ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (40)
  • International Union of Crystallography  (36)
  • A joint publication by the Potsdam Institute for Climate Impact Research (PIK), the German Federal Ministry for Economic Cooperation and Development (BMZ), the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH and the KfW Development Bank
  • American Geophysical Union
  • American Meteorological Society
  • Cambridge University Press
  • Cell Press
  • Institute of Physics
  • Nature Publishing Group
  • Springer Science + Business Media
  • English  (40)
  • 2020-2024  (31)
  • 2020-2023  (9)
  • 2020-2022
  • 1980-1984
  • 1975-1979
  • 1960-1964
Collection
  • Books  (241)
  • Other Sources  (40)
Publisher
Language
Years
  • 2020-2024  (31)
  • 2020-2023  (9)
  • 2020-2022
  • 1980-1984
  • 1975-1979
  • +
Year
  • 1
    facet.materialart.
    Unknown
    A joint publication by the Potsdam Institute for Climate Impact Research (PIK), the German Federal Ministry for Economic Cooperation and Development (BMZ), the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH and the KfW Development Bank
    In:  Climate Risk Profiles for Sub-Saharan Africa
    Publication Date: 2022-09-29
    Description: This profile provides an overview of the projected climate parameters and related impacts on different sectors in Cameroon until 2080 under different climate change scenarios (called Representative Concentration Pathways, RCPs). RCP2.6 represents a low emissions scenario that aims to keep global warming likely below 2 °C above pre-industrial temperatures. RCP6.0 represents a medium to high emissions scenario that is likely to exceed 2 °C. Model projections do not account for effects of future socio-economic impacts unless indicated otherwise.
    Language: English , French
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    A joint publication by the Potsdam Institute for Climate Impact Research (PIK), the German Federal Ministry for Economic Cooperation and Development (BMZ), the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH and the KfW Development Bank
    In:  Climate Risk Profiles for Sub-Saharan Africa Series
    Publication Date: 2022-09-29
    Description: This profile provides an overview of projected climate parameters and related impacts on different sectors in Senegal until 2080 under different climate change scenarios (called Representative Concentration Pathways, RCPs). RCP2.6 represents the low emissions scenario in line with the Paris Agreement; RCP6.0 represents a medium to high emissions scenario. Model projections do not account for effects of future socio-economic impacts.
    Language: English , French
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    A joint publication by the Potsdam Institute for Climate Impact Research (PIK), the German Federal Ministry for Economic Cooperation and Development (BMZ), the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH and the KfW Development Bank
    Publication Date: 2022-10-21
    Description: This profile provides an overview of the projected climate parameters and related impacts on different sectors in Zambia until 2080 under different climate change scenarios (called Representative Concentration Pathways, RCPs). RCP2.6 represents a low emissions scenario that aims to keep global warming likely below 2 °C above pre-industrial temperatures. RCP6.0 represents a medium to high emissions scenario that is likely to exceed 2 °C. Model projections do not account for effects of future socio-economic impacts unless indicated otherwise.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Cambridge University Press
    In:  New Directions in Sustainability and Society
    Publication Date: 2023-07-18
    Description: In this Open Access book, Sander van der Leeuw examines how the modern world has been caught in a socioeconomic dynamic that has generated the conundrum of sustainability. Combining the methods of social science and complex systems science, he explores how western, developed nations have globalized their world view and how that view has led to the sustainability challenges we are now facing. Its central theme is the coevolution of cognition, demography, social organization, technology, and environmental impact. Beginning with the earliest human societies, van der Leeuw links the distant past with the present in order to demonstrate how the information and communications technology revolution is undermining many of the institutional pillars on which contemporary societies have been constructed. An original view of social evolution as the history of human information-processing, his book shows how the past offers insight into the present and can help us deal with the future.
    Language: English
    Type: info:eu-repo/semantics/book
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    International Union of Crystallography | 5 Abbey Square, Chester, Cheshire CH1 2HU, England
    Publication Date: 2022-04-07
    Description: Incoherent diffractive imaging (IDI) promises structural analysis with atomic resolution based on intensity interferometry of pulsed X‐ray fluorescence emission. However, its experimental realization is still pending and a comprehensive theory of contrast formation has not been established to date. Explicit expressions are derived for the equal‐pulse two‐point intensity correlations, as the principal measured quantity of IDI, with full control of the prefactors, based on a simple model of stochastic fluorescence emission. The model considers the photon detection statistics, the finite temporal coherence of the individual emissions, as well as the geometry of the scattering volume. The implications are interpreted in view of the most relevant quantities, including the fluorescence lifetime, the excitation pulse, as well as the extent of the scattering volume and pixel size. Importantly, the spatiotemporal overlap between any two emissions in the sample can be identified as a crucial factor limiting the contrast and its dependency on the sample size can be derived. The paper gives rigorous estimates for the optimum sample size, the maximum photon yield and the expected signal‐to‐noise ratio under optimal conditions. Based on these estimates, the feasibility of IDI experiments for plausible experimental parameters is discussed. It is shown in particular that the mean number of photons per detector pixel which can be achieved with X‐ray fluorescence is severely limited and as a consequence imposes restrictive constraints on possible applications.
    Description: Starting from a simple model of stochastic fluorescence emission, a theory is derived of contrast formation and signal‐to‐noise ratio for incoherent diffractive imaging; its feasibility for plausible experimental parameters is discussed. image
    Keywords: ddc:548
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-09-12
    Description: Two data evaluation concepts for X‐ray stress analysis based on energy‐dispersive diffraction on polycrystalline materials with cubic crystal structure, almost random crystallographic texture and strong single‐crystal elastic anisotropy are subjected to comparative assessment. The aim is the study of the residual stress state in hard‐to‐reach measurement points, for which the sin2ψ method is not applicable due to beam shadowing at larger sample tilting. This makes the approaches attractive for stress analysis in engineering parts with complex shapes, for example. Both approaches are based on the assumption of a biaxial stress state within the irradiated sample volume. They exploit in different ways the elastic anisotropy of individual crystallites acting at the microscopic scale and the anisotropy imposed on the material by the near‐surface stress state at the macroscopic scale. They therefore complement each other, in terms of both their preconditions and their results. The first approach is based on the evaluation of strain differences, which makes it less sensitive to variations in the strain‐free lattice parameter a0. Since it assumes a homogeneous stress state within the irradiated sample volume, it provides an average value of the in‐plane stresses. The second approach exploits the sensitivity of the lattice strain to changes in a0. Consequently, it assumes a homogeneous chemical composition but provides a stress profile within the information depth. Experimental examples from different fields in materials science, namely shot peening of austenitic steel and in situ stress analysis during welding, are presented to demonstrate the suitability of the proposed methods.
    Description: The single‐crystal elastic anisotropy and the anisotropy of the near‐surface (residual) stress state of polycrystalline materials with random texture are exploited in energy‐dispersive X‐ray stress analysis to study samples under constrained measurement conditions.
    Keywords: ddc:548 ; X‐ray stress analysis ; energy‐dispersive diffraction ; polycrystalline materials ; single‐crystal elastic anisotropy
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-12-04
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉A way has been developed to measure the unit‐cell parameters of a single crystal just from an energy scan with X‐rays, even when the exact energy of the X‐rays is not well defined due to an error in the pitch angle of the monochromator. The precision of this measurement reaches 〈italic〉da〈/italic〉/〈italic〉a〈/italic〉 ∼ 1 × 10〈sup〉−5〈/sup〉. The method is based on the analysis of diffraction losses of the beam, transmitted through a single crystal (the so‐called `glitch effect'). This method can be easily applied to any transmissive X‐ray optical element made of single crystals (for example, X‐ray lenses). The only requirements are the possibility to change the energy of the generated X‐ray beam and some intensity monitor to measure the transmitted intensity. The method is agnostic to the error in the monochromator tuning and it can even be used for determination of the absolute pitch (or 2gθ) angle of the monochromator. Applying the same method to a crystal with well known lattice parameters allows determination of the exact cell parameters of the monochromator at any energy.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Diffraction losses (glitches) at certain energies of the X‐ray beam, transmitted through a single crystal, can be used for lattice parameters determination as well as for calibrating the monochromator (absolute pitch angle and the unit‐cell parameter).〈boxed-text position="anchor" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:16005775:jsy2ay5590:jsy2ay5590-fig-0001"〉 〈alt-text〉image〈/alt-text〉 〈/graphic〉〈/boxed-text〉〈/p〉
    Keywords: ddc:548 ; X‐ray glitches ; diffraction losses ; unit‐cell parameter ; single‐crystal X‐ray optics ; monochromator calibration
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-12-12
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Studying electron‐ and X‐ray‐induced electron cascades in solids is essential for various research areas at free‐electron laser facilities, such as X‐ray imaging, crystallography, pulse diagnostics or X‐ray‐induced damage. To better understand the fundamental factors that define the duration and spatial size of such cascades, this work investigates the electron propagation in ten solids relevant for the applications of X‐ray lasers: Au, B〈sub〉4〈/sub〉C, diamond, Ni, polystyrene, Ru, Si, SiC, Si〈sub〉3〈/sub〉N〈sub〉4〈/sub〉 and W. Using classical Monte Carlo simulation in the atomic approximation, we study the dependence of the cascade size on the incident electron or photon energy and on the target parameters. The results show that an electron‐induced cascade is systematically larger than a photon‐induced cascade. Moreover, in contrast with the common assumption, the maximal cascade size does not necessarily coincide with the electron range. It was found that the cascade size can be controlled by careful selection of the photon energy for a particular material. Photon energy, just above an ionization potential, can essentially split the absorbed energy between two electrons (photo‐ and Auger), reducing their initial energy and thus shrinking the cascade size. This analysis suggests a way of tailoring the electron cascades for applications requiring either small cascades with a high density of excited electrons or large‐spread cascades with lower electron densities.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Studying electron‐ and X‐ray‐induced electron cascades in solids is essential for various research areas at free‐electron laser facilities, such as X‐ray imaging, crystallography, pulse diagnostics or X‐ray‐induced damage. To better understand the fundamental factors that define the duration and spatial size of such cascades, this work investigates the electron propagation in ten solids relevant for the applications of X‐ray lasers. Using classical Monte Carlo simulation in the atomic approximation, the dependence of the cascade size on the incident electron or photon energy and on the target parameters is studied.〈boxed-text position="anchor" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:16005775:jsy2gb5123:jsy2gb5123-fig-0001"〉 〈/graphic〉〈/boxed-text〉〈/p〉
    Keywords: ddc:548 ; electron cascades ; X‐ray free‐electron lasers ; Monte Carlo ; photon‐induced cascade ; electron transport
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-12-14
    Description: In Bragg coherent diffractive imaging, the precise location of the measured crystals in the interior of the sample is usually missing. Obtaining this information would help the study of the spatially dependent behavior of particles in the bulk of inhomogeneous samples, such as extra‐thick battery cathodes. This work presents an approach to determine the 3D position of particles by precisely aligning them at the instrument axis of rotation. In the test experiment reported here, with a 60 µm‐thick LiNi0.5Mn1.5O4 battery cathode, the particles were located with a precision of 20 µm in the out‐of‐plane direction, and the in‐plane coordinates were determined with a precision of 1 µm.
    Description: A method to determine the 3D position of particles in Bragg coherent diffractive imaging experiments is proposed. Test measurements demonstrate depth‐resolution with a precision of 20 µm along the beam. image
    Keywords: ddc:548 ; extra‐thick battery cathodes ; Bragg coherent X‐ray diffractive imaging ; battery cathodes ; Bragg diffraction ; sphere of confusion ; 3D mapping
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-01-12
    Description: A split‐and‐delay unit for the extreme ultraviolet and soft X‐ray spectral regions has been built which enables time‐resolved experiments at beamlines FL23 and FL24 at the Free‐electron LASer in Hamburg (FLASH). Geometric wavefront splitting at a sharp edge of a beam splitting mirror is applied to split the incoming soft X‐ray pulse into two beams. Ni and Pt coatings at grazing incidence angles have been chosen in order to cover the whole spectral range of FLASH2 and beyond, up to hν = 1800 eV. In the variable beam path with a grazing incidence angle of ϑd = 1.8°, the total transmission (T) ranges are of the order of 0.48 〈 T 〈 0.84 for hν 〈 100 eV and T 〉 0.50 for 100 eV 〈 hν 〈 650 eV with the Ni coating, and T 〉 0.06 for hν 〈 1800 eV for the Pt coating. For a fixed beam path with a grazing incidence angle of ϑf = 1.3°, a transmission of T 〉 0.61 with the Ni coating and T 〉 0.23 with a Pt coating is achieved. Soft X‐ray pump/soft X‐ray probe experiments are possible within a delay range of −5 ps 〈 Δt 〈 +18 ps with a nominal time resolution of tr = 66 as and a measured timing jitter of tj = 121 ± 2 as. First experiments with the split‐and‐delay unit determined the averaged coherence time of FLASH2 to be τc = 1.75 fs at λ = 8 nm, measured at a purposely reduced coherence of the free‐electron laser.
    Description: The properties of the recently installed split‐and‐delay unit at beamlines FL23 and FL24 at FLASH2 are presented. Its operational range, performance parameters and results of a first experiment are described. image
    Keywords: ddc:550.724 ; time‐resolved pump–probe ; XUV ; soft X‐rays ; free‐electron laser
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...