plants of equivalent capacity. In addition, we examine the economic benefits of the hydropower in comparison to new alternatives, such as photovoltaic energy and wind power. We find that current costs of hydropower exceed alternatives, and the costs of costs of these alternatives are likely to fall substantially below those of hydropower, while the environmental damages from the dams will be extensive and irreversible.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2014-10-03
    Description: This paper presents a wireless sensor node (WSN) system where an electromagnetic (EM) energy harvester is utilized for charging its rechargeable batteries while the system is operational. The capability and the performance of an in-house low-frequency EM energy harvester for charging rechargeable NiMH batteries were experimentally verified in comparison to a regular battery charger. Furthermore, the power consumption of MicaZ motes, used as the WSN, was evaluated in detail for different operation conditions. The battery voltage and current were experimentally monitored during the operation of the MicaZ sensor node equipped with the EM vibration energy harvester. A compact (24.5 cm3) in-house EM energy harvester provides approximately 65 µA charging current to the batteries when excited by 0.4 g acceleration at 7.4 Hz. It has been shown that the current demand of the MicaZ mote can be compensated for by the energy harvester for a specific low-power operation scenario, with more than a 10-fold increase in the battery lifetime. The presented results demonstrate the autonomous operation of the WSN, with the utilization of a vibration-based energy harvester.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2014-10-09
    Description: A hybrid method comprising a chaos synchronization (CS)-based detection scheme and an Extension Neural Network (ENN) classification algorithm is proposed for power quality monitoring and analysis. The new method can detect minor changes in signals of the power systems. Likewise, prominent characteristics of system signal disturbance can be extracted by this technique. In the proposed approach, the CS-based detection method is used to extract three fundamental characteristics of the power system signal and an ENN-based clustering scheme is then applied to detect the state of the signal, i.e., normal, voltage sag, voltage swell, interruption or harmonics. The validity of the proposed method is demonstrated by means of simulations given the use of three different chaotic systems, namely Lorenz, New Lorenz and Sprott. The simulation results show that the proposed method achieves a high detection accuracy irrespective of the chaotic system used or the presence of noise. The proposed method not only achieves higher detection accuracy than existing methods, but also has low computational cost, an improved robustness toward noise, and improved scalability. As a result, it provides an ideal solution for the future development of hand-held power quality analyzers and real-time detection devices.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2014-10-09
    Description: Tri-generation is one of the most efficient ways for maximizing the utilization of available energy. Utilization of waste heat (flue gases) liberated by the Al-Hamra gas turbine power plant is analyzed in this research work for simultaneous production of: (a) electricity by combining steam rankine cycle using heat recovery steam generator (HRSG); (b) clean water by air gap membrane distillation (AGMD) plant; and (c) cooling by single stage vapor absorption chiller (VAC). The flue gases liberated from the gas turbine power cycle is the prime source of energy for the tri-generation system. The heat recovered from condenser of steam cycle and excess heat available at the flue gases are utilized to drive cooling and desalination cycles which are optimized based on the cooling energy demands of the villas. Economic and environmental benefits of the tri-generation system in terms of cost savings and reduction in carbon emissions were analyzed. Energy efficiency of about 82%–85% is achieved by the tri-generation system compared to 50%–52% for combined cycles. Normalized carbon dioxide emission per MW·h is reduced by 51.5% by implementation of waste heat recovery tri-generation system. The tri-generation system has a payback period of 1.38 years with cumulative net present value of $66 million over the project life time.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2014-10-10
    Description: Traditional friction braking torque and motor braking torque can be used in braking for electric vehicles (EVs). A sliding mode controller (SMC) based on the exponential reaching law for the anti-lock braking system (ABS) is developed to maintain the optimal slip value. Parameter optimizing is applied to the reaching law by fuzzy logic control (FLC). A regenerative braking algorithm, in which the motor torque is taken full advantage of, is adopted to distribute the braking force between the motor braking and the hydraulic braking. Simulations were carried out with Matlab/Simulink. By comparing with a conventional Bang-bang ABS controller, braking stability and passenger comfort is improved with the proposed SMC controller, and the chatting phenomenon is reduced effectively with the parameter optimizing by FLC. With the increasing proportion of the motor braking torque, the tracking of the slip ratio is more rapid and accurate. Furthermore, the braking distance is shortened and the conversion energy is enhanced.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2014-10-10
    Description: In this paper, a real time sliding mode control scheme for a variable speed wind turbine that incorporates a doubly feed induction generator is described. In this design, the so-called vector control theory is applied, in order to simplify the system electrical equations. The proposed control scheme involves a low computational cost and therefore can be implemented in real-time applications using a low cost Digital Signal Processor (DSP). The stability analysis of the proposed sliding mode controller under disturbances and parameter uncertainties is provided using the Lyapunov stability theory. A new experimental platform has been designed and constructed in order to analyze the real-time performance of the proposed controller in a real system. Finally, the experimental validation carried out in the experimental platform shows; on the one hand that the proposed controller provides high-performance dynamic characteristics, and on the other hand that this scheme is robust with respect to the uncertainties that usually appear in the real systems.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2014-10-10
    Description: The application of a stationary ultra-capacitor energy storage system (ESS) in urban rail transit allows for the recuperation of vehicle braking energy for increasing energy savings as well as for a better vehicle voltage profile. This paper aims to obtain the best energy savings and voltage profile by optimizing the location and size of ultra-capacitors. This paper firstly raises the optimization objective functions from the perspectives of energy savings, regenerative braking cancellation and installation cost, respectively. Then, proper mathematical models of the DC (direct current) traction power supply system are established to simulate the electrical load-flow of the traction supply network, and the optimization objections are evaluated in the example of a Chinese metro line. Ultimately, a methodology for optimal ultra-capacitor energy storage system locating and sizing is put forward based on the improved genetic algorithm. The optimized result shows that certain preferable and compromised schemes of ESSs’ location and size can be obtained, acting as a compromise between satisfying better energy savings, voltage profile and lower installation cost.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2014-10-10
    Description: As a solution of high efficiency and clean energy, fuel cell technologies, especially proton exchange membrane fuel cell (PEMFC), have caught extensive attention. However, after decades of development, the performances of PEMFCs are far from achieving the target from the Department of Energy (DOE). Thus, further understanding of the degradation mechanism is needed to overcome this obstacle. Due to the importance of proton exchange membrane in a PEMFC, the degradation of the membrane, such as hygrothermal aging effect on its properties, are particularly necessary. In this work, a thick membrane (Nafion N117), which is always used as an ionic polymer for the PEMFCs, has been analyzed. Experimental investigation is performed for understanding the mechanical endurance of the bare membranes under different loading conditions. Tensile tests are conducted to compare the mechanical property evolution of two kinds of bare-membrane specimens including the dog-bone and the deeply double edge notched (DDEN) types. Both dog-bone and DDEN specimens were subjected to a series of degradation tests with different cycling times and wide humidity ranges. The tensile tests are repeated for both kinds of specimens to assess the strain-stress relations. Furthermore, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and Scanning electron microscope (SEM) observation and water absorption measurement were conducted to speculate the cause of this variation. The initial cracks along with the increasing of bound water content were speculated as the primary cause.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2014-10-10
    Description: In the present study, dynamic analysis and performance evaluation of a solar-powered continuous operation adsorption chiller are introduced. The adsorption chiller uses silica gel and water as the working pair. The developed mathematical model represents the heat and mass transfer within the reactor coupled with the energy balance of the collector plate and the glass cover. Moreover, a non-equilibrium adsorption kinetic model is taken into account by using the linear driving force equation. The variation of solar radiation, wind speed, and atmospheric temperature along a complete cycle are considered for a more realistic simulation. Based on the case studied  and the baseline parameters, the chiller is found to acquire a coefficient of performance of 0.402. The average thermal efficiency of the solar collector is estimated to be 62.96% and the average total efficiency  approaches a value of 50.91%. Other performance parameters obtained are 363.8 W and 1.82 W/kg for the cooling capacity and the specific cooling power of the chiller, respectively. Furthermore, every 1 kg of silica gel inside the adsorption reactor produces a daily chilled water mass of 3 kg at a temperature of 10 ◦C. In addition, the cooling system harnesses 25.35% of the total available solar radiation and converts it to a cooling effect.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2014-09-02
    Description: Small-scale digesters, similar to popular Chinese designs, have the potential to address the energy needs of smaller dairy farmers in temperate U.S. climates. To assess this potential, a 1.14 m3 (300 gallon) modified fixed-dome digester was installed and operated, at variable temperatures (5.3 to 27.9 °C) typical of the Midwestern United States, from March 2010 to March 2011 (363 days). Temperature, gas production, and other variables were recorded. The system was fed with dilute dairy manure with 6% volatile solids (VS) and an organic loading rate (OLR) ranging from 0.83 to 2.43 kg volatile solids (VS)/m3/day. The system was loaded with no interruption and exhibited no signs of inhibition from July 2010 to mid-November 2010 (129 days). During this period the digester temperature was over 20 °C with an average daily biogas production of 842 ± 69 L/day, a methane yield of 0.168 m3/kg VS added, and a Volatile Solids reduction of 36%. After the temperature dropped below 20 °C, the digester showed signs of inhibition and soured. These findings suggest that an ambient temperature, modified fixed dome digester could operate without temperature inhibition for approximately six months (169 days) a year in a temperate climate when digester temperatures exceed 20 °C. However, during colder months the digester temperature must maintained above 20 °C for viable gas production year round.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2014-10-14
    Description: An electrically rechargeable zinc-air battery stack consisting of three single cells in series was designed using a novel structured bipolar plate with air-breathing holes. Alpha-MnO2 and LaNiO3 severed as the catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The anodic and cathodic polarization and individual cell voltages were measured at constant charge-discharge (C-D) current densities indicating a uniform voltage profile for each single cell. One hundred C-D cycles were carried out for the stack. The results showed that, over the initial 10 cycles, the average C-D voltage gap was about 0.94 V and the average energy efficiency reached 89.28% with current density charging at 15 mA·cm−2 and discharging at 25 mA·cm−2. The total increase in charging voltage over the 100 C-D cycles was ~1.56% demonstrating excellent stability performance. The stack performance degradation was analyzed by galvanostatic electrochemical impedance spectroscopy. The charge transfer resistance of ORR increased from 1.57 to 2.21 Ω and that of Zn/Zn2+ reaction increased from 0.21 to 0.34 Ω after 100 C-D cycles. The quantitative analysis guided the potential for the optimization of both positive and negative electrodes to improve the cycle life of the cell stack.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2014-10-14
    Description: The International Electrotechnical Commission (IEC) Standard 61400-1 for the design of wind turbines does not explicitly address site-specific conditions associated with anomalous atmospheric events or conditions. Examples of off-standard atmospheric conditions include thunderstorm downbursts, hurricanes, tornadoes, low-level jets, etc. The simulation of thunderstorm downbursts and associated loads on a utility-scale wind turbine is the focus of this study. Since the problem has not received sufficient attention, especially in terms of design, we thus focus in this paper on practical aspects. A wind field model that incorporates component non-turbulent and turbulent parts is described and employed in inflow simulations. The non-turbulent part is based on an available analytical model with some modifications, while the turbulent part is simulated as a stochastic process using standard turbulence power spectral density functions and coherence functions whose defining parameters are related to the downburst characteristics such as the storm translation velocity. Available information on recorded downbursts is used to define two storm scenarios that are studied. Rotor loads are generated using stochastic simulation of the aeroelastic response of a model of a utility-scale 5-MW turbine. An illustrative single storm simulation and the associated turbine response are used to discuss load characteristics and to highlight storm-related and environmental parameters of interest. Extensive simulations for two downbursts are then conducted while varying the storm’s location and track relative to the turbine. Results suggest that wind turbine yaw and pitch control systems clearly influence overall system response. Results also highlight the important effects of both the turbulence as well as the downburst mean wind profiles on turbine extreme loads.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2014-10-14
    Description: Incorporation of dedicated herbaceous energy crops into row crop landscapes is a promising means to supply an expanding biofuel industry while benefiting soil and water quality and increasing biodiversity. Despite these positive traits, energy crops remain largely unaccepted due to concerns over their practicality and cost of implementation. This paper presents a case study for Hardin County, Iowa, to demonstrate how subfield decision making can be used to target candidate areas for conversion to energy crop production. Estimates of variability in row crop production at a subfield level are used to model the economic performance of corn (Zea mays L.) grain and the environmental impacts of corn stover collection using the Landscape Environmental Analysis Framework (LEAF). The strategy used in the case study integrates switchgrass (Panicum virgatum L.) into subfield landscape positions where corn grain is modeled to return a net economic loss. Results show that switchgrass integration has the potential to increase sustainable biomass production from 48% to 99% (depending on the rigor of conservation practices applied to corn stover collection), while also improving field level profitability of corn. Candidate land area is highly sensitive to grain price (0.18 to 0.26 $·kg−1) and dependent on the acceptable subfield net loss for corn production (ranging from 0 to −1000 $·ha−1) and the ability of switchgrass production to meet or exceed this return. This work presents the case that switchgrass may be economically incorporated into row crop landscapes when management decisions are applied at a subfield scale within field areas modeled to have a negative net profit with current management practices.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2014-10-29
    Description: Electric power losses are constantly present during the service life of wind farms and must be considered in the calculation of the income arising from selling the produced electricity. It is typical to estimate the electrical losses in the design stage as those occurring when the wind farm operates at rated power, nevertheless, it is necessary to determine a method for checking if the actual losses meet the design requirements during the operation period. In this paper, we prove that the electric losses at rated power should not be considered as a reference level and a simple methodology will be developed to analyse and foresee the actual losses in a set period as a function of the wind resource in such period, defined according to the Weibull distribution, and the characteristics of the wind farm electrical infrastructure. This methodology facilitates a simple way, to determine in the design phase and to check during operation, the actual electricity losses.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2014-10-30
    Description: This article presents a review of the state of the art of the Wind Farm Design and Optimization (WFDO) problem. The WFDO problem refers to a set of advanced planning actions needed to extremize the performance of wind farms, which may be composed of a few individual Wind Turbines (WTs) up to thousands of WTs. The WFDO problem has been investigated in different scenarios, with substantial differences in main objectives, modelling assumptions, constraints, and numerical solution methods. The aim of this paper is: (1) to present an exhaustive survey of the literature covering the full span of the subject, an analysis of the state-of-the-art models describing the performance of wind farms as well as its extensions, and the numerical approaches used to solve the problem; (2) to provide an overview of the available knowledge and recent progress in the application of such strategies to real onshore and offshore wind farms; and (3) to propose a comprehensive agenda for future research.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2014-10-30
    Description: This research presents an evaluative energy model for estimating the energy efficiency of the design choices of architects and engineers in the early design phase. We analyze the effects of various parameters with different characteristics in various combinations for building energy consumption. With this analysis, we build a database that identifies a set of heuristic rules for energy-efficient building design to facilitate the design of sustainable apartment housing. Perturbation studies are based on a sensitivity analysis used to identify the thermal influence of the input design parameters on various simulation outputs and compare the results to a reference case. Energy sensitivity weight factors are obtained from an extensive sensitivity study using building energy simulations. The results of the energy sensitivity study summarized in a set of heuristic rules for evaluating architectural features are estimated through case studies of Korean apartment buildings. This study offers valuable guidelines for developing energy-efficient residential housing in Korea and will help architects in considering appropriate design schemes and provide a ready reference to generalized test cases for both architects and engineers so that they can zero in on a set of effective design solutions.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2014-11-01
    Description: This study applied a model predictive control (MPC) framework to solve the cruising control problem of a series hydraulic hybrid vehicle (SHHV). The controller not only regulates vehicle velocity, but also engine torque, engine speed, and accumulator pressure to their corresponding reference values. At each time step, a quadratic programming problem is solved within a predictive horizon to obtain the optimal control inputs. The objective is to minimize the output error. This approach ensures that the components operate at high efficiency thereby improving the total efficiency of the system. The proposed SHHV control system was evaluated under urban and highway driving conditions. By handling constraints and input-output interactions, the MPC-based control system ensures that the system operates safely and efficiently. The fuel economy of the proposed control scheme shows a noticeable improvement in comparison with the PID-based system, in which three Proportional-Integral-Derivative (PID) controllers are used for cruising control.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2014-11-01
    Description: Load monitoring is the practice of measuring electrical signals in a domestic environment in order to identify which electrical appliances are consuming power. One reason for developing a load monitoring system is to reduce power consumption by increasing consumers’ awareness of which appliances consume the most energy. Another example of an application of load monitoring is activity sensing in the home for the provision of healthcare services. This paper outlines the development of a load disaggregation method that measures the aggregate electrical signals of a domestic environment and extracts features to identify each power consuming appliance. A single sensor is deployed at the main incoming power point, to sample the aggregate current signal. The method senses when an appliance switches ON or OFF and uses a two-step classification algorithm to identify which appliance has caused the event. Parameters from the current in the temporal and frequency domains are used as features to define each appliance. These parameters are the steady-state current harmonics and the rate of change of the transient signal. Each appliance’s electrical characteristics are distinguishable using these parameters. There are three Types of loads that an appliance can fall into, linear nonreactive, linear reactive or nonlinear reactive. It has been found that by identifying the load type first and then using a second classifier to identify individual appliances within these Types, the overall accuracy of the identification algorithm is improved.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2014-11-04
    Description: Nowadays, the Organic Rankine Cycle (ORC) system, which operates with organic fluids, is one of the leading technologies for “waste energy recovery”. It works as a conventional Rankine Cycle but, as mentioned, instead of steam/water, an organic fluid is used. This change allows it to convert low temperature heat into electric energy where required. Large numbers of studies have been carried out to identify the most suitable fluids, system parameters and the various configurations. In the present market, most ORC systems are designed and manufactured for the recovery of thermal energy from various sources operating at “large power rating” (exhaust gas turbines, internal combustion engines, geothermal sources, large melting furnaces, biomass, solar, etc.); from which it is possible to produce a large amount of electric energy (30 kW ÷ 300 kW). Such applications for small nominal power sources, as well as the exhaust gases of internal combustion engines (car sedan or town, ships, etc.) or small heat exchangers, are very limited. The few systems that have been designed and built for small scale applications, have, on the other hand, different types of expander (screw, scroll, etc.). These devices are not adapted for placement in small and restricted places like the interior of a conventional car. The aim of this work is to perform the preliminary design of a turbo-expander that meets diverse system requirements such as low pressure, small size and low mass flow rates. The expander must be adaptable to a small ORC system utilizing gas of a diesel engine or small gas turbine as thermal source to produce 2–10 kW of electricity. The temperature and pressure of the exhaust gases, in this case study (400–600 °C and a pressure of 2 bar), imposes a limit on the use of an organic fluid and on the net power that can be produced. In addition to water, fluids such as CO2, R134a and R245fa have been considered. Once the operating fluids has been chosen, the turbine characteristics (dimensions, input and output temperature, pressure ratio, etc.) have been calculated and an attempt to find the “nearly-optimal” combination has been carried out. The detailed design of a radial expander is presented and discussed. A thermo-mechanical performance study was carry out to verify structural tension and possible displacement. On the other hand, preliminary CFD analyses have been performed to verify the effectiveness of the design procedure.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2014-10-25
    Description: Energy consumption rose about 28% over the 2001 to 2011 period in the Spanish residential sector. In this environment, domestic hot water (DHW) represents the second highest energy demand. There are several methodologies to estimate DHW consumption, but each methodology uses different inputs and some of them are based on obsolete data. DHW energy consumption estimation is a key tool to plan modifications that could enhance this consumption and we decided to update the methodologies. We studied DHW consumption with data from 10 apartments in the same building during 18 months. As a result of the study, we updated one chosen methodology, adapting it to the current situation. One of the challenges to improve efficiency of DHW use is that most of people are not aware of how it is consumed in their homes. To help this information to reach consumers, we developed a website to allow users to estimate the final electrical energy needed for DHW. The site uses three estimation methodologies and chooses the best fit based on information given by the users. Finally, the application provides users with recommendations and tips to reduce their DHW consumption while still maintaining the desired comfort level.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2014-10-29
    Description: I estimate the cost of meeting the EU 2030 targets for greenhouse gas emission reduction, using statistical emulators of ten alternative models. Assuming a first-best policy implementation, I find that total and marginal costs are modest. The statistical emulators allow me to compute the risk premiums, which are small, because the EU is rich and the policy impact is small. The ensemble of ten models allows me to compute the ambiguity premium, which is small for the same reason. I construct a counterfactual estimate of recent emissions without the climate policy and use that to test the predictive skill of the ten models. The models that show the lowest cost of emission reduction also have the lowest skill for Europe in recent times.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...