ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3,009)
  • English  (3,009)
  • 2020-2024  (3,009)
Collection
Language
Years
Year
  • 1
    Publication Date: 2023-01-12
    Description: Transient magnetic reconnection plays an important role in energetic particle acceleration in planetary magnetospheres. Jupiter's magnetosphere provides a unique natural laboratory to study processes of energy transport and transformation. Strong electric fields in spatially confined structures such as plasmoids can be responsible for ion acceleration to high energies. In this study we focus on the effectiveness of ion energization and acceleration in plasmoids. Therefore, we present a statistical study of plasmoid structures in the predawn magnetotail, which were identified in the magnetometer data of the Juno spacecraft from 2016 to 2018. We additionally use the energetic particle observations from the Jupiter Energetic Particle Detector Instrument which discriminates between different ion species. We are particularly interested in the analysis of the acceleration and energization of oxygen, sulfur, helium, and hydrogen ions. We investigate how the event properties, such as the radial distance and the local time of the observed plasmoids in the magnetotail, affect the ion intensities close to the current sheet center. Furthermore, we analyze if ion acceleration is influenced by magnetic field turbulence inside the plasmoids. We find significant heavy ion acceleration in plasmoids close to the current sheet center which is in line with the previous statistical results based on Galileo observations conducted by Kronberg et al. (2019, https://doi.org/10.1029/2019JA026553). The observed effectiveness of the acceleration is dependent on the position of Juno in the magnetotail during the plasmoid event observation. Our results show no correlation between magnetic field turbulence and nonadiabatic acceleration for heavy ions during plasmoids.
    Description: Key Points: Intensity of heavy ions is strongly increased during plasmoids close to the current sheet center. Significant increase of heavy ion intensities is observed in plasmoids with larger wave power. Acceleration of heavy and light ions in plasmoids due to resonant interaction with the magnetic field fluctuations could not be observed.
    Description: Volkswagen Foundation (VolkswagenStiftung) http://dx.doi.org/10.13039/501100001663
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: NASA
    Description: https://pds-ppi.igpp.ucla.edu/
    Keywords: ddc:523 ; plasmoids ; Juno ; JEDI ; ion acceleration
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-12
    Description: Hydrological extreme events are generated by different sequences of hydrometeorological drivers, the importance of which may vary within the sample of drought events. Here, we investigate how the importance of different hydrometeorological driver sequences varies by event magnitude using a large sample of catchments in Europe. To do so, we develop an automated classification scheme for streamflow drought events. The classification scheme standardizes a previous qualitative drought typology and assigns events to one of eight drought event types—each characterized by a set of single or compounding drivers—using information about seasonality, precipitation deficits, and snow availability. The objective event classification reveals how drought drivers vary not just in space and by season, but also with event magnitude. Specifically, we show that (a) rainfall deficit droughts and cold snow season droughts are the dominant drought event type in Western Europe and Eastern and Northern Europe, respectively; (b) rainfall deficit and cold snow season droughts are important from autumn to spring while snowmelt and wet‐to‐dry season droughts are important in summer; and (c) moderate droughts are mainly driven by rainfall deficits while severe events are mainly driven by snowmelt deficits in colder climates and by streamflow deficits transitioning from the wet to the dry season in warmer climates. These differences in sequences of drought generation mechanisms for severe and moderate events suggest that future changes in hydrometeorological drivers may affect moderate and severe events differently.
    Description: Key Points: We develop a standardized and objective classification scheme for streamflow droughts using hydroclimatic information. The most severe drought events are governed by other processes than moderate events. Moderate droughts are dominated by rainfall deficits and severe droughts by snowmelt deficits or prolonged rainfall deficit droughts.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: EC/H2020/PRIORITY 'Excellent science'/H2020 European Research Council http://dx.doi.org/10.13039/100010663
    Description: https://www.bafg.de/GRDC/EN/02_srvcs/21_tmsrs/riverdischarge_node.html
    Description: https://doi.pangaea.de/10.1594/PANGAEA.887470
    Description: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
    Description: http://www.hydroshare.org/resource/77114d4dfdfd4dd39e0e1d99165f27b3
    Keywords: ddc:551.6 ; drought types ; drought generation ; extremes ; typology ; classification ; streamflow
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-12
    Description: Harmonic Earth tide components in well water levels have been used to estimate hydraulic and geomechanical subsurface properties. However, the robustness of various methods based on analytical solutions has not been established. First, we review the theory and examine the latest analytical solution used to relate well water levels to Earth tides. Second, we develop and verify a novel numerical model coupling hydraulics and geomechanics to Earth tide strains. Third, we assess subsurface conditions over depth for a range of realistic properties. Fourth, we simulate the well water level response to Earth tide strains within a 2D poroelastic layered aquifer system confined by a 100 m thick aquitard. We find that the non‐linear inversion of analytical solutions to match two observations (amplitudes and phases) to multiple unknown parameters is sensible to the initial guess. We reveal that undrained, confined conditions are necessary for the analytical solution to be valid. This occurs for the dominant M2 frequency at depths 〉50 m and requires specific storage at constant strain of Sϵ ≥ 10−6 m−1, hydraulic conductivity of the aquitard of kl ≤ 5 ⋅ 10−5 ms−1 and aquifer of ka ≥ 10−4 ms−1. We further illustrate that the analytical solution is valid in unconsolidated systems, whereas consolidated systems require additional consideration of the Biot modulus. Overall, a priori knowledge of the subsurface system supports interpretation of the groundwater response. Our results improve understanding of the effect of Earth tides on groundwater systems and its interpretation for subsurface properties.
    Description: Plain Language Summary: Earth tide induced strains in the subsurface lead to well water level fluctuations in groundwater monitoring wells. This groundwater response has been interpreted with analytical solutions to estimate aquifer properties. However, analytical solutions are based on simplified assumptions whose accuracy have not yet been tested. We develop a new approach to simulate the influence of Earth tides on groundwater based on fundamental physical principles. We simulate realistic conditions and compare our results to those from analytical solution to determine the hydraulic and subsurface conditions under which simplified interpretations are valid. Our results improve understanding of the effects of Earth tides on groundwater systems and interpretation of subsurface properties from well water levels.
    Description: Key Points: We develop and verify a numerical model for the well water level response to Earth tides. Subsurface property estimation requires undrained and confined conditions occurring at depths 〉50 m. Amplitudes and phases from numerical and analytical solutions systematically diverge reflecting theory simplifications.
    Description: German Research Council
    Description: https://doi.org/10.5281/zenodo.6950492
    Keywords: ddc:551 ; tidal subsurface analysis ; numerical modeling ; Earth tides
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-01-15
    Description: A Guinier camera equipped with an imaging plate is used to investigate and eliminate the sources of instrumental errors affecting the quality of the obtained scanned Guinier data. A program with a graphical user interface is presented which converts the data of the scanned images into different standard file formats for powder X‐ray patterns containing intensities, their standard deviations and the diffraction angles. The program also allows for manual and automatic correction of the 2gθ scale against a known reference material. It is shown using LaB6 that the exported X‐ray diffraction patterns provide a 2gθ scale reproducible enough to allow for averaging diffractograms obtained from different exposures of the imaging plate for the same sample. As shown on a mixture of NaCl and sodalite, the quality of the produced data is sufficient for Rietveld refinement. The software including source code is made available under a free software license.
    Description: A program for the digitization of Guinier powder diffraction images is described, which works with images from both optical and laser scanners. Thus, processing of data from storage‐phosphor‐based imaging plates and Ag‐based photographic films is possible.
    Keywords: ddc:548 ; IPreader software ; Guinier cameras ; imaging plates (IPs) ; diffraction pattern conversion into data columns ; powder X‐ray diffraction ; data processing ; Guinier method
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-01-15
    Description: Key knowledge about planetary composition can be recovered from the study of thermal infrared spectral range datasets. This range has a huge diagnostic potential because it contains diagnostic absorptions from a planetary surface and atmosphere. The main goal of this study is to process and interpret the dataset from the Thermal Infrared channel (TIRVIM) which is part of the Atmospheric Chemistry Suite of the ExoMars2016 Trace Gas Orbiter mission to find and characterize dust and water ice clouds in the atmosphere. The method employed here is based on the application of principal component analysis and target transformation techniques to extract the independent variable components present in the analyzed dataset. Spectral shapes of both atmospheric dust and water ice aerosols have been recovered from the analysis of TIRVIM data. The comparison between our results with those previously obtained on Thermal Emission Spectrometer (TES) data and with previous analysis on TIRVIM data, validates the methodology here applied, showing that it allows to correctly recover the atmospheric spectral endmembers present in the TIRVIM data. Moreover, comparison with atmospheric retrievals on PFS, TES and IRIS data, allowed us to assess the temporal stability and homogeneity of dust and water ice components in the Martian atmosphere over a time period of almost 50 years.
    Description: Plain Language Summary: The analysis of thermal infrared datasets from planetary bodies is of key importance for the understanding of a planet's climate evolution and history: it contains valuable information about composition, temperature and state of the atmosphere. Moreover, surface properties and the surface‐atmosphere interaction can be studied. Here we investigated new thermal infrared data from the Thermal Infrared channel instrument of the ExoMars Trace Gas Orbiter with the main goal of carefully identifying Martian atmospheric dust and water ice clouds components. A methodology based on principal component and target transformation factor analysis techniques has been applied. Based on our results, this methodology can correctly recover both atmospheric dust and water ice aerosols spectral shapes and their abundances in the Martian atmosphere.
    Description: Key Points: First successful application of principal components and target transformation techniques to high‐resolution Thermal Infrared channel (TIRVIM) data. Spectral shapes of both atmospheric dust and water ice clouds are recognized and recovered. TIRVIM data are successfully modeled through a linear combination of the recovered water ice and dust end‐members.
    Description: Roscosmos and ESA
    Description: https://doi.org/10.5281/zenodo.7032738
    Keywords: ddc:523 ; Martian atmosphere ; TIRVIM data
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-01-15
    Description: A limited number of gauging stations, especially for nested catchments, hampers a process understanding of the interaction between streamflow, groundwater and water usage during drought. Non‐commercial measurement devices can help overcome this lack of monitoring, but they need to be thoroughly tested. The Dreisam River in the South‐West of Germany was affected by several hydrological drought events from 2015 to 2020 during which parts of the main stream and tributaries fell dry. Therefore it provided a useful case study area for a flexible longitudinal water quality and quantity monitoring network. Among other measurements the setup employs an image‐based method with QR codes as fiducial marker. In order to assess under which conditions the QR‐code based water level loggers (WLL) deliver data according to scientific standards, we compared its performance to conventional capacitive based WLL. The results from 20 monitoring stations reveal that the riverbed was dry for 〉50% at several locations and even for 〉70% at most severely affected locations during July and August 2020, with the north western parts of the catchment being especially concerned. Highly variable longitudinal drying patterns of the stream reaches emerged from the monitoring. The image‐based method was found valuable for identification and validation of zero level occurrences. Nevertheless, a simple image processing approach (based on an automatic thresholding algorithm) did not compensate for errors due to natural conditions and technical setup. Our findings highlight that the complexity of measurement environments is a major challenge when working with image‐based methods.
    Description: We monitored zero water levels in a meso‐scale catchment with temperate climate by means of image‐based and conventional water level logging techniques. A detailed analysis of the longitudinal drying patterns enables a discussion about hydrological connectivity and the processes influencing the drying.
    Description: Badenova Fund For Innovation
    Description: https://doi.org/10.6094/UNIFR/228702
    Keywords: ddc:551.48 ; hydrological drought ; innovative sensors ; longitudinal connectivity ; stream reaches ; streamflow intermittency ; zero flow
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-01-15
    Description: The dynamics of the Alps and surrounding regions is still not completely understood, partly because of a non‐unique interpretation of its upper‐mantle architecture. In particular, it is unclear if interpreted slabs are consistent with the observed surface deformation and topography. We derive three end‐member scenarios of lithospheric thickness and slab geometries by clustering available shear‐wave tomography models into a statistical ensemble. We use these scenarios as input for geodynamic simulations and compare modeled topography, surface velocities and mantle flow to observations. We found that a slab detached beneath the Alps, but attached beneath the Northern Apennines captures first‐order patterns in topography and vertical surface velocities and can provide a causative explanation for the observed seismicity.
    Description: Plain Language Summary: Present‐day surface deformation, including earthquakes, plate motion, and mass (re)distribution, results from processes operating at the surface and in the interior of the Earth. Understanding these processes and their coupling is of utmost importance in light of the hazard they pose to society. The Alps provide an excellent natural laboratory to understand such coupling. Here, we use seismic tomography models to constrain its upper‐mantle architecture. We further use these models to quantify forces originating from the resolved architecture and their effects on the present‐day surface deformation. The models can reproduce first‐order patterns in the observed topography and vertical surface motions. We found a causative correlation between the presence of a shallow slab attached to the overlying lithosphere in the Northern Apennines and the seismicity in the region. Our results allow us to better understand the transfer of internal forces to the surface, thereby helping to quantify the present‐day mechanical setup of the area.
    Description: Key Points: Statistical ensemble of S‐wave tomography models is used to infer the Lithosphere‐Asthenosphere Boundary configuration and slab geometries in the Alps. The 3‐D upper‐mantle architecture from the statistics reproduce first‐order patterns in observed topography and Global Navigation Satellite Systems vertical velocities. A shallow/attached slab in the Northern Apennines is consistent with the mantle depth seismicity observed in this region.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://doi.org/10.5880/GFZ.4.5.2019.004
    Description: https://gfzpublic.gfz-potsdam.de/pubman/item/item_238001
    Description: http://ds.iris.edu/ds/products/emc-earthmodels/
    Description: https://doi.org/10.5281/zenodo.7071571
    Description: https://doi.org/10.5281/zenodo.6538257
    Keywords: ddc:551.1 ; Alps ; Apennines ; lithospheric architecture ; slabs ; seismicity
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-01-15
    Description: Physiological sensitivity of cold‐water corals to ocean change is far less understood than of tropical corals and very little is known about the impacts of ocean acidification and warming on degradative processes of dead coral framework. In a 13‐month laboratory experiment, we examined the interactive effects of gradually increasing temperature and pCO2 levels on survival, growth, and respiration of two prominent color morphotypes (colormorphs) of the framework‐forming cold‐water coral Lophelia pertusa, as well as bioerosion and dissolution of dead framework. Calcification rates tended to increase with warming, showing temperature optima at ~ 14°C (white colormorph) and 10–12°C (orange colormorph) and decreased with increasing pCO2. Net dissolution occurred at aragonite undersaturation (ΩAr 〈 1) at ~ 1000 μatm pCO2. Under combined warming and acidification, the negative effects of acidification on growth were initially mitigated, but at ~ 1600 μatm dissolution prevailed. Respiration rates increased with warming, more strongly in orange corals, while acidification slightly suppressed respiration. Calcification and respiration rates as well as polyp mortality were consistently higher in orange corals. Mortality increased considerably at 14–15°C in both colormorphs. Bioerosion/dissolution of dead framework was not affected by warming alone but was significantly enhanced by acidification. While live corals may cope with intermediate levels of elevated pCO2 and temperature, long‐term impacts beyond levels projected for the end of this century will likely lead to skeletal dissolution and increased mortality. Our findings further suggest that acidification causes accelerated degradation of dead framework even at aragonite saturated conditions, which will eventually compromise the structural integrity of cold‐water coral reefs.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Marine Research in Ireland
    Description: French National Research Agency http://dx.doi.org/10.13039/501100001665
    Keywords: ddc:577.7 ; cold-water corals ; ocean change ; laboratory experiments ; framwork dissolution ; bioerosion
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-01-17
    Description: In this study, a spectral model for convective transport is coupled to a thermal population model on a two‐dimensional horizontal “microgrid,” covering the typical gridbox size of general circulation models. The goal is to explore new ways of representing impacts of spatial organization in cumulus cloud fields. The thermals are considered the smallest building block of convection, with thermal life cycle and movement represented through binomial functions. Thermals interact through two simple rules, reflecting pulsating growth and environmental deformation. Long‐lived thermal clusters thus form on the microgrid, exhibiting scale growth and spacing that represent simple forms of spatial organization and memory. Size distributions of cluster number are diagnosed from the microgrid through an online clustering algorithm, and provided as input to a spectral multiplume eddy‐diffusivity mass flux scheme. This yields a decentralized transport system, in that the thermal clusters acting as independent but interacting nodes that carry information about spatial structure. The main objectives of this study are (a) to seek proof of concept of this approach, and (b) to gain insight into impacts of spatial organization on convective transport. Single‐column model experiments demonstrate satisfactory skill in reproducing two observed cases of continental shallow convection. Metrics expressing self‐organization and spatial organization match well with large‐eddy simulation results. We find that in this coupled system, spatial organization impacts convective transport primarily through the scale break in the size distribution of cluster number. The rooting of saturated plumes in the subcloud mixed layer plays a key role in this process.
    Description: Plain Language Summary: Recent studies have emphasized the importance of the spatial structure of convective cloud fields in Earth's climate, yet this phenomenon is not yet represented well in Earth System Models (ESMs). This study explores a new way to achieve this goal, by considering spatial organization at the scale of small bubbles of rising air called thermals that together make up convective clouds. Populations of interacting thermals are modeled in a computationally efficient way on a small two‐dimensional grid. This microgrid is then coupled to a convection scheme, which stands for the set of equations used to statistically represent the impact of convective transport at scales that remain unresolved in ESMs. The coupling makes the scheme decentralized, in that the transport becomes dependent on a population of longer‐lived convective structures that slowly develop and evolve on the microgrid. The new scheme is tested for observed conditions at a meteorological site in the Southern Great Plains area of the United States, making use of a combination of high‐resolution simulations and measurements to evaluate performance. Apart from proof of concept for the new modeling approach, the results provide new insights into how the spatial structure of convective cloud populations can affect its vertical transport.
    Description: Key Points: A multiplume spectral convection scheme is coupled to a binomial thermal population model on a horizontal microgrid. Observed diurnal cycles of continental shallow convection are reproduced, including good agreement on scale growth and spatial organization. Spatial organization impacts convective transport through the scale break in the cluster number density, with a key role played by plume rooting.
    Description: U.S. Department of Energy http://dx.doi.org/10.13039/100000015
    Description: https://doi.org/10.5281/zenodo.6044338
    Keywords: ddc:551.5 ; convective parameterization ; spatial organization ; population dynamics ; thermals ; microgrid modeling ; shallow cumulus
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-01-17
    Description: It is generally agreed that the resolution of a regular quadrilateral mesh is the side length of quadrilateral cells. There is less agreement on the resolution of triangular meshes, exacerbated by the fact that the numbers of edges or cells on triangular meshes are approximately three or two times larger than that of vertices. However, the geometrical resolution of triangular meshes, that is, maximum wavenumbers or smallest wavelengths that can be represented on such meshes, is a well defined quantity, known from solid state physics. These wavenumbers are related to a smallest common mesh cell (primitive unit cell), and the set of mesh translations that map it into itself. They do not depend on whether discrete degrees of freedom are placed on vertices, cells or edges. For equilateral triangles the smallest wavelength equals twice the triangle height. Resolutions of quadrilateral and triangular meshes approximately agree if they have the same numbers of vertices.
    Description: Plain Language Summary: Some models used in climate studies are formulated on triangular computational meshes. We discuss how to determine the smallest scales that are resolved on such meshes. They are referred to as a mesh resolution. The notion of mesh resolution is commonly used to relate climate model results simulated on different meshes.
    Description: Key Points: Geometrical resolution of an equilateral triangular mesh is defined by the height of its triangles. Quadrilateral and triangular meshes with the same number of vertices have approximately the same resolution.
    Description: Collaborative Research Centre
    Description: German Research Foundation
    Keywords: ddc:550 ; triangular meshes ; resolved wavenumbers
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...