ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles
  • Other Sources  (6)
  • ddc:551.22  (6)
  • English  (6)
  • 2020-2024  (6)
  • 1990-1994
  • 2022  (6)
Collection
  • Articles
  • Other Sources  (6)
Source
Language
  • English  (6)
Years
Year
  • 1
    Publication Date: 2023-01-19
    Description: Along ultraslow spreading ridges melt is distributed unequally, but melt focusing guides melt away from amagmatic segments toward volcanic centers. An interplay of tectonism and magmatism is thought to control melt ascent, but the detailed process of melt extraction is not yet understood. We present a detailed image of the seismic velocity structure of the Logachev volcanic center and adjacent region along the Knipovich Ridge. With travel times of P‐ and S‐waves of 3,959 earthquakes we performed a local earthquake tomography. We simultaneously inverted for source locations, velocity structure and the Vp/Vs‐ratio. An extensive low velocity anomaly coincident with high Vp/Vs‐ratios 〉1.9 lies underneath the volcanic center at depths of 10 km below sea level in an aseismic area. More shallow, tightly clustered earthquake swarms connect the anomaly to a shallow anomaly with high Vp/Vs‐ratio beneath the basaltic seafloor. We consider the deep low‐velocity anomaly to represent an area of partial melt from which melts ascent vertically to the surface and northwards into the adjacent segment. By comparing tomographic studies of the Logachev and Southwest Indian Ridge Segment‐8 volcano we conclude that volcanic centers of ultraslow spreading ridges host spatially confined, circular partial melt areas below 10 km depth, in contrast to the shallow extended melt lenses along fast spreading ridges. Lateral feeding over distances of 35 km is possible at orthogonal spreading segments, but limited at the obliquely spreading Knipovich Ridge.
    Description: Plain Language Summary: Mid‐ocean ridges mark the tectonic plate boundaries, where the plates drift apart. Fresh magma rises into the gap and builds new seafloor. The slower the plates drift apart, the less magma is present underneath the ridge. At very slow spreading ridges there is not enough magma to build new seafloor along the entire length of the ridge. Rather, melt is guided toward individual volcanic centers spaced at about 100 km, where melt accumulates and ascents. In our study we try to find melt storage areas and ascent paths of such a volcanic center. With velocities of different seismic wave types from earthquakes we map the velocity structure of the area underneath the major Logachev volcanic center. Lower velocities indicate an area partly including melt at depths of more than 10 km, far deeper than at mid‐ocean ridges with sufficient melt supply. From the deep magma reservoir, many earthquake swarms map the long ascent path of melt to the surface. The interplay of magmatic and tectonic activity is important here. In a comparison with results from another volcanic center, we find that lateral magma feeding is possible in orthogonal spreading, but limited in oblique spreading, as at the Knipovich Ridge.
    Description: Key Points: Active volcanic centers at ultraslow spreading ridges host deeper and more confined partial melt areas than faster spreading ridges. Earthquake swarms delineate melt ascent paths from the partial melt area to the surface. Lateral feeding at shallow depths into subordinate segments is prevented by ridge obliquity.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:551.22 ; ultraslow spreading ; Knipovich Ridge ; local earthquake tomography ; seismicity ; mid‐ocean ridge ; partial melt area
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-21
    Description: Seismicity models are probabilistic forecasts of earthquake rates to support seismic hazard assessment. Physics‐based models allow extrapolating previously unsampled parameter ranges and enable conclusions on underlying tectonic or human‐induced processes. The Coulomb Failure (CF) and the rate‐and‐state (RS) models are two widely used physics‐based seismicity models both assuming pre‐existing populations of faults responding to Coulomb stress changes. The CF model depends on the absolute Coulomb stress and assumes instantaneous triggering if stress exceeds a threshold, while the RS model only depends on stress changes. Both models can predict background earthquake rates and time‐dependent stress effects, but the RS model with its three independent parameters can additionally explain delayed aftershock triggering. This study introduces a modified CF model where the instantaneous triggering is replaced by a mean time‐to‐failure depending on the absolute stress value. For the specific choice of an exponential dependence on stress and a stationary initial seismicity rate, we show that the model leads to identical results as the RS model and reproduces the Omori‐Utsu relation for aftershock decays as well stress‐shadowing effects. Thus, both CF and RS models can be seen as special cases of the new model. However, the new stress response model can also account for subcritical initial stress conditions and alternative functions of the mean time‐to‐failure depending on the problem and fracture mode.
    Description: Plain Language Summary: One of the most pressing questions in earthquake physics is understanding where and when earthquakes occur and how seismicity is related to stress changes in the Earth's crust. This question is even more important today because humans are increasingly influencing stresses in the Earth by exploiting the subsurface. So far, two classes of physics‐based seismicity models have been used primarily. One assumes instantaneous earthquake occurrence when stress exceeds a threshold, and the other is based on the nucleation of earthquakes according to friction laws determined in the laboratory. Both models are very different in their approaches, have advantages and disadvantages, and are limited in their applicability. In this paper, we introduce a new concept of seismicity models, which is very simple and short to derive and combines the strengths of both previous models, as shown in various applications to human‐related seismicity. The forecasts of both traditional models turn out to be special cases of the new model.
    Description: Key Points: We introduce a modified Coulomb Failure seismicity model in which a mean time‐to‐failure replaces instantaneous triggering. The model explains the main features of time‐dependent seismicity, including aftershock activity and stress shadow effects. As a special case, it includes the rate‐state model solutions but can also handle subcritical stresses and other fracture types.
    Description: European Unions 2020 research and innovation programme
    Description: https://github.com/torstendahm/tdsr
    Keywords: ddc:551.22 ; seismicity ; physics based model ; earthquake physics
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-21
    Description: An earthquake‐induced stress drop on a megathrust instigates different responses on the upper plate and slab. We mimic homogenous and heterogeneous megathrust interfaces at the laboratory scale to monitor the strain relaxation on two elastically bi‐material plates by establishing analog velocity weakening and neutral materials. A sequential elastic rebound follows the coseismic shear‐stress drop in our elastoplastic‐frictional models: a fast rebound of the upper plate and the delayed and smaller rebound on the elastic belt (model slab). A combination of the rebound of the slab and the rapid relaxation (i.e., elastic restoration) of the upper plate after an elastic overshooting may accelerate the relocking of the megathrust. This acceleration triggers/antedates the failure of a nearby asperity and enhances the early slip reversal in the rupture area. Hence, the trench‐normal landward displacement in the upper plate may reach a significant amount of the entire interseismic slip reversal and speeds up the stress build‐up on the upper plate backthrust that emerges self‐consistently at the downdip end of the seismogenic zones. Moreover, the backthrust switches its kinematic mode from a normal to reverse mechanism during the coseismic and postseismic stages, reflecting the sense of shear on the interface.
    Description: Plain Language Summary: Subduction zones, where one tectonic plate slides underneath the other, host the largest earthquakes on earth. Two plates with different physical properties define the upper and lower plates in the subduction zones. A frictional interaction at the interface between these plates prevents them from sliding and builds up elastic strain energy until the stress exceeds their strength and releases accumulated energy as an earthquake. The source of the earthquake is located offshore; hence illuminating the plates' reactions to the earthquakes is not as straightforward as the earthquakes that occur inland. Here we mimic the subduction zone at the scale of an analog model in the laboratory to generate analog earthquakes and carefully monitor our simplified model by employing a high‐resolution monitoring technique. We evaluate the models to examine the feedback relationship between upper and lower plates during and shortly after the earthquakes. We demonstrate that the plates respond differently and sequentially to the elastic strain release: a seaward‐landward motion of the upper plate and an acceleration in the lower plate sliding underneath the upper plate. Our results suggest that these responses may trigger another earthquake in the nearby region and speed up the stress build‐up on other faults.
    Description: Key Points: Seismotectonic scale models provide high‐resolution observations to study the surface deformation signals from shallow megathrust earthquakes. Surface displacement time‐series suggest a sequential elastic rebound of the upper plate and slab during great subduction megathrust earthquakes. Slip reversal may be caused by rapid restoration of the upper plate after overshooting and amplified upper plate motion.
    Description: SUBITOP Marie Sklodowska‐Curie Action project from the European Union's EU Framework Programme
    Description: Deutsche Forschungsgemeinschaft
    Description: https://doi.org/10.5880/fidgeo.2022.024
    Keywords: ddc:551.22 ; analog modeling ; megathrust earthquake ; seismic cycle ; elastic rebound ; upper plate ; overshooting
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-15
    Description: Hydraulic fracturing (HF) operations are widely associated with induced seismicity in the Western Canadian Sedimentary Basin. This study correlates injection parameters of 12,903 HF stages in the Kiskatinaw area in northeast British Columbia with an enhanced catalog containing 40,046 earthquakes using a supervised machine learning approach. It identifies relevant combinations of geological and operational parameters related to individual HF stages in efforts to decipher fault activation mechanisms. Our results suggest that stages targeting specific geological units (here, the Lower Montney formation) are more likely to induce an earthquake. Additional parameters positively correlated with earthquake likelihood include target formation thickness, injection volume, and completion date. Furthermore, the COVID‐19 lockdown may have reduced the potential cumulative effect of HF operations. Our results demonstrate the value of machine learning approaches for implementation as guidance tools that help facilitate safe development of unconventional energy technologies.
    Description: Plain Language Summary: Hydraulic fracturing (HF), a technique used in unconventional energy production, increases rock permeability to enhance fluid movement. Its use has led to an unprecedented increase of associated earthquakes in the Western Canadian Sedimentary Basin in the last decade, among other regions. Numerous studies have investigated the relationship between induced earthquakes and HF operations, but the connection between specific geological and operational parameters and earthquake occurrence is only partly understood. Here, we use a supervised machine learning approach with publicly available injection data from the British Columbia Oil and Gas Commission to identify influential HF parameters for increasing the likelihood of a specific operation inducing an earthquake. We find that geological parameters, such as the target formation and its thickness, are most influential. A small number of operational parameters are also important, such as the injected fluid volume and the operation date. Our findings demonstrate an approach with the potential to develop tools to help enable the continued development of alternative energy technology. They also emphasize the need for public access to operational data to estimate and reduce the hazard and associated risk of induced seismicity.
    Description: Key Points: We use supervised machine learning to investigate the relationship between hydraulic fracturing operation parameters and induced seismicity. Geological properties and a limited number of operational parameters predominantly influence the probability of an induced earthquake. The approach has the potential to guide detailed investigations of injection parameters critical for inducing earthquakes.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Gouvernement du Canada Natural Sciences and Engineering Research Council of Canada http://dx.doi.org/10.13039/501100000038
    Description: https://doi.org/10.5281/zenodo.5501399
    Description: https://ds.iris.edu/gmap/XL
    Description: https://files.bcogc.ca/thinclient/
    Description: https://open.canada.ca/data/en/dataset/7f245e4d-76c2-4caa-951a-45d1d2051333
    Description: https://github.com/obspy/obspy
    Description: https://github.com/eqcorrscan/EQcorrscan
    Description: https://github.com/smousavi05/EQTransformer
    Description: https://github.com/Dal-mzhang/REAL
    Description: https://scikit-learn.org/stable/
    Description: https://docs.fast.ai/
    Description: https://xgboost.readthedocs.io/en/stable/
    Description: https://github.com/slundberg/shap
    Description: https://docs.generic-mapping-tools.org/latest/
    Keywords: ddc:551.22 ; induced seismicity ; machine learning ; hydraulic fracturing
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-11-27
    Description: On 12 August 2021, a 〉220 s lasting complex earthquake with M〈sub〉w〈/sub〉 〉 8.2 hit the South Sandwich Trench. Due to its remote location and short interevent times, reported earthquake parameters varied significantly between different international agencies. We studied the complex rupture by combining different seismic source characterization techniques sensitive to different frequency ranges based on teleseismic broadband recordings from 0.001 to 2 Hz, including point and finite fault inversions and the back‐projection of high‐frequency signals. We also determined moment tensor solutions for 88 aftershocks. The rupture initiated simultaneously with a rupture equivalent to a M〈sub〉w〈/sub〉 7.6 thrust earthquake in the deep part of the seismogenic zone in the central subduction interface and a shallow megathrust rupture, which propagated unilaterally to the south with a very slow rupture velocity of 1.2 km/s and varying strike following the curvature of the trench. The slow rupture covered nearly two‐thirds of the entire subduction zone length, and with M〈sub〉w〈/sub〉 8.2 released the bulk of the total moment of the whole earthquake. Tsunami modeling indicates the inferred shallow rupture can explain the tsunami records. The southern segment of the shallow rupture overlaps with another activation of the deeper part of the megathrust equivalent to M〈sub〉w〈/sub〉 7.6. The aftershock distribution confirms the extent and curvature of the rupture. Some mechanisms are consistent with the mainshocks, but many indicate also activation of secondary faults. Rupture velocities and radiated frequencies varied strongly between different stages of the rupture, which might explain the variability of published source parameters.
    Description: Plain Language Summary: The earthquake of 12 August 2021 along the deep‐sea trench of the South Sandwich Islands in the South Atlantic reached a magnitude of 8.2 and triggered a tsunami. The automatic earthquake parameter determination of different agencies showed very different results shortly after the earthquake and partially underestimated the tsunami potential of the earthquake. A possible reason was the complex rupture process and that the tsunami was generated by a long and shallow slow slip rupture sandwiched between more conventional fast slip subevents at its northern and southern ends. In addition, the fault surface, which extended over 450 km, was highly curved striking 150°–220°. We investigated the different components of the seismic wavefields in different frequency ranges and with different methods. The analysis shows how even complex earthquakes can be deciphered by combining analyzing methods. The comparison with aftershocks and the triggered tsunami waves confirms our model that explains the South Sandwich rupture by four subevents in the plate boundary along the curved deep‐sea trench. Here, the depth, rupture velocities, and slip on each segment of the rupture vary considerably. The method can also be applied to other megathrust earthquakes and help to further improve tsunami warnings in the future.
    Description: Key Points: A combination of multiple approaches, inversion setups, and frequency ranges deciphered the complex earthquake of 2021 South Sandwich. The rupture consisted of four subevents with the largest occurring as a shallow slow rupture parallel to the South Sandwich Trench. Forward modeling proves that the large, shallow thrust subevent caused the recorded tsunami.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Agencia Nacional de Investigación y Desarrollo http://dx.doi.org/10.13039/501100020884
    Description: https://ds.iris.edu/wilbert3/find_event
    Description: https://www.usgs.gov/natural-hazards/earthquake-hazards/lists-maps-and-statistics
    Description: http://www.ioc-sealevelmonitoring.org/
    Description: https://doi.org/10.7289/V5C8276M
    Description: https://www.gfz-potsdam.de/en/software/tsunami-wave-propagations-easywave
    Keywords: ddc:551.22 ; 2021 South Sandwich Earthquake ; seismic characteristics ; tsunamigenic characteristics
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-03-25
    Description: We use interferometric synthetic aperture radar observations to investigate the fault geometry and afterslip evolution within 3 years after a mainshock. The postseismic observations favor a ramp‐flat structure in which the flat angle should be lower than 10°. The postseismic deformation is dominated by afterslip, while the viscoelastic response is negligible. A multisegment, stress‐driven afterslip model (hereafter called the SA‐2 model) with depth‐varying frictional properties better explains the spatiotemporal evolution of the postseismic deformation than a two‐segment, stress‐driven afterslip model (hereafter called the SA‐1 model). Although the SA‐2 model does not improve the misfit significantly, this multisegment fault with depth‐varying friction is more physically plausible given the depth‐varying mechanical stratigraphy in the region. Compared to the kinematic afterslip model, the mechanical afterslip models with friction variation tend to underestimate early postseismic deformation to the west, which may indicate more complex fault friction than we expected. Both the kinematic and stress‐driven models can resolve downdip afterslip, although it could be affected by data noise and model resolution. The transition depth of the sedimentary cover basement interface inferred by afterslip models is ∼12 km in the seismogenic zone, which coincides with the regional stratigraphic profile. Because the coseismic rupture propagated along a basement‐involved fault while the postseismic slip may activate the frontal structures and/or shallower detachments in the sedimentary cover, the 2017 Sarpol‐e Zahab earthquake may have acted as a typical event that contributed to both thick‐ and thin‐skinned shortening of the Zagros in both seismic and aseismic ways.
    Description: Plain Language Summary: The 2017 Mw 7.3 Sarpol‐e Zahab earthquake is the largest instrumentally recorded event to have ruptured in the Zagros fold thrust belt. Although much work has been conducted for a better understanding of the relationship between crustal shortening and seismic and aseismic slip of the earthquakes in the Zagros, active debate remains. Here, we use interferometric synthetic aperture radar observations to study the fault geometry and afterslip evolution within 3 years after the 2017 Mw 7.3 Sarpol‐e Zahab earthquake. For postseismic deformation sources, afterslip and viscoelastic relaxation are considered to be possible causes of postseismic deformation. Our results show that the kinematic afterslip model can spatiotemporally explain the postseismic deformation. However, the mechanical afterslip models tend to underestimate the earlier western part of the postseismic deformation, which may indicate a more complex spatial heterogeneity of the frictional property of the fault plane. We find that there is deep afterslip downdip of coseismic slip from both the kinematic and stress‐driven afterslip models, although it could be affected by data noise and model resolution. We additionally find that the viscoelastic response is negligible. Postseismic slip on more complex geological structures may also be reactivated and triggered, combined with geodetic inversions, geological cross‐section data and local structures in the Zagros.
    Description: Key Points: The Spatiotemporal evolution of postseismic observations favors a ramp‐flat structure in which the flat angle should be lower than 10°, Depth‐varying friction is required to better simulate the rate‐strengthening afterslip evolution. Downdip afterslip can be resolved by afterslip models, although it relies on data accuracy and model resolution.
    Description: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Description: China Scholarship Council http://dx.doi.org/10.13039/501100004543
    Description: Ministry of Science and Technology in Taiwan
    Description: https://www.asf.alaska.edu/
    Description: http://irsc.ut.ac.ir/
    Description: https://www.globalcmt.org/
    Description: https://doi.org/10.5281/zenodo.7113073
    Keywords: ddc:551.22 ; Zagros fold thrust belt ; Sarpol-e Zahab earthquake ; postseismic observations ; postseismic deformation ; InSAR
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...