ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-01-15
    Description: Physiological sensitivity of cold‐water corals to ocean change is far less understood than of tropical corals and very little is known about the impacts of ocean acidification and warming on degradative processes of dead coral framework. In a 13‐month laboratory experiment, we examined the interactive effects of gradually increasing temperature and pCO2 levels on survival, growth, and respiration of two prominent color morphotypes (colormorphs) of the framework‐forming cold‐water coral Lophelia pertusa, as well as bioerosion and dissolution of dead framework. Calcification rates tended to increase with warming, showing temperature optima at ~ 14°C (white colormorph) and 10–12°C (orange colormorph) and decreased with increasing pCO2. Net dissolution occurred at aragonite undersaturation (ΩAr 〈 1) at ~ 1000 μatm pCO2. Under combined warming and acidification, the negative effects of acidification on growth were initially mitigated, but at ~ 1600 μatm dissolution prevailed. Respiration rates increased with warming, more strongly in orange corals, while acidification slightly suppressed respiration. Calcification and respiration rates as well as polyp mortality were consistently higher in orange corals. Mortality increased considerably at 14–15°C in both colormorphs. Bioerosion/dissolution of dead framework was not affected by warming alone but was significantly enhanced by acidification. While live corals may cope with intermediate levels of elevated pCO2 and temperature, long‐term impacts beyond levels projected for the end of this century will likely lead to skeletal dissolution and increased mortality. Our findings further suggest that acidification causes accelerated degradation of dead framework even at aragonite saturated conditions, which will eventually compromise the structural integrity of cold‐water coral reefs.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Marine Research in Ireland
    Description: French National Research Agency http://dx.doi.org/10.13039/501100001665
    Keywords: ddc:577.7 ; cold-water corals ; ocean change ; laboratory experiments ; framwork dissolution ; bioerosion
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-08-20
    Description: Hyrrokkin sarcophaga is a parasitic foraminifera that is commonly found in cold-water coral reefs where it infests the file clam Acesta excavata and the scleractinian coral Desmophyllum pertusum (formerly known as Lophelia pertusa). Here, we present measurements of the trace element and isotopic composition of these parasitic foraminifera, analyzed by inductively coupled optical emission spectrometry (ICP-OES), electron probe microanalysis (EPMA) and mass spectrometry (gas-source MS and inductively-coupled-plasma MS). Our results reveal that the geochemical signature of H. sarcophaga depends on the host organism it infests. Sr / Ca ratios are 1.1 mmol mol−1 higher in H. sarcophaga that infest D. pertusum, which could be an indication that dissolved host carbonate material is utilized in shell calcification, given that the aragonite of D. pertusum has a naturally higher Sr concentration compared to the calcite of A. excavata. Similarly, we measure 3.1 ‰ lower δ13C and 0.25 ‰ lower δ18O values in H. sarcophaga that lived on D. pertusum, which might be caused by the direct uptake of the host's carbonate material with a more negative isotopic composition or different pH regimes in these foraminifera (pH can exert a control on the extent of CO2 hydration/hydroxylation) due to the uptake of body fluids of the host. We also observe higher Mn / Ca ratios in foraminifera that lived on A. excavata but did not penetrate the host shell compared to specimen that penetrated the shell, which could be interpreted as a change in food source, changes in the calcification rate, Rayleigh fractionation or changing oxygen conditions. While our measurements provide an interesting insight into the calcification process of this unusual foraminifera, these data also indicate that the geochemistry of this parasitic foraminifera is unlikely to be a reliable indicator of paleoenvironmental conditions using Sr / Ca, Mn / Ca, δ18O or δ13C unless the host organism is known and its geochemical composition can be accounted for.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  (Master thesis), Christian-Albrechts-Universität zu Kiel, Kiel, Germany, 86 pp
    Publication Date: 2022-01-10
    Description: The azooxanthellate scleractinian cold-water coral Lophelia pertusa is an abundant and widespread distributed coral that builds large reef-framework structures along the continental shelves. These huge and extended reefs are habitat and nursery grounds for a variety of organisms and, hence, form so-called biodiversity hot-spots. Ocean acidification caused by anthropogenic C02 uptake is projected to expose 70% of the presently known cold-water coral bioherms to waters corrosive for their carbonate structures by the end of this century, if C02 emissions proceed unabated. The oceans' surface temperature is expected to increase globally for about 3°C and there is growing evidence that the oceans are warming even in the deeper water layers between 700 and 3 000 m. Despite their critical role as bioengineers and importance as living environment for a diverse associated community, very little is known about the sensitivity of reef-building deep-sea scleractinians towards ocean acidification and global warming. This thesis comprises ecophysiological responses of Lophelia pertusa to climate change related future scenarios expected by 2100 in a short-term experiment. Samples of this species from the Scottish Mingulay Reef Complex were investigated with respect to respiration (oxygen consumption rates) and fitness (RNA/DNA ratios). Considering the simultaneous appearance of increasing carbon dioxide (C02) conditions and warming of the oceans, impacts were not only examined on separate, but also on the combined effect of both factors. The fitness was analysed fluorometrically by measuring the amount of RNA and DNA in the polyp. Short-term incubation under all treatment conditions led to decreased metabolic activity (protein biosynthesis) in the cells, where the pC02 had a more pronounced effect that seemed to have up-regulated under the additional influence of increased temperature. Respiration rates were measured using advanced optode technology and revealed an increase in all treatments after ten days of incubation compared to ambient conditions. An increase in temperature of + 3°C had the most severe impact on oxygen consumption, whereas under combined conditions the effect was less pronounced. Although L. pertusa is a rather good regulator, it was found that the respiratory regulation ability decreased significantly (~22 %) under elevated temperatures. These results indicate that although still negatively affected the interactive impact of enhanced C02 concentrations and elevated temperature appears not to be exacerbating but demonstrating the complexity of interactions of physiological processes.
    Keywords: Course of study: MSc Biological Oceanography
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-21
    Description: Acesta excavata (Fabricius, 1779) is a slow growing bivalve from the Limidae family and is often found associated with cold-water coral reefs along the European continental margin. Here we present the compositional variability of frequently used proxy elemental ratios (Mg/Ca, Sr/Ca, Na/Ca) measured by laser-ablation mass spectrometry (LA-ICP-MS) and compare it to in-situ recorded instrumental seawater parameters such as temperature and salinity. Shell Mg/Ca measured in the fibrous calcitic shell section was overall not correlated with seawater temperature or salinity; however, some samples show significant correlations with temperature with a sensitivity that was found to be unusually high in comparison to other marine organisms. Mg/Ca and Sr/Ca measured in the fibrous calcitic shell section display significant negative correlations with the linear extension rate of the shell, which indicates strong vital effects in these bivalves. Multiple linear regression analysis indicates that up to 79% of elemental variability is explicable with temperature and salinity as independent predictor values. Yet, the overall results clearly show that the application of Element/Ca (E/Ca) ratios in these bivalves to reconstruct past changes in temperature and salinity is likely to be complicated due to strong vital effects and the effects of organic material embedded in the shell. Therefore, we suggest to apply additional techniques, such as clumped isotopes, in order to exactly determine and quantify the underlying vital effects and possibly account for these. We found differences in the chemical composition between the two calcitic shell layers that are possibly explainable through differences of the crystal morphology. Sr/Ca ratios also appear to be partly controlled by the amount of magnesium, because the small magnesium ions bend the crystal lattice which increases the space for strontium incorporation. Oxidative cleaning with H2O2 did not significantly change the Mg/Ca and Sr/Ca composition of the shell. Na/Ca ratios decreased after the oxidative cleaning, which is most likely a leaching effect and not caused by the removal of organic matter.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...