ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge : Cambridge University Press  (13)
  • Washington, D.C. : Mineralogical Society of America  (11)
  • Cheltenham : Elgar  (10)
  • English  (34)
  • Turkish
  • 2000-2004  (34)
  • 1
    Monograph available for loan
    Monograph available for loan
    Cambridge : Cambridge University Press
    Call number: PIK 24-95568
    Type of Medium: Monograph available for loan
    Pages: XV, 296 S. , graph. Darst.
    Edition: Repr.
    ISBN: 0521424658 , 0521373980
    Series Statement: Historical perspectives on modern economics
    Language: English
    Note: Literaturverz. S. 265 - 280
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: PIK N 071-02-0097 ; AWI A3-02-0084
    Type of Medium: Monograph available for loan
    Pages: X, 397 Seiten , Illustrationen , 28 cm
    ISBN: 0521015073
    Language: English
    Note: Contents Foreword Preface Summary for Policymakers Synthesis Report Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Working Group Summaries Working Group I: The Scientific Basis Working Group II: Impacts, Adaptation, and Vulnerability Working Group III: Mitigation Annexes A. Authors and Expert Reviewers B. Glossary of Terms C. Acronyms, Abbreviations, and Units D. Scientific, Technical, and Socio-Economic Questions Selected by the Panel E. List of Major IPCC Reports
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Monograph available for loan
    Monograph available for loan
    Cambridge : Cambridge University Press
    Call number: PIK N 453-16-90125
    Type of Medium: Monograph available for loan
    Pages: xi, 273 Seiten , Illustrationen, Diagramme, Karten , 26 cm
    Edition: 2nd edition
    ISBN: 0521815703 , 9780521815703 , 0521016347 (pbk) , 9780521016346 (pbk)
    Language: English
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Monograph available for loan
    Monograph available for loan
    Cambridge : Cambridge University Press
    Call number: PIK C 111-18-91316
    Type of Medium: Monograph available for loan
    Pages: XVI, 483 Seiten
    ISBN: 0521534313 , 0521827086
    Series Statement: Contemporary political theory
    Language: English
    Note: Contents: Contents: 1. A long, dark shadow over democratic politics ; 2. The doctrine of democratic irrationalism ; 3. Is democratic voting inaccurate? ; 4. The Arrow general possibility theorem ; 5. Is democracy meaningless? Arrow's condition of unrestricted domain ; 6. Is democracy meaningless? Arrow's condition of the independence of irrelevant alternatives ; 7. Strategic voting and agenda control ; 8. Multidimensional chaos ; 9. Assuming irrational actors: the Powell Amendment ; 10. Assuming irrational actors: the Depew amendment ; 11. Unmanipulating the manipulation: the Wilmot proviso ; 12. Unmanipulating the manipulation: the election of Lincoln ; 13. Antebellum politics concluded ; 14. More of Riker's cycles debunked ; 15. Other cycles debunked ; 16. New dimensions ; 17. Plebiscitarianism against democracy : 18. Democracy resplendent
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 01.0314
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: The first half-century of X-ray crystallography, beginning with the elucidation of the sodium chloride structure in 1914, was devoted principally to the determination of increasingly complex atomic topologies at ambient conditions. The pioneering work of the Braggs, Pauling, Wyckoff, Zachariasen and many other investigators revealed the structural details and underlying crystal chemical principles for most rock-forming minerals (see, for example, Crystallography in North America, edited by D. McLachlan and J. P. Glusker, NY, American Crystallographic Association, 1983). These studies laid the crystallographic foundation for modem mineralogy. The past three decades have seen a dramatic expansion of this traditional crystallographic role to the study of the relatively subtle variations of crystal structure as a function of temperature, pressure, or composition. Special sessions on "High temperature crystal chemistry" were first held at the Spring Meeting of the American Geophysical Union (April 19, 1972) and the Ninth International Congress of Crystallography (August 30, 1972). The Mineralogical Society of America subsequently published a special 11-paper section of American Mineralogist entitled "High Temperature Crystal Chemistry," which appeared as Volume 58, Numbers 5 and 6, Part I in July-August, 1973. The first complete three-dimensional structure refinements of minerals at high pressure were completed in the same year on calcite (Merrill and Bassett, Acta Crystallographica B31, 343-349, 1975) and on gillespite (Hazen and Burnham, American Mineralogist 59, 1166-1176, 1974). Rapid advances in the field of non-ambient crystallography prompted Hazen and Finger to prepare the monograph Comparative Crystal Chemistry: Temperature, Pressure, Composition and the Variation of Crystal Structure (New York: Wiley, 1982). At the time, only about 50 publications documenting the three-dimensional variation of crystal structures at high temperature or pressure had been published, though general crystal chemical trends were beginning to emerge. That work, though increasingly out of date, remained in print until recently as the only comprehensive overview of experimental techniques, data analysis, and results for this crystallographic sub-discipline. This Reviews in Mineralogy and Geochemistry volume was conceived as an updated version of Comparative Crystal Chemistry. A preliminary chapter outline was drafted at the Fall 1998 American Geophysical Union meeting in San Francisco by Ross Angel, Robert Downs, Larry Finger, Robert Hazen, Charles Prewitt and Nancy Ross. In a sense, this volume was seen as a "changing of the guard" in the study of crystal structures at high temperature and pressure. Larry Finger retired from the Geophysical Laboratory in July, 1999, at which time Robert Hazen had shifted his research focus to mineral-mediated organic synthesis. Many other scientists, including most of the authors in this volume, are now advancing the field by expanding the available range of temperature and pressure, increasing the precision and accuracy of structural refinements at non-ambient conditions, and studying ever more complex structures. The principal objective of this volume is to serve as a comprehensive introduction to the field of high-temperature and high-pressure crystal chemistry, both as a guide to the dramatically improved techniques and as a summary of the voluminous crystal chemical literature on minerals at high temperature and pressure. The book is largely tutorial in style and presentation, though a basic knowledge of X-ray crystallographic techniques and crystal chemical principles is assumed. The book is divided into three parts. Part I introduces crystal chemical considerations of special relevance to non-ambient crystallographic studies. Chapter 1 treats systematic trends in the variation of structural parameters, including bond distances, cation coordination, and order-disorder with temperature and pressure, while Chapter 2 considers P-V-T equation-of-state formulations relevant to x-ray structure data. Chapter 3 reviews the variation of thermal displacement parameters with temperature and pressure. Chapter 4 describes a method for producing revealing movies of structural variations with pressure, temperature or composition, and features a series of "flip-book" animations. These animations and other structural movies are also available as a supplement to this volume on the Mineralogical Society of America web site at RiMG041 Programs. Part II reviews the temperature- and pressure-variation of structures in major mineral groups. Chapter 5 presents crystal chemical systematics of high-pressure silicate structures with six-coordinated silicon. Subsequent chapters highlight temperature- and pressure variations of dense oxides (Chapter 6), orthosilicates (Chapter 7), pyroxenes and other chain silicates (Chapter 8), framework and other rigid-mode structures (Chapter 9), and carbonates (Chapter 10). Finally, the variation of hydrous phases and hydrogen bonding are reviewed in Chapter 11, while molecular solids are summarized in Chapter 12. Part III presents experimental techniques for high-temperature and high-pressure studies of single crystals (Chapters 13 and 14, respectively) and polycrystalline samples (Chapter 15). Special considerations relating to diffractometry on samples at non-ambient conditions are treated in Chapter 16. Tables in these chapters list sources for relevant hardware, including commercially available furnaces and diamond-anvil cells. Crystallographic software packages, including diffractometer operating systems, have been placed on the Mineralogical Society web site for this volume. This volume is not exhaustive and opportunities exist for additional publications that review and summarize research on other mineral groups. A significant literature on the high-temperature and high-pressure structural variation of sulfides, for example, is not covered here. Also missing from this compilation are references to a variety of studies of halides, layered oxide superconductors, metal alloys, and a number of unusual silicate structures.
    Type of Medium: Monograph available for loan
    Pages: viii, 596 S.
    ISBN: 0-939950-53-7 , 978-0-939950-53-9
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 41
    Classification:
    Mineralogy
    Language: English
    Note: Contents of Part I. p. vii - viii Part I: Characterization and Interpretation of Structural Variations with Temperature and Pressure Chapter 1. Principles of Comparative Crystal Chemistry by Robert M. Hazen, Robert T. Downs, and Charles T. Prewitt, p. 1 - 34 Chapter 2. Equations of State by Ross J. Angel, p. 35 - 60 Chapter 3. Analysis of Harmonic Displacement Factors by Robert T. Downs, p. 61 - 88 Chapter 4. Animation of Crystal Structure Variations with Pressure, Temperature and Composition by Robert T. Downs and P.J. Heese, p. 89 - 118 Part II: Variation of Structures with Temperature and Pressure Contents of Part II. p. 119 - 122 Chapter 5. Systematics of High-Pressure Silicate Structures by Larry W. Finger and Robert M. Hazen, p. 123 - 156 Chapter 6. Comparative Crystal Chemistry of Dense Oxide Minerals by Joseph R. Smyth, Steven D. Jacobsen, and Robert M. Hazen, p. 157 - 186 Chapter 7. Comparative Crystal Chemistry of Orthosilicate Minerals by Joseph R. Smyth, Steven D. Jacobsen, and Robert M. Hazen, p. 187 - 210 Chapter 8. Chain and Layer Silicates at High Temperatures and Pressures by Hexiong Yang and Charles T. Prewitt, p. 211 - 256 Chapter 9. Framework Structures by Nancy L. Ross, p. 257 - 288 Chapter 10. Structural Variations in Carbonates by Simon A.T. Redfern, p. 289 - 308 Chapter 11. Hydrous Phases and Hydrogen Bonding at High Pressure by Charles T. Prewitt and John B. Parise, p. 309 - 334 Chapter 12. Molecular Crystals by Russell J. Hemley and Przemyslaw Dera, p. 335 - 420 Part III: Experimental Techniques Contents of Part III. p. 421 - 424 Chapter 13. High-Temperature Devices and Environmental Cells for X-ray and Neutron Diffraction Experiments by Ronald C. Peterson and Hexiong Yang, p. 425 - 444 Chapter 14. High-Pressure Single-Crystal Techniques by Ronald Miletich, David R. Allan, and Werner F. Kuhs, p. 445 - 520 Chapter 15. High-Pressure and High-Temperature Powder Diffraction by Yingwei Fei and Yanbin Wang, p. 521 - 558 Chapter 16. High-Temperature­High-Pressure Diffractometry by Ross J. Angel, Robert T. Downs, and Larry W. Finger, p. 559 - 596
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Call number: 12/M 01.0458 ; PIK N 071-01-0551 ; PIK N 071-01-0569 ; PIK N 071-01-0552 ; PIK N 071-02-0350
    In: Climate change 2001
    Type of Medium: Monograph available for loan
    Pages: X, 752 S. : graph. Darst.
    ISBN: 0521015022
    Series Statement: Climate change 2001
    Classification:
    Meteorology and Climatology
    Language: English
    Location: Reading room
    Location: A 18 - must be ordered
    Location: A 18 - must be ordered
    Location: A 18 - must be ordered
    Location: A 18 - must be ordered
    Branch Library: GFZ Library
    Branch Library: PIK Library
    Branch Library: PIK Library
    Branch Library: PIK Library
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Monograph available for loan
    Monograph available for loan
    Cambridge : Cambridge University Press
    Associated volumes
    Call number: M 02.0075
    In: The seismic wavefield
    Type of Medium: Monograph available for loan
    Pages: X, 370 S.
    Edition: 1st publ.
    ISBN: 0521006635
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: M 02.0026 / Regal 11
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: Mineralogy and Geology of Natural Zeolites was published in 1977. Dr. Fred Mumpton, a leader of the natural zeolite community for more than three decades, edited the original volume. Since the time of the original MSA zeolite short course in November 1977, there have been major developments concerning almost all aspects of natural zeolites. There has been an explosion in our knowledge of the crystal chemistry and structures of natural zeolites (Chapters 1 and 2), due in part to the now-common Rietveld method that allows treatment of powder diffraction data. Studies on the geochemistry of natural zeolites have also greatly increased, partly as a result of the interests related to the disposal of radioactive wastes, and Chapters 3, 4, 5, 13, and 14 detail the latest results in this important area. Until the latter part of the 20th century, zeolites were often looked upon as a geological curiosity, but they are now known to be widespread throughout the world in sedimentary and igneous deposits and in soils (Chapters 6-12). Likewise, borrowing from new knowledge gained from studies of synthetic zeolites and properties of natural zeolites, the application of natural zeolites has greatly expanded since the first zeolite volume. Chapter 15 details the use of natural zeolites for removal of ammonium ions, heavy metals, radioactive cations, and organic molecules from natural waters, wastewaters, and soils. Similarly, Chapter 16 describes the use of natural zeolites as building blocks and cements in the building industry, Chapter 17 outlines their use in solar energy storage, heating, and cooling applications, and Chapter 18 describes their use in a variety of agricultural applications, including as soil conditioners, slow-release fertilizers, soil-less substrates, carriers for insecticides and pesticides, and remediation agents in contaminated soils. Most of the material in this volume is entirely new, and Natural Zeolites: Occurrence, Properties, Applications presents a fresh and expanded look at many of the subjects contained in Volume 4. It is our hope that this new, expanded volume will rekindle interest in this fascinating and technologically important group of minerals, in part through the 'Suggestions for Further Research' section in each chapter.
    Type of Medium: Monograph available for loan
    Pages: XIV, 654 S.
    ISBN: 0-939950-57-X , 978-0-939950-57-7
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 45
    Classification:
    Mineralogy
    Language: English
    Note: MINERALOGY Chapter 1. Crystal Structures of Natural Zeolites by Thomas Armbruster and Mickey E. Gunter, p. 1 - 68 Chapter 2. The Crystal Chemistry of Zeolites by E Passaglia and Richard A. Sheppard, p. 69 - 116 Chapter 3. Geochemical Stability of Natural Zeolites by Steve J. Chipera and John A. Apps, p. 117 - 162 Chapter 4. Isotope Geochemistry of Zeolites by Haraldur R. Karlsson, p. 163 - 206 Chapter 5. Clinoptilolite-Heulandite Nomenclature by David L. Bish and Jeremy M. Boak, p. 207 - 216 OCCURRENCE Chapter 6. Occurrence of Zeolites in Sedimentary Rocks: An Overview by Richard L. Hay and Richard A. Sheppard, p. 217 - 234 Chapter 7. Zeolites in Closed Hydrologic Systems by A Langella, Piergiulio Cappelletti, and Roberto de'Gennaro, p. 235 - 260 Chapter 8. Formation of Zeolites in Open Hydrologic Systems by Richard A. Sheppard and Richard L. Hay, p. 261 - 276 Chapter 9. Zeolites in Burial Diagenesis and Low-grade Metamorphic Rocks by Minora Utada, p. 277 - 304 Chapter 10. Zeolites in Hydrothermally Altered Rocks by Minora Utada, p. 305 - 322 Chapter 11. Zeolites in Soil Environments by Douglas W. Ming and Janis L. Boettinger, p. 323 - 346 Chapter 12. Zeolites in Petroleum and Natural Gas Reservoirs by Azuma Iijima, p. 347 - 402 PHYSICOCHEMICAL PROPERTIES Chapter 13. Thermal Behavior of Natural Zeolites by David L. Bish and J. William Carey, p. 403 - 452 Chapter 14. Cation-Exchange Properties of Natural Zeolites by Roberto T. Pabalan and F. Paul Bertetti, p. 453 - 518 APPLICATIONS Chapter 15. Applications of Natural Zeolites in Water and Wastewater Treatment by Dénes Kalló, p. 519 - 550 Chapter 16. Use of Zeolitic Tuff in the Building Industry by Carmine Colella, Maurizio de'Gennaro, and Rosario Aiello, p. 551 - 588 Chapter 17. Natural Zeolites in Solar Energy - Heating, Cooling, and Energy Storage by Dimiter I. Tchernev, p. 589 - 618 Chapter 18. Use of Natural Zeolites in Agronomy, Horticulture, and Environmental Soil Remediation by Douglas W. Ming and Earl R. Allen, p. 619 - 654
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 02.0025
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: This volume was prepared in conjunction with a short course, "Nanoparticles in the Environment and Technology," convened on the campus of the University of California, Davis, CA on December 8 and 9, 2001. Over the years, volumes in this series have taken a variety of forms. Many have focused on mature fields of investigation to draw together a comprehensive body of work and provide a definitive, up to date reference. A few, however, have sought to provide enough coverage of an emerging or re-emerging field to allow the reader to identify important and exciting gaps in current knowledge and opportunities for new research. This volume falls into the later category. Our primary goal in convening the short course and assembling this text is to invigorate future research. Early Reviews in Mineralogy dealt with specific groups of minerals, one (or two) volumes at a time. In contrast, this volume deals explicitly with the topic of crystal size in many different systems. Until recently, the special and complicated nature of the very smallest particles rendered them nearly impossible to study by conventional methods. Even today, the challenges associated with evaluating the size-dependence of a mineral's bulk and surface structures, properties, and reactivity are significant. However, ongoing improvements in sophisticated characterization, theory, and data analysis make particles previously described (often inaccurately) as "amorphous" (or even more mysteriously as "X-ray amorphous") amenable to quantitative evaluation. Thermochemical, crystal chemical, and computational chemical approaches must be combined to understand particles with diameters of 1 to 100 nanometers. Determination of the variation of structure, properties, and reaction kinetics with crystal size requires careful synthesis of size- and perhaps morphology-specific samples. These problems demand integration of mineralogical and geochemical approaches. Thus, it is appropriate that the current issue belongs to the era of Reviews in Mineralogy and Geochemistry. Nanoparticles and the Environment targets naturally occurring, finely particulate minerals, many of which form at low temperature. Thus, many of the compounds of interest are those of the "clay fraction". Of course, there have been decades of critical work on the structures, microstructures, and reactivity of finely crystalline or amorphous minerals, especially oxides, oxyhydroxides, hydroxides, and clays. We will not summarize what is known in general about these (for this, the reader is referred to earlier Reviews in Mineralogy volumes). Rather, our goal is to focus on the features of these materials that stem directly or indirectly from their size. The term "nanoparticles" is much more than a re-labeling designed to align "clay" (sized) minerals with nanotechnology and its goals. The term signifies that the substance has physical dimensions that are small enough to ensure that the structure and/or properties and/or reactivity are measurably particle size dependent, yet the particle is large enough to warrant its distinction from aqueous ions, complexes, or clusters. The chemistry, physics, and geology of particles at this intermediate scale are unique, fascinating, and important. Of particular interest are those properties that emerge only after a cluster of atoms has grown beyond some specific size, and disappear once the particle passes out of the "nanoparticle" size regime. There are some compelling examples of size-dependent phenomena. It is well known that the melting temperature of nanocrystals (defined as crystals having properties intermediate between molecular and crystalline) decreases dramatically as the radius of the cluster decreases. Absorption and luminescence spectra for small crystals are determined by the quantum-size effect. Decreasing nanocrystal size correlates with increased total energy of band edge optical transitions. As a consequence, the color of some nanocrystals correlates strongly with their particle size. Current world-wide interest in "nanotechnology" and "nanomaterials" offers a unique opportunity for the Earth sciences. Both the level of visibility and the explosion of synthesis and characterization techniques in physics, chemistry, and materials science provide mineralogy and geochemistry with new opportunities. It is important for us to show that the "nano" field consists of more than micromachines and electronic devices, and that nanoscale phenomena permeate and often control natural processes. Why all the fuss about nanoparticles now? As increasing attention in engineering is focused on making smaller and smaller machines, questions about the fundamental processes that govern nanoparticle form, stability, and reactivity emerge. The geoscience community is well equipped to tackle the basic science concepts associated with these questions. However, we have our own reasons to study size-dependent phenomena. Size-dependent structure and properties of Earth materials impact the geological processes they participate in. This topic has not been fully explored to date. Chapters in this volume contain descriptions of the inorganic and biological processes by which nanoparticles form, information about the distribution of nanoparticles in the atmosphere, aqueous environments, and soils, discussion of the impact of size on nanoparticle structure, thermodynamics, and reaction kinetics, consideration of the nature of the smallest nanoparticles and molecular clusters, pathways for crystal growth and colloid formation, analysis of the size-dependence of phase stability and magnetic properties, and descriptions of methods for the study of nanoparticles. These questions are explored through both theoretical and experimental approaches. Nanoparticles participate in every crystallization reaction and they constitute a major source of surface area in environments where virtually every important reaction takes place on a surface. They are components of enzymes and key biomolecules and their presence may record the early existence of life. How can we not be fascinated by these remarkable, and special, forms of matter?
    Type of Medium: Monograph available for loan
    Pages: XIV, 349 S.
    ISBN: 0-939950-56-1 , 978-0-939950-56-0
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 44
    Language: English
    Note: Chapter 1. Nanoparticles in the environment by Jillian F. Banfield and Hengzhong Zhang, p. 1 - 58 Chapter 2. Nanocrystals as model systems for pressure-induced structural phase transitions by Keren Jacobs and A. Paul Alivisatos, p. 59 - 72 Chapter 3. Thermochemistry of nanomaterials by Alexandra Navrotsky, p. 73 - 104 Chapter 4. Structure, aggregation and characterization of nanoparticles by Glenn A Waychunas, p. 105 - 166 Chapter 5. Aqueous aluminum polynuclear complexes and nanoclusters: A review by William H. Casey, Brian L. Phillips, and Gerhard Furrer, p. 167 - 190 Chapter 6. Computational approaches to nanomineralogy by James R. Rustad, Witold Dzwinel, and David A. Yuen, p. 191 - 216 Chapter 7. Magnetism of Earth, planetary and environmental nanomaterials by Denis G. Rancourt, p. 217 - 292 Chapter 8. Atmospheric nanoparticles by Cort Anastasio and S. T. Martin, p. 293 - 349
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Call number: 12/M 01.0453 ; AWI A3-01-0215 ; PIK N 071-01-0481 ; PIK N 071-0115 ; PIK N 071-02-0351 ; PIK N 071-01-0564
    In: Climate change 2001
    Type of Medium: Monograph available for loan
    Pages: X, 881 S.
    Edition: 1st publ.
    ISBN: 0521014956
    Classification:
    Meteorology and Climatology
    Language: English
    Note: Contents: Foreword. - Preface. - Summary for Policymakers. - Technical Summary. - 1 The Climate System: an Overview. - 2 Observed Climate Variability and Change. - 3 The Carbon Cycle and Atmospheric Carbon Dioxide. - 4 Atmospheric Chemistry and Greenhouse Gases. - 5 Aerosols, their Direct and Indirect Effects. - 6 Radiative Forcing of Climate Change. - 7 Physical Climate Processes and Feedbacks. - 8 Model Evaluation. - 9 Projections of Future Climate Change. - 10 Regional Climate Information - Evaluation and Projections. - 11 Changes in Sea Level. - 12 Detection of Climate Change and Attribution of Causes. - 13 Climate Scenario Development. - 14 Advancing Our Understanding. - Appendix I Glossary. - Appendix II SRES Tables. - Appendix Ill Contributors to the IPCC WGI Third Assessment Report. - Appendix IV Reviewers of the IPCC WGI Third Assessment Report. - Appendix V Acronyms and Abbreviations. - Appendix VI Units. - Appendix VII Some Chemical Symbols used in this Report. - Appendix VIII Index.
    Location: Reading room
    Location: Reading room
    Location: A 18 - must be ordered
    Location: A 18 - must be ordered
    Location: A 18 - must be ordered
    Location: A 18 - must be ordered
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Branch Library: PIK Library
    Branch Library: PIK Library
    Branch Library: PIK Library
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...