ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ddc:523
  • ddc:550.78
  • English  (92)
  • Russian
Collection
Language
  • English  (92)
  • Russian
Years
  • 1
    Publication Date: 2022-03-30
    Description: Chondrules are thought to play a crucial role in planet formation, but the mechanisms leading to their formation are still a matter of unresolved discussion. So far, experiments designed to understand chondrule formation conditions have been carried out only under the influence of terrestrial gravity. In order to introduce more realistic conditions, we developed a chondrule formation experiment, which was carried out at long‐term microgravity aboard the International Space Station. In this experiment, freely levitating forsterite (Mg2SiO4) dust particles were exposed to electric arc discharges, thus simulating chondrule formation via nebular lightning. The arc discharges were able to melt single dust particles completely, which then crystallized with very high cooling rates of 〉105 K h−1. The crystals in the spherules show a crystallographic preferred orientation of the [010] axes perpendicular to the spherule surface, similar to the preferred orientation observed in some natural chondrules. This microstructure is probably the result of crystallization under microgravity conditions. Furthermore, the spherules interacted with the surrounding gas during crystallization. We show that this type of experiment is able to form spherules, which show some similarities with the morphology of chondrules despite very short heating pulses and high cooling rates.
    Description: Carl Zeiss Meditec AG http://dx.doi.org/10.13039/501100002806
    Description: BIOVIA Science Ambassador program
    Description: Bundesministerium für Wirtschaft und Energie http://dx.doi.org/10.13039/501100006360
    Description: Deutsches Zentrum für Luft‐ und Raumfahrt http://dx.doi.org/10.13039/501100002946
    Description: NanoRacks LLC
    Description: DreamUp
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Dr. Rolf M. Schwiete Stiftung
    Keywords: ddc:549 ; ddc:550.78
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-30
    Description: The estimation of crustal structure and thickness is essential in understanding the formation and evolution of terrestrial planets. Initial planetary missions with seismic instrumentation on board face the additional challenge of dealing with seismic activity levels that are only poorly constrained a priori. For example, the lack of plate tectonics on Mars leads to low seismicity, which could, in turn, hinder the application of many terrestrial data analysis techniques. Here we propose using a joint inversion of receiver functions and apparent incidence angles, which contain information on absolute S‐wave velocities of the subsurface. Since receiver function inversions suffer from a velocity depth trade‐off, we in addition exploit a simple relation that defines apparent S‐wave velocity as a function of observed apparent P‐wave incidence angles to constrain the parameter space. We then use the Neighborhood Algorithm for the inversion of a suitable joint objective function. The resulting ensemble of models is then used to derive uncertainty estimates for each model parameter. In preparation for the analysis of data from the InSight mission, we show the application of our proposed method on Mars synthetics and sparse terrestrial data sets from different geological settings using both single and multiple events. We use information‐theoretic statistical tests as model selection criteria and discuss their relevance and implications in a seismological framework.
    Description: Key Points: We propose the joint inversion of receiver functions and apparent S‐wave velocity curves to estimate crustal thickness. Using the Neighborhood Algorithm, we show how a full uncertainty estimate can be computed from an ensemble solution. The method is applied to Martian synthetics and terrestrial data sets comprising single and multiple events.
    Description: IMPRS
    Description: Emeritus group
    Description: DLR German Space Agency
    Description: http://www.orfeus-eu.org/data/eida/
    Description: http://instaseis.ethz.ch/marssynthetics/
    Keywords: ddc:622.1592 ; ddc:523
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-25
    Description: Titan's paleoclimate after the onset of the putative last major methane outgassing event 700 Myr ago is simulated by a global climate model. If the atmosphere was methane‐depleted prior to outgassing, outgassed methane initially causes warming due to increased greenhouse effect. Further outgassing leads to methane snowfall, which in turn cools the troposphere and surface by an ice‐albedo feedback and thereby initiates a lengthy ice age. Formation of ice sheets begins in the polar region, but with increasing methane inventory the entire globe is eventually covered by surface methane frost as thick as 100 m, with local accumulation on elevated terrains. Among various time‐dependent input parameters the methane inventory by far exerts the greatest control over the climate evolution. As Titan's climate transitions from a dry state via a partially ice‐covered state to a globally ice‐covered state, the circulation and precipitation pattern change profoundly and the tropospheric temperature further decreases. Globally ice‐covered snowball Titan is characterized by weak meridional circulation, weak seasonality and widespread snowfall. Frost ablation begins after the end of outgassing due to photochemical destruction of atmospheric methane. It is conceivable that Titan's polar seas resulted from melting of the polar caps within the past 10 Myr and subsequent drainage to the polar basins. Surface methane frost could only melt when the frost retreated to the polar region, which led to global warming by lowering of the surface albedo at low latitudes and increased greenhouse effect.
    Description: Plain Language Summary: Saturn's moon Titan may have experienced long periods of cold climate in the past when the nitrogen atmosphere contained no methane unlike the present atmosphere. We simulated how Titan's climate may have changed when large amounts of methane were outgassed into such a cold atmosphere as indicated by models of Titan's evolution. The atmosphere can hold a certain amount of methane but the vast majority of outgassed methane condenses out as snow and is deposited on the surface. Bright methane snow on the surface keeps the surface cold and thereby prevents efficient greenhouse warming. Initially, surface methane frost is confined to high latitudes, but eventually the entire globe will be ice‐covered under the assumed total amount of outgassed methane. The seasonal and global pattern of atmospheric circulation and snowfall strongly depend on the degree of frost coverage. The surface frost sublimes away long after outgassing has ceased because methane is destroyed in the atmosphere by photochemistry. Eventually, the polar caps melt, leaving behind the observed polar seas.
    Description: Key Points: Massive methane outgassing into Titan's atmosphere should have caused global ice sheets if the atmosphere was previously depleted in methane. Climate of methane snowball Titan is characterized by weak circulation, low temperature, weak seasonality and widespread snowfall. Melting polar caps in geologically recent past may have resulted in polar seas.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:523 ; ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-03-25
    Description: Currently, it is unknown how seismic and aseismic slip influences the recurrence and magnitude of earthquakes. Modern seismic hazard assessment is therefore based on statistics combined with numerical simulations of fault slip and stress transfer. To improve the underlying statistical models we conduct low velocity shear experiments with glass micro‐beads as fault gouge analogue at confining stresses of 5–20 kPa. As a result, we show that characteristic slip events emerge, ranging from fast and large slip to small scale oscillating creep and stable sliding. In particular, we observe small scale slip events that occur immediately before large scale slip events for a specific set of experiments. Similar to natural faults we find a separation of scales by several orders of magnitude for slow events and fast events. Enhanced creep and transient dilatational events pinpoint that the granular analogue is close to failure. From slide‐hold‐slide tests, we find that the rate‐and‐state properties are in the same range as estimates for natural faults and fault rocks. The fault shows velocity weakening characteristics with a reduction of frictional strength between 0.8% and 1.3% per e‐fold increase in sliding velocity. Furthermore, the slip modes that are observed in the normal shear experiments are in good agreement with analytical solutions. Our findings highlight the influence of micromechanical processes on macroscopic fault behavior. The comprehensive data set associated with this study can act as a benchmark for numerical simulations and improve the understanding of observations of natural faults.
    Description: Plain Language Summary: Earthquakes occur when two continental plates slide past each other. The motion is concentrated at the interface of the two plates which is called a fault. In many cases the fault is filled with granular material, called gouge, that supports the pressure between the plates. Therefore, the properties of this gouge determine how fast and how large an earthquake can be. It also has an influence on the time between earthquakes. In our study, we examine a simplified version of a fault gouge in a simple small‐scale model. Instead of rock material we use glass beads and measure how different conditions affect the motion of the model. We find that our model reproduces features of fault gouge because it shows similar behavior. When there is no motion our model fault becomes stronger with a rate equal to fault gouge. Also, the type of strengthening is analogous to fault gouge. During slip, the glass beads become weaker as the slip velocity increases in a similar manner as in natural faults. These results improve the understanding of computer simulations and natural observations.
    Description: Key Points: Slip modes in granular gouge are akin to natural fault slip. Glass beads are a suitable granular analogue for fault gouge and show rate‐and‐state dependent friction. Enhanced creep and small scale events are signals for imminent failure and indicate fault criticality.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: 亥姆霍兹联合会致力, Helmholtz‐Zentrum Potsdam ‐ Deutsches GeoForschungsZentrum GFZ (GFZ) http://dx.doi.org/10.13039/501100010956
    Keywords: ddc:550.78
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-03-24
    Description: The lunar polar regions offer permanently shadowed regions (PSRs) representing the only regions which are cold enough for water ice to accumulate on the surface. The Lunar Exploration Neutron Detector (LEND) aboard the Lunar Reconnaissance Orbiter (LRO) has mapped the polar regions for their hydrogen abundance which possibly resides there in the form of water ice. Neutron suppression regions (NSRs) are regions of excessive hydrogen concentrations and were previously identified using LEND data. At each pole, we applied thermal modeling to three NSRs and one unclassified region to evaluate the correlation between hydrogen concentrations and temperatures. Our thermal model delivers temperature estimates for the surface and for 29 layers in the sub‐surface down to 2 m depth. We compared our temperature maps at each layer to LEND neutron suppression maps to reveal the range of depths at which both maps correlate best. As anticipated, we find the three south polar NSRs which are coincident with PSRs in agreement with respective (near)‐surface temperatures that support the accumulation of water ice. Water ice is suspected to be present in the upper ≈19 cm layer of regolith. The three north polar NSRs however lie in non‐PSR areas and are counter‐intuitive as such that most surfaces reach temperatures that are too high for water ice to exist. However, we find that temperatures are cold enough in the shallow sub‐surface and suggest water ice to be present at depths down to ≈35–65 cm. Additionally we find ideal conditions for ice pumping into the sub‐surface at the north polar NSRs. The reported depths are observable by LEND and can, at least in part, explain the existence and shape of the observed hydrogen signal. Although we can substantiate the anticipated correlation between hydrogen abundance and temperature the converse argument cannot be made.
    Description: Plain Language Summary: The lunar poles have quite unique illumination conditions. For instance, the Sun never shines on some crater floors. As a consequence, the floors of those craters are very cold and dark. Here, water ice can accumulate on the surface and can be preserved for long periods of time. One of the instruments mounted on the Moon‐orbiting satellite Lunar Reconnaissance Orbiter is capable of detecting areas where hydrogen is located, which is assumed to be present in the form of water ice. For instance, the instrument detected several areas at the lunar poles where a lot more water ice is found than at other locations. For these special locations, we calculated the temperatures at the surface and near sub‐surface to see whether they are indeed cold enough for water to freeze. At some of these locations, surface temperatures turn out to be too warm. However, we found that at these warm surfaces where no water ice can exist it can be transported into the sub‐surface and survive there. This mechanism is referred to as ice pumping. In summary, we could show that temperatures at all these special locations are usually cold enough for water ice, either right at the surface or within the first meter of soil.
    Description: Key Points: Some neutron suppression regions (NSRs) form from surface ice deposits while others may form through ice pumping in the sub‐surface. NSRs identified by Lunar Exploration Neutron Detector correlate well with low surface temperatures in permanently shadowed regions (PSRs) and are in agreement with sub‐surface temperatures in non‐PSR.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:523 ; ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-03-24
    Description: Since 2012 August, the Radiation Assessment Detector (RAD) on the Curiosity rover has been characterizing the Martian surface radiation field which is essential in preparation for future crewed Mars missions. RAD observed radiation dose is influenced by variable topographical features as the rover traverses through the terrain. In particular, while Curiosity was parked near a butte in the Murray Buttes area, we find a decrease of the dose rate by (5 ± 1)% as 19% of the sky was obstructed, versus 10% in an average reference period. Combining a zenith‐angle‐dependent radiation model and the rover panoramic visibility map leads to a predicted reduction of the downward dose by ∼12% due to the obstruction, larger than the observed decrease. With the hypothesis that this difference is attributable to albedo radiation coming from the butte, we estimate the (flat‐terrain) albedo radiation to be about 19% of the total surface dose.
    Description: Plain Language Summary: Interplanetary space is filled with energetic particles that can affect the health of astronauts, for example, by causing late‐arising cancer and possibly hereditary diseases. Mars lacks a global magnetic field and its atmosphere is very thin compared to Earth's. Thus its surface is exposed to such space radiation which presents risks to future humans on Mars. Mitigation strategies could include using natural geological structures on Mars, for example, cave skylights and lava tubes and even simple buttes, for protection. The Radiation Assessment Detector (RAD) on the Curiosity rover has observed a decrease of the radiation absorbed dose rate by (5 ± 1)% while Curiosity was parked near a butte. This provides the first direct illustration that Mars's surface features may serve as potential radiation shelters for future missions. However, when exploiting such shielding possibilities, the secondary radiation generated in the terrain of Mars that is, emitted backwards must also be considered. Combining the RAD observation with a radiation transport model, we derive such “reflected” radiation dose on a flat terrain to be about 19% of the total surface dose.
    Description: Key Points: The Martian surface radiation is influenced by topographical features. The surface downward radiation dose of particles traversing through the atmosphere depends on the zenith angle. The surface upward radiation dose is about 19% of the total dose.
    Description: Strategic Priority Program of CAS
    Description: NSFC
    Description: CNSA pre‐research project on civil aerospace technologies
    Description: NASA, Jet Propulsion Laboratory (JPL) http://dx.doi.org/10.13039/100006196
    Description: Deutsches Zentrum für Luft‐und Raumfahrt (DLR) http://dx.doi.org/10.13039/501100002946
    Keywords: ddc:523
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-03-24
    Description: Analysis of Mars Atmosphere and Volatile Evolution (MAVEN)/Supra‐Thermal And Thermal Ion Composition observations in the Martian upper atmosphere, bounded at higher altitudes by the shocked solar wind, shows that the draping of interplanetary magnetic field penetrates down to low altitudes (∼200−250 km) and governs dynamics of the ionosphere. The upper ionospheric plasma is driven into motion flowing around Mars similar to the shocked solar wind in the adjacent magnetosheath. Such a fluid‐like motion is accompanied by ion acceleration caused by the bending of the magnetic field, leading to ion extraction and finally to ion pickup. Extraction of ions and their acceleration produces a recoil effect of the bulk ionosphere in the opposite direction. This provides a strong asymmetry in ion dynamics in two different hemispheres, accompanied by wrapping of the magnetic field lines around Mars and respective reconnection.
    Description: Plain Language Summary: Although the Martian magnetosphere is hybrid and contains components of the induced and intrinsic magnetosphere, is possible to display these components by using the specific coordinate systems. Here we study the properties of the induced magnetosphere using the data obtained by MAVEN spacecraft. The interplanetary magnetic field penetrates deep into the Martian ionosphere draping around Mars and drive to the motion dense ionospheric plasma. Draping features and the induced plasma motions occur different in two hemispheres determined by the direction of the motional electric field in the solar wind. Ion acceleration and extraction is accompanied by a recoil effect that leads to a shift and asymmetry of the ionosphere.
    Description: Key Points: Draping of the interplanetary magnetic field around Mars penetrates deep to the ionosphere enveloping the planet and driving the ionosphere to the bulk motion. Draping and motion of the ionospheric plasma is characterized by asymmetry by the direction of the motional electric field in solar wind. Ion acceleration and extraction from the ionosphere is accompanied by a shift of the bulk ionosphere in the opposite direction.
    Description: National Aeronautics and Space Administration http://dx.doi.org/10.13039/100000104
    Description: DFG http://dx.doi.org/10.13039/501100001659
    Description: Russian Science Foundation http://dx.doi.org/10.13039/501100006769
    Keywords: ddc:523 ; ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-03-28
    Description: In the area of Arcadia Planitia in the Northern hemisphere of Mars, mounds indicating fluid and sediment emissions have been already recognized. Here, we show that through fractal and fracture‐spacing analyses of a large vent population it is possible to infer the mechanical layering of the underlying subsurface. Our work includes the mapping of an entire population of 9,028 vents over an area of 122,000 km2. The analysis of mound distribution at the surface led to the formulation of inferences about the subsurface feeding conduits, and to the identification of three mechanical discontinuities at c. 4–5, c. 14–23, and c. 50–55 km. This evidence matches the mechanical stratigraphy recorded by the InSight NASA mission, and is in agreement with independent previous subsurface global modeling, supporting our conclusions.
    Description: Plain Language Summary: The Martian northern hemisphere displays mounds interpreted to be the result of sediment and water erupting onto the surface. We analyzed the mounds spatial distribution and found patterns that reflects the extent at depth of the subsurface conduits that fed those mounds (array of fractures, i.e., high permeability pathways) allowing the sediment and water upwelling. These conduits thus connect the surface to the source of the erupted materials at depth. These source levels are located at the base of layers characterized by mechanical properties different from the adjacent ones (e.g., loose sediments vs. crystalline bedrock). Such layers are hence referred as mechanical discontinuities. We identified three discontinuities: at c. 4–5, c. 14–23, and c. 50–55 km. Our outcomes match the mechanical stratigraphy recorded by the InSight NASA mission, and is in agreement with independent previous subsurface global modeling, supporting our conclusions.
    Description: Key Points: We present a complete mapping of a large vent population in the Arcadia Planitia region of the northern plains of Mars. We reconstructed the subsurface mechanical layering underlying the vent field using spatial distribution analysis. These analyses proved to be efficient and open the possibility of collecting subsurface rheological data from areas beyond InSight reach.
    Description: H2020 Excellent Science (H2020 Priority Excellent Science) http://dx.doi.org/10.13039/100010662
    Description: DLR Management Board Young Research Group Leader Program
    Description: Executive Board Member for Space Research and Technology
    Keywords: ddc:523
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-03-28
    Description: Cenozoic climate changes have been linked to tectonic activity and variations in atmospheric CO2 concentrations. Here, we present Miocene and Pliocene sensitivity experiments performed with the climate model COSMOS. The experiments contain changes with respect to paleogeography, ocean gateway configuration, and atmospheric CO2 concentrations, as well as a range of vertical mixing coefficients in the ocean. For the mid‐Miocene, we show that the impact of ocean mixing on surface temperature is comparable to the effect of the possible range in reconstructed CO2 concentrations. In combination with stronger vertical mixing, relatively moderate CO2 concentrations of 450 ppmv enable global‐mean surface, deep‐water, and meridional temperature characteristics representative of mid‐Miocene Climatic Optimum (MMCO) reconstructions. The Miocene climate shows a reduced meridional temperature gradient and reduced seasonality. In the case of enhanced mixing, surface and deep ocean temperatures show significant warming of up to 5–10°C and an Arctic temperature anomaly of 〉12°C. In the Pliocene simulations, the impact of vertical mixing and CO2 is less important for the deep ocean, which we interpret as a different sensitivity dependence on the background state and mixed layer dynamics. We find a significant reduction in surface albedo and effective emissivity for either a high level of atmospheric CO2 or increased vertical mixing. Our mixing sensitivity experiments provide a warm deep ocean via ocean heat uptake. We propose that the mixing hypothesis can be tested by reconstructions of the thermocline and seasonal paleoclimate data indicating a lower seasonality relative to today.
    Description: Plain Language Summary: Cenozoic climate changes have been associated with tectonic changes and altered atmospheric CO2 concentrations. Here, we present Miocene and Pliocene computer simulations where we changed paleogeography, ocean gateways, and atmospheric CO2 concentrations as well as vertical mixing in the ocean. We show that the effect of ocean mixing on temperature is comparable to the respective effect of a possible range of CO2 concentrations. In combination with stronger vertical mixing, relatively moderate CO2 concentrations of 450 ppmv allow surface and deep‐water temperatures representative for reconstructions of the climate optimum of the mid‐Miocene. In the Pliocene simulations, the influence of vertical mixing and CO2 is less important than in the Miocene. We provide a possible mechanism of ocean heat absorption, albedo, and emissivity changes including a deeper oceanic mixing layer and a lower seasonality in the Miocene compared to today.
    Description: Key Points: Miocene experiment with standard mixing and atmospheric CO2 of 600 ppm captures large‐scale temperature characteristics of the mid‐Miocene. With enhanced ocean mixing the temperature characteristics and meridional temperature gradient can be reproduced with a CO2 level of 450 ppm. Miocene shows a strong warming at polar latitudes and reduced seasonality, vertical mixing, and CO2 are less important for the Pliocene.
    Description: Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI) http://dx.doi.org/10.13039/501100003207
    Description: Helmholtz Association (亥姆霍兹联合会致力) http://dx.doi.org/10.13039/501100009318
    Description: Helmholtz Climate Initiative RE‐KLIM
    Keywords: ddc:550.78
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-03-29
    Description: Jupiter's tenuous dust ring system is embedded in the planet's inner magnetosphere, and—among other structures—contains a very tenuous protrusion called the Thebe extension. In an attempt to explain the existence of this swath of particles beyond Thebe's orbit, Hamilton and Krüger (2008), https://doi.org/10.1038/nature06886 proposed that the dust particle motion is driven by a shadow resonance caused by variable dust charging on the day and night side of Jupiter. However, the model by Divine and Garrett (1983), https://doi.org/10.1029/ja088ia09p06889 together with recent observations by the Juno spacecraft indicates a warm and rather dense inner magnetosphere of Jupiter which implies that the mechanism of the shadow resonance does not work. Instead, we argue that dust grains ejected from Thebe due to micrometeoroid bombardment become the source of dust in the Thebe extension. We show that large (grain radii of a few micrometers up to multi‐micrometers) charged dust grains having significant initial velocities oscillate in the Thebe extension. Smaller charged grains (with sub‐micrometer radii) ejected from Thebe do not spend much time in the Thebe extension and migrate into the Thebe ring. At the same time, if such grains are ejected from larger dust grains in the Thebe extension due to fragmentation, they continue to oscillate within the Thebe extension for years. We argue that fragmentation of large dust grains in the Thebe extensions could be the main source of sub‐micrometer grains detected in the Thebe extension.
    Description: Key Points: In Jupiter's warm and dense inner magnetosphere dust grains acquire high negative electric charges. Dust particles ejected from Thebe with sufficient speeds contribute to the formation of the Thebe extension. Instead of shadow resonances as suggested earlier an alternative mechanism is suggested for the formation of the Thebe extension.
    Description: Max Planck Institute for Solar System Research
    Keywords: ddc:523
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-03-29
    Description: The long‐ and short‐term drivers and transport mechanisms of lunar rockfalls are currently not well understood, but could provide valuable information about the geologic processes that still shape the surface of the Moon today. Here, we compare the global distribution of rockfalls with relevant geophysical data, such as seismic, topographic, thermal, gravity anomaly, and tidal displacement data sets. Rockfalls appear to predominantly occur (a) on equator‐facing slopes and thus in regions with large thermal amplitudes, (b) on slope angles well above‐average (Δ ∼ 10°), and (c) in regions with above‐average rock abundance. We do not observe a qualitatively or statistically relevant relation between rockfall abundance, monitored Apollo‐era shallow seismic activity, and the distribution of visible tectogenetic features. Informed by our global analysis, we conduct a targeted, in‐depth study of 687 rockfall boulders and trajectories in 13 sites across the Moon, including 7 craters, 2 volcanic vents, 2 tectonic structures, and 2 unclassified geomorphic regions. We identify four different source region types, where the type appears to control the occurrence of rockfalls. The source region type in turn is controlled by surface age rather than geomorphic context. We find that rockfall trajectories are mainly controlled by the trigger energy and the geometry of the slope. Our results suggest that erratic small‐scale impacts (mainly in old, Imbrian‐Nectarian, shallow terranes), aided by solar‐induced thermal fatigue of fractured bedrock (mainly in young, Copernican‐Eratosthenian steep terranes), were the dominant, global‐scale long‐ and short‐term drivers of rockfalls in the Moon's recent geologic past.
    Description: Plain Language Summary: The processes that drive rockfall occurrence are largely unknown, but could provide valuable information about the past and current evolution of the Moon's surface and interior. We compare the global distribution of rockfalls with a series of maps, such as seismic, topographic, thermal, and gravity anomaly maps and observe that rockfalls mainly occur (a) on equator‐facing slopes and thus in regions with large temperature differences, (b) on slope angles above‐average, and (c) in regions with rocky surfaces. We do not observe a relation between rockfall abundance, Apollo‐era seismic activity, and the distribution of visible tectonic features. Informed by our global‐scale analysis we study 687 rockfalls in 13 sites of interest in greater detail, including volcanic‐, tectonic‐, and impact‐related geomorphic regions. We observe that the source region type appears to control rockfall occurrence, which in turn is controlled by the surface age. We find that the lunar rockfall transport process appears to be mainly controlled by the driver energy and the steepness of the slope. Our results suggest that small‐scale impacts (mainly in old, shallow regions) and solar‐driven thermal breakdown of fractured bedrock (mainly in young, steep regions) were the main, global‐scale drivers of rockfalls in the Moon's recent geologic past.
    Description: Key Points: We study the drivers and transport mechanisms of lunar rockfalls on a local and global scale. The two dominant, global‐scale rockfall drivers appear to be: (a) impacts and (b) solar‐driven thermal fatigue. The rockfall driver depends on the source region age and type rather than the geomorphic context.
    Description: Max Planck Institute for Solar System Research
    Description: ETH Zurich
    Description: Engineering Geology group, Department of Earth Sciences, International Max Planck Research School
    Description: http://wms.lroc.asu.edu/lroc/search
    Keywords: ddc:523
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-03-29
    Description: Gorgonum Chaos is part of the Eridania paleolake in Terra Sirenum and displays a number of prominent light‐toned morphological features that bear a record of the regional climatic conditions throughout most of Martian history. Based on an intergrated analysis of orbital data, we mapped a 1,500 km2 area in the southeast of Gorgonum Chaos. Morphologic, spectroscopic, and stratigraphic analyses were used to determine age and composition of the main geological units in the area. We identified four major geological units with decreasing content of hydrated minerals from the oldest to the youngest units, which were completely free of hydrated minerals. In the study area, phyllosilicate‐rich Noachian units compose the majority of the basin floor. Deposits enriched with evaporites were formed around the Noachian/Hesperian transition and erosion created prominent inverted morphologies. Loess‐like material without significant amounts of hydrated minerals was deposited until the late Hesperian. The youngest unit is an Amazonian layer free of hydrated minerals that originated from volcanic activities. This succession of minerals reflects the transition from more humid climatic conditions with the ability to sustain liquid water on the planet's surface during the Noachian to the hyper‐arid Amazonian environment we observe currently on Mars.
    Description: Plain Language Summary: Gorgonum Chaos is part of the Eridania basin, which is a former lake system located at the southern hemisphere of Mars. The landforms observed in this area and their variable brightness suggest dramatically changing climatic conditions during the history of Mars. In an area of 1,500 km2 in size, we analyzed different landforms, their spectral characteristics, and their temporal sequences to determine the age and composition of the geological units. We found four major geologic units whose content of hydrated minerals decreased dramatically from oldest to youngest. The oldest unit with a high content of clay minerals is about 3.7 billion years old and formed the former lake bottom. This is followed by a younger unit with a mineral composition that indicates desiccation of the lake and erosion by wind. These, in turn, were largely covered by materials deposited by wind, which show very little evidence of liquid water. The last and youngest unit is volcanic in origin and completely devoid of minerals indicative of water. This succession of minerals reflects the evolution of the Martian surface, which was capable to sustain liquid water in the early stages of the planet and lost this ability during a drastic climate change.
    Description: Key Points: We produced a geological map of southeastern Gorgonum Chaos. We find a succession from phyllosilicates to olivine in aeolian deposits. The presence of water decreases over time.
    Keywords: ddc:523
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2023-09-12
    Description: Poloidal–toroidal magnetic field decomposition is a useful application of the Mie representation and the decomposition method enables us to determine the current density observationally and unambiguously in the local region of magnetic field measurement. The application and the limits of the decomposition method are tested against the Mercury magnetic field simulation in view of BepiColombo’s arrival at Mercury in 2025. The simulated magnetic field data are evaluated along the planned Mercury Planetary Orbiter (MPO) trajectories and the current system that is crossed by the spacecraft is extracted from the magnetic field measurements. Afterwards, the resulting currents are classified in terms of the established current system in the vicinity of Mercury. Graphical Abstract
    Description: österreichische forschungsförderungsgesellschaft http://dx.doi.org/10.13039/501100004955
    Description: deutsches ministerium für wirtschaft und energie
    Description: deutsche forschungs gesellschaft
    Description: Technische Universität Braunschweig (1042)
    Keywords: ddc:523 ; Poloidal–toroidal decomposition ; Magnetospheric current systems ; Capon’s method
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2023-09-13
    Description: The Martian magnetosphere contains elements of induced and intrinsic origin. To display them one must use different coordinate systems. Although the solar‐electric coordinate system (Mars Solar Electric [MSE]) adequately describes the main features of the induced magnetosphere, it removes/suppresses aspects caused by the crustal magnetic sources while rotating the spacecraft position to the MSE‐coordinate system and averaging over many orbits. On the other hand, to observe effects of the crustal field one should use the solar orbital coordinates (Mars Solar Orbital [MSO]). To find a compromise and keeping in mind that the most probable value of the clock angle of the interplanetary magnetic field (IMF) on the Mars orbit is ∼90° we can consider separately cases with positive and negative B〈sub〉y〈/sub〉 components of the IMF. It is shown that dynamics of ion fluxes in the distant regions of the magnetosphere is mainly controlled by induced features. However, reconnection of the draping IMF with crustal field leads to a twisting of the classical draping configuration. Despite of the very intricate local geometry of the crustal field, the low‐order harmonics of the magnetic field and mainly the dipole component determine the reconnection sites, at least, statistically for many Mars rotations. For different signs of the By component of the IMF these sites occur either in the +Y‐MSO or −Y‐MSO hemispheres. As a result, statistically the magnetosphere of Mars looks like a hybrid magnetosphere formed during the solar wind interaction with the obstacle which simultaneously contains an extended ionosphere and a weak dipole magnetic field.
    Description: Key Points: The Martian magnetosphere contains elements of induced and intrinsic origin. Dynamics of ion fluxes in the magnetic tail, is mainly controlled by induced features. Reconnection of the interplanetary magnetic field with low‐order harmonics of the crustal field leads to twisting of the tail and formation of hybrid magnetosphere.
    Description: DFG
    Description: https://pds-ppi.igpp.ucla.edu/mission/MAVEN
    Keywords: ddc:523 ; Martian magnetosphere
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2023-09-14
    Description: Discrete randomly distributed fibers are commonly used to improve the engineering characteristics of the soil and thus soil properties such as shear strength, compressibility, density, and hydraulic conductivity. Most studies have so far focused on describing the behavior of soils containing randomly distributed fibers under dried or saturated conditions. However, the water table may seasonally fluctuate, thus generating unsaturated soil conditions. Therefore, a better understanding of the hydro-mechanical properties of unsaturated improved soils is of high necessity. In this research, the shear strength parameters of fine-grained soils were evaluated using the biaxial device available at Ruhr Universität Bochum. The applied device was modified to test unsaturated fine-grained soils with various degrees of saturation using axis translation and vapor equilibrium techniques. The experiments were conducted on fine soils containing 0, 0.5, and 1% fiber contents under a wide range of matric suctions. The ductile behavior was more noticeable in samples with lower suctions and higher straw contents. Furthermore, the shear strength of both unreinforced and reinforced fine-grained soils considerably increased by an increase in the suction. Finally, shear band inclination increased by the suction while decreasing by straw content.
    Description: Ruhr-Universität Bochum (1007)
    Keywords: ddc:550.78 ; Plane strain condition ; Shear strength ; Soil reinforcement ; Suction ; SWCC
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2023-11-27
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉For the first time, we measured the ellipticity of direct Rayleigh waves at intermediate periods (15–35 s) on Mars using the recordings of three large seismic Martian events, including S1222a, the largest event recorded by the InSight mission. These measurements, together with P‐to‐s receiver functions and P‐wave reflection times, were utilized for performing a joint inversion of the local crustal structure at the InSight landing site. Our inversion results are compatible with previously reported intra‐crustal discontinuities around 10 and 20 km depths, whereas the preferred models show a strong discontinuity at ∼37 km, which is interpreted as the crust‐mantle interface. Additionally, we support the presence of a shallow low‐velocity layer of 2–3 km thickness. Compared to nearby regions, lower seismic wave velocities are derived for the crust, suggesting a higher porosity or alteration of the whole local crust.〈/p〉
    Description: Plain Language Summary:: As never before on Mars, we measured the characteristics of seismic waves traveling along the Martian surface that carry information about the crustal structure at the InSight site. We combined these measurements with two other local‐scale independent observations to derive a consolidated model for the crust underneath the InSight lander. Our results suggest a Martian crust with 4 layers and, particularly, one thin layer of about 2 km thickness close to the surface. The crust‐mantle discontinuity was found at ∼37 km depth, where the sharpest change in seismic wave velocity is observed. Overall, the seismic wave velocities of the local Martian crust at the InSight site are lower than those derived in other regions on Mars, which suggests a higher porosity or local alteration.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Rayleigh waves ellipticity was measured between periods 15–35 s at the InSight landing site using large seismic events, including S1222a〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉A 4‐layer crust, including a shallow low‐velocity layer, is required to explain the ellipticity, receiver functions and P‐wave lag times〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Low crustal velocities are derived for the InSight site, which may be due to high porosity or heavy alteration at local scale〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: National Aeronautics and Space Administration
    Description: Agence Nationale de la Recherche http://dx.doi.org/10.13039/501100001665
    Description: https://doi.org/10.12686/a19
    Description: https://doi.org/10.18715/SEIS.INSIGHT.XB_2016
    Description: https://doi.org/10.7914/SN/BQ
    Description: https://www.globalcmt.org/CMTsearch.html
    Description: https://github.com/scarrascom/Rellipy
    Description: https://doi.org/10.5281/zenodo.8051337
    Description: http://www.geopsy.org/
    Keywords: ddc:523 ; martian crust ; marsquakes ; Rayleigh waves ellipticity ; receiver functions
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2023-11-15
    Description: The hydromechanical properties of single self-propping fractures under stress are of fundamental interest for fractured-rock hydrology and a large number of geotechnical applications. This experimental study investigates fracture closure and hydraulic aperture changes of displaced tensile fractures, aligned tensile fractures, and saw-cut fractures for two types of sandstone (i.e., Flechtinger and Fontainebleau) with contrasting mechanical properties, cycling confining pressure between 5 and 30 MPa. Emphasis is placed on how surface roughness, fracture wall offset, and the mechanical properties of the contact asperities affect the self-propping potential of these fractures under normal stress. A relative fracture wall displacement can significantly increase fracture aperture and hydraulic conductivity, but the degree of increase strongly depends on the fracture surface roughness. For smooth fractures, surface roughness remains scale-independent as long as the fracture area is larger than a roll-off wavelength and thus any further displacement does not affect fracture aperture. For rough tensile fractures, these are self-affine over a larger scale so that an incremental fracture wall offset likely leads to an increase in fracture aperture. X-ray microtomography of the fractures indicates that the contact area ratio of the tensile fractures after the confining pressure cycle inversely correlates with the fracture wall offset yielding values in the range of about 3–25%, depending, first, on the respective surface roughness and, second, on the strength of the asperities in contact. Moreover, the contact asperities mainly occur isolated and tend to be preferentially oriented in the direction perpendicular to the fracture wall displacement which, in turn, may induce flow anisotropy. This, overall, implies that relatively harder sedimentary rocks have a higher self-propping potential for sustainable fluid flow through fractures in comparison to relatively soft rocks when specific conditions regarding surface roughness and fracture wall offset are met.
    Description: Bundesministerium für Wirtschaft und Energie (DE)
    Description: China Scholarship Council http://dx.doi.org/10.13039/501100004543
    Description: Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum - GFZ (4217)
    Keywords: ddc:550.78 ; Self-propping fracture ; Mechanical aperture ; Hydraulic aperture ; Normal stress ; Fracture wall offset ; Surface roughness
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2023-11-15
    Description: Using an innovative experimental set-up (Punch-Through Shear test), we initiated a shear zone (microfault) in Flechtingen sandstone and Odenwald granite under in situ reservoir conditions while monitoring permeability and fracture dilation evolution. The shear zone, which has a cylindrical geometry, is produced by a self-designed piston assembly that punches down the inner part of the sample. Permeability and fracture dilation were measured for the entire duration of the experiment. After the shear zone generation, the imposed shear displacement was increased to 1.2 mm and pore pressure changes of ±5 or ±10 MPa were applied cyclically to simulate injection and production scenarios. Thin sections and image analysis tools were used to identify microstructural features of the shear zone. The geometry of the shear zone is shown to follow a self-affine scaling invariance, similar to the fracture surface roughness. The permeability evolution related to the onset of the fracture zone is different for both rocks: almost no enhancement for the Flechtingen sandstone and an increase of more than 2 orders of magnitude for the Odenwald granite. Further shear displacement resulted in a slight increase in permeability. A fault compaction is observed after shear relaxation which is associated to a permeability decrease by a factor more than 3. Permeability changes during pressure cycling are reversible when varying the effective pressure. The difference in permeability enhancement between the sandstone and the granite is related to the larger width of the shear zones.
    Description: ReSalt Project
    Description: H2020 European Research Council http://dx.doi.org/10.13039/100010663
    Description: Projekt DEAL
    Keywords: ddc:550.78 ; Microfault ; Fracture permeability ; Microstructure ; Fault architecture ; Roughness ; Sandstone ; Granite
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2023-11-15
    Description: In this work, we aim to verify the predictions of the numerical simulators, which are used for designing field-scale hydraulic stimulation experiments. Although a strong theoretical understanding of this process has been gained over the past few decades, numerical predictions of fracture propagation in low-permeability rocks still remains a challenge. Against this background, we performed controlled laboratory-scale hydraulic fracturing experiments in granite samples, which not only provides high-quality experimental data but also a well-characterized experimental set-up. Using the experimental pressure responses and the final fracture sizes as benchmark, we compared the numerical predictions of two coupled hydraulic fracturing simulators—CSMP and GEOS. Both the simulators reproduced the experimental pressure behavior by implementing the physics of Linear Elastic Fracture Mechanics (LEFM) and lubrication theory within a reasonable degree of accuracy. The simulation results indicate that even in the very low-porosity (1–2 %) and low-permeability (10〈sup〉−18〈/sup〉 m〈sup〉2〈/sup〉 − 10〈sup〉−19〈/sup〉 m〈sup〉2〈/sup〉) crystalline rocks, which are usually the target of EGS, fluid-loss into the matrix and unsaturated flow impacts the formation breakdown pressure and the post-breakdown pressure trends. Therefore, underestimation of such parameters in numerical modeling can lead to significant underestimation of breakdown pressure. The simulation results also indicate the importance of implementing wellbore solvers for considering the effect of system compressibility and pressure drop due to friction in the injection line. The varying injection rate as a result of decompression at the instant of fracture initiation affects the fracture size, while the entry friction at the connection between the well and the initial notch may cause an increase in the measured breakdown pressure.
    Description: European Union's Horizon 2020 Research and Innovation programme
    Description: Commonwealth Scientific and Industrial Research Organisation http://dx.doi.org/10.13039/501100000943
    Description: RWTH Aachen (3131)
    Description: http://doi.org/10.5281/zenodo.3710746
    Keywords: ddc:550.78 ; Laboratory-experiments ; Hydraulic fracturing ; Simulation ; Leak-off ; Fracture toughness ; System compressibility ; Fracture radius ; Acoustic emission
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2023-11-15
    Description: This is a repond to the comments raised in Crisci´s et al. paper “Discussion on “Experimental Deformation of Opalinus Clay at Elevated Temperature and Pressure Conditions ¬ Mechanical Properties and the Influence of Rock Fabric” (2021). We are pleased to use the opportunity to clarify issues related to testing procedures and interpretation in more detail.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Helmholtz-Gemeinschaft http://dx.doi.org/10.13039/501100001656
    Description: Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum - GFZ (4217)
    Keywords: ddc:550.78 ; Opalinus Clay ; Testing procedure ; Pore pressure generation ; Strain rate ; Drying-induced micro cracks
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2023-11-15
    Description: Silicate liquid immiscibility leading to formation of mixtures of distinct iron-rich and silica-rich liquids is common in basaltic and andesitic magmas at advanced stages of magma evolution. Experimental modeling of the immiscibility has been hampered by kinetic problems and attainment of chemical equilibrium between immiscible liquids in some experimental studies has been questioned. On the basis of symmetric regular solutions model and regression analysis of experimental data on compositions of immiscible liquid pairs, we show that liquid–liquid distribution of network-modifying elements K and Fe is linked to the distribution of network-forming oxides SiO2, Al2O3 and P2O5. We use the responding equation for testing chemical equilibrium in experiments not included in the regression analysis and compositions of natural immiscible melts found as glasses in volcanic rocks. Departures from equilibrium that the test revealed in crystal-rich multiphase experimental products and in natural volcanic rocks imply kinetic competition between liquid–liquid and crystal–liquid element partitioning. Immiscible liquid droplets in volcanic rocks appear to evolve along a metastable trend due to rapid crystallization. Immiscible liquids may be closer to chemical equilibrium in large intrusions where cooling rates are lower and crystals may be spatially separated from liquids.
    Description: DeutscheForschungsGemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Russian Science Foundation http://dx.doi.org/10.13039/501100006769
    Description: Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum - GFZ (4217)
    Keywords: ddc:550.78 ; Experimental petrology ; Igneous rocks ; Silicate melts ; Liquid–liquid element distribution ; Symmetric regular solutions
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2023-11-15
    Description: The mechanical behavior of the sandy facies of Opalinus Clay (OPA) was investigated in 42 triaxial tests performed on dry samples at unconsolidated, undrained conditions at confining pressures (pc) of 50–100 MPa, temperatures (T) between 25 and 200 °C and strain rates (ε˙) of 1 × 10〈sup〉–3〈/sup〉–5 × 10〈sup〉–6〈/sup〉 s〈sup〉−1〈/sup〉. Using a Paterson-type deformation apparatus, samples oriented at 0°, 45° and 90° to bedding were deformed up to about 15% axial strain. Additionally, the influence of water content, drainage condition and pre-consolidation was investigated at fixed p〈sub〉c〈/sub〉–T conditions, using dry and re-saturated samples. Deformed samples display brittle to semi-brittle deformation behavior, characterized by cataclastic flow in quartz-rich sandy layers and granular flow in phyllosilicate-rich layers. Samples loaded parallel to bedding are less compliant compared to the other loading directions. With the exception of samples deformed 45° and 90° to bedding at p〈sub〉c〈/sub〉 = 100 MPa, strain is localized in discrete shear zones. Compressive strength (σ〈sub〉max〈/sub〉) increases with increasing p〈sub〉c〈/sub〉, resulting in an internal friction coefficient of ≈ 0.31 for samples deformed at 45° and 90° to bedding, and ≈ 0.44 for samples deformed parallel to bedding. In contrast, pre-consolidation, drainage condition, T and ε˙ do not significantly affect deformation behavior of dried samples. However, σ〈sub〉max〈/sub〉 and Young’s modulus (E) decrease substantially with increasing water saturation. Compared to the clay-rich shaly facies of OPA, sandy facies specimens display higher strength σmax and Young’s modulus E at similar deformation conditions. Strength and Young’s modulus of samples deformed 90° and 45° to bedding are close to the iso-stress Reuss bound, suggesting a strong influence of weak clay-rich layers on the deformation behavior.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Helmholtz-Gemeinschaft http://dx.doi.org/10.13039/501100001656
    Description: Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum - GFZ (4217)
    Keywords: ddc:550.78 ; Clay rock ; Sandy facies of Opalinus Clay ; Triaxial deformation experiments ; Microstructural deformation mechanisms ; Pressure-, temperature- and strain rate-dependent mechanical behaviour ; Anisotropy
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2023-11-16
    Description: This research work presents an experimental and numerical study of the coupled thermo-hydro-mechanical (THM) processes that occur during soil freezing. With focusing on the artificial ground freezing (AGF) technology, a new testing device is built, which considers a variety of AGF-related boundary conditions and different freezing directions. In the conducted experiments, a distinction is made between two thermal states: (1) The thermal transient state, which is associated with ice penetration, small deformations, and insignificant water suction. (2) The thermal (quasi-) steady state, which has a much longer duration and is associated with significant ice lens formation due to water suction. In the numerical modeling, a special focus is laid on the processes that occur during the thermal transient state. Besides, a demonstration of the micro-cryo-suction mechanism and its realization in the continuum model through a phenomenological retention-curve-like formulation is presented. This allows modeling the ice lens formation and the stiffness degradation observed in the experiments. Assuming a fully saturated soil as a biphasic porous material, a phase-change THM approach is applied in the numerical modeling. The governing equations are based on the continuum mechanical theory of porous media (TPM) extended by the phase-field modeling (PFM) approach. The model proceeds from a small-strain assumption, whereas the pore fluid can be found in liquid water or solid ice state with a unified kinematics treatment of both states. Comparisons with the experimental data demonstrate the ability and usefulness of the considered model in describing the freezing of saturated soils.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: RWTH Aachen (3131)
    Keywords: ddc:550.78 ; Experimental study ; Frost heave ; Ice lens formation ; Phase-field modeling ; Soil freezing ; Thermo-hydro-mechanical coupling
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2023-10-26
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Planetary impacts have shaped the surfaces and interiors of planets. They were particularly critical in the last stage of planetary accretion, as they have eventually formed terrestrial planets. During these large supersonic collisions, shock waves melted the impactor and the target, and formed silicate magma oceans. Because the propagation of shock waves and the melting is faster than the excavation of an impact crater, the cratering stage can be considered as a purely hydrodynamic process. Here, we use both laboratory impact experiments in water and numerical simulations to investigate the crater dimensions resulting from the impact of a liquid impactor onto a liquid target. We show that our numerical models reproduce the laboratory experiments at subsonic impact velocities. We then explore the effect of both the Froude number, which is the ratio of the impactor kinetic energy to gravity, and the Mach number, which is the ratio of the impact speed to the sound speed. We vary these two parameters independently in impact simulations, going from subsonic to supersonic conditions. We obtain a new scaling law for the crater dimensions that describes the transition from subsonic to supersonic impacts. Our results indicate that the transition between these two regimes results from a change in the partitioning of the impactor kinetic energy into potential energy in the crater and internal energy. Finally, our scaling suggests that, in the limit of large Mach numbers, the crater depth depends only on the sound velocity and gravity, and is independent of the impact speed.〈/p〉
    Description: Plain Language Summary: Planetary formation involved a large number of very energetic collisions. Such impacts generated shock waves which led to widespread melting and the formation of magma oceans. Understanding the dynamics of impacts into magma oceans is of great importance as these collisions set the initial temperature and composition of terrestrial planets and satellites. Laboratory experiments and numerical simulations have been used to investigate large impacts. However, each approach has pros and cons. Liquid impact experiments can produce the small scales responsible for the mixing between the impactor and the target, but they fail to reproduce shock waves and supersonic speeds. In contrast, current numerical simulations reach supersonic conditions but produce a limited amount of turbulence and mixing. In this study, we bridge the gap between these two methods and improve our understanding of the effect of the impact velocity on the cratering process. Using the code iSALE, we numerically reproduce water impact experiments at low subsonic velocities. We then explore supersonic conditions in impact simulations. We obtain a new scaling law predicting the crater depth in more realistic impact conditions and show that it is limited only by the sound speed for large impact velocities.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉The shock physics code iSALE is successfully benchmarked against subsonic water impact experiments〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉A scaling law is proposed for the crater depth as a function of the Mach and Froude numbers which are varied as independent parameters〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉In the limit of high Mach numbers, our scaling suggests that the maximum crater depth is controlled by the sound velocity and gravity, but not by the impact speed〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: DFG
    Description: EPSRC
    Description: National Aeronautics and Space Administration
    Description: NSF Physics Frontier Center
    Description: Programme National de Planétologie
    Description: CNES
    Description: Alfred P. Sloan Foundation
    Description: https://isale-code.github.io/
    Keywords: ddc:523 ; impact cratering ; pi‐scaling ; magma ocean ; scaling laws ; fluid dynamics
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2023-12-16
    Description: We report on observations made by the Mars Atmosphere and Volatile EvolutioN spacecraft at Mars, in the region of the ion plume. We observe that in some cases, when the number density of oxygen ions is comparable to the density of the solar wind protons interaction between both plasmas leads to formation in the magnetosheath of mini induced magnetospheres possessing all typical features of induced magnetospheres typically observed at Mars or Venus: a pileup of the magnetic field at the head of the ion cloud, magnetospheric cavity, partially void of solar wind protons, draping of the interplanetary magnetic field around the mini obstacle, formation of a magnetic tail with a current sheet, in which protons are accelerated by the magnetic field tensions. These new observations may shed a light on the mechanism of formation of induced magnetospheres.
    Description: Plain Language Summary: There is a class of the induced planetary magnetospheres when the absence of intrinsic magnetic field allows a direct interaction of solar wind with planetary atmospheres/ionospheres. We have shown the existence of mini‐induced magnetospheres at Mars. When the density of the extracted from the ionosphere oxygen ions becomes comparable with the proton density in solar wind mini‐induced magnetospheres with all typical features of the planetary induced magnetospheres arise.
    Description: Key Points: Oxygen ions extracted from the Martian ionosphere interact with shocked solar wind in the magnetosheath. When the ion densities of both plasmas become comparable the mini induced magnetospheres are built. These Magnetospheres possess all typical features of the classical induced magnetospheres.
    Description: NASA
    Description: DFG
    Description: https://pds-ppi.igpp.ucla.edu/mission/MAVEN/MAVEN/MAG
    Description: https://pds-ppi.igpp.ucla.edu/mission/MAVEN/MAVEN/STATIC
    Keywords: ddc:523 ; Mars ; solar wind ; induced magnetosphere ; ionosphere ; magnetic barrier ; magnetic tail
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2023-12-15
    Description: The lithosphere of the Moon has been deformed by tectonic processes for at least 4 billion years, resulting in a variety of tectonic surface features. Extensional large lunar graben formed during an early phase of net thermal expansion before 3.6 Ga. With the emplacement of mare basalts at ∼3.9–4.0 Ga, faulting and folding of the mare basalts initiated, and wrinkle ridges formed. Lunar wrinkle ridges exclusively occur within the lunar Maria and are thought to be the result of superisostatic loading by dense mare basalts. Since 3.6 Ga, the Moon is in a thermal state of net contraction, which led to the global formation of small lobate thrust faults called lobate scarps. Hence, lunar tectonism recorded changes in the global and regional stress fields and is therefore an important archive for the thermal evolution of the Moon. Here, we mapped tectonic features in the non‐mascon basin Mare Tranquillitatis and classified these features according to their respective erosional states. This classification aims to provide new insights into the timing of lunar tectonism and the associated stress fields. We found a wide time range of tectonic activity, ranging from ancient to recent (3.8 Ga to 〈50 Ma). Early wrinkle ridge formation seems to be closely related to subsidence and flexure. For the recent and ongoing growth of wrinkle ridges and lobate scarps, global contraction with a combination of recession stresses and diurnal tidal stresses, as well as with a combination of South Pole‐Aitken ejecta loading and true polar wander are likely.
    Description: Plain Language Summary: The lithosphere of the Moon has been deformed by tectonic processes for at least 4 billion years, resulting in a variety of tectonic surface features. Simple compressional asymmetric landforms are called lobate scarps and complex compressional features, which form as a result of the combination of faulting and folding, are known as wrinkle ridges. Lunar wrinkle ridges only occur within the lunar Maria. It has been argued that their formation is linked to the subsidence of the dense mare basalts, which would have happened in the early history of the Moon. We mapped all of these features within a dark lunar region called Mare Tranquillitatis and then studied their morphology on high‐resolution images. Based on their morphology, we found a wide time range of tectonic activity, ranging from ancient to recent. Large wrinkle ridges seem to be ancient and influenced by subsidence. Smaller wrinkle ridges and lobate scarps show signs of recent activity. They likely formed recently within the last hundred million years because of the Moon's current state of global compression.
    Description: Key Points: Early compressional tectonism in Tranquillitatis, in the form of wrinkle ridges, is presumably related to subsidence and basin loading. Later tectonism could reflect the evolution from a basin‐localized to a global stress field and the continued growth of ancient faults. Recent wrinkle ridge and lobate scarp formation in Tranquillitatis occurred in the last 50 Ma and is influenced by a global stress field.
    Description: https://doi.org/10.5281/zenodo.7551409
    Description: https://darts.isas.jaxa.jp/planet/pdap/selene/
    Description: https://doi.org/10.17189/1520341
    Description: http://imbrium.mit.edu/DATA/SLDEM2015
    Description: https://doi.org/10.17189/1519529
    Description: https://quickmap.lroc.asu.edu/
    Description: http://www.yongtechnology.com/download/georose
    Keywords: ddc:523 ; Moon ; tectonics ; wrinkle ridges ; lobate scarps ; lithosphere ; tectonic mapping
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2023-12-14
    Description: Laser‐induced breakdown spectroscopy, as utilized by the ChemCam instrument onboard the Curiosity rover, detected enhanced abundances of the element copper. Since landing in Gale crater (6 August 2012), 10 enhancements in copper abundance were observed during 3007 Martian days (sols) of rover operations and 24 km of driving (as of 20 January 2021). The most prominent ones were found in the Kimberley area on the crater floor (Aeolis Palus) and in Glen Torridon (GT) on the lower flanks of Aeolis Mons (Mt. Sharp). Enhancements in copper record the former existence of modestly acidic and oxidizing fluids, which were more oxidizing in Kimberley than in GT. Of the two main types of bedrock in the lowest part of GT, Mg‐rich “coherent” and K‐rich “rubbly” (named based on their outcrop expression), copper was detected only in coherent, not in rubbly bedrock. The difference between these two types of bedrock may be due to difference in provenance. Alternatively, based on a recently developed lacustrine‐groundwater mixing model, we suggest that rubbly bedrock was altered by modestly acidic, shallow‐subsurface lake water that leached out both copper and manganese, while coherent bedrock was affected by dominantly alkaline fluids which would be consistent with its mineralogical composition (including siderite) as returned by the CheMin instrument onboard the rover. Higher up in GT, ChemCam data indicated significant gradients in the copper concentration in coherent bedrock on a local scale of only a few meters, which suggests a different alteration style and possibly different types of diagenetic fluids.
    Description: Plain Language Summary: Gale crater, Mars, about 152‐km in diameter and 3.6 Ga in age, has a central mound that is partly of sedimentary origin. To date (July 2022), the NASA rover Curiosity has been exploring the crater floor and the lower‐most 600 m (in elevation) of sediments of that mound. ChemCam, an instrument mounted on top of the remote‐sensing mast utilizing Laser‐Induced Breakdown Spectroscopy, has been measuring chemical composition and specifically copper abundances along the rover traverse. We identified 10 areas of copper enhancement along Curiosity's traverse. In the Kimberley formation on the crater floor, copper was identified in a manganese‐rich sandstone. Later on, some 350 m above Kimberley, high copper abundances were detected in magnesium‐rich mudstone and in iron‐rich sandstone in the Jura and Knockfarril Hill member, respectively. Following earlier work about copper in Gale crater (Payré et al., 2019, https://doi.org/10.1016/j.icarus.2018.12.015), we postulate a copper‐rich source region north of Gale crater and suggest that copper‐rich detrital material delivered to these areas in Gale crater. Taking into account the chemical and mineralogical composition of these types of bedrock, we conclude that copper was mobilized by later acidic and oxidizing fluids.
    Description: Key Points: High copper abundances (200–400 ppm) are found in specific areas along the rover traverse. In the Jura member in Glen Torridon (GT), copper is detected only in coherent bedrock, not in rubbly bedrock. In the Knockfarril Hill member in GT, there is evidence for the redistribution of copper and iron by acidic, oxidizing fluids.
    Description: DFG
    Description: NASA Mars Exploration Program
    Description: CNES
    Description: CNRS
    Keywords: ddc:523 ; Mars ; copper ; diagenesis ; Gale crater ; ChemCam ; Curiosity rover
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2023-12-19
    Description: The paper presents an experimental study on the effect of plastic fines content on the undrained behavior and liquefaction susceptibility of sand–fines mixtures under monotonic loading. The results of undrained monotonic triaxial compression tests conducted on mixtures of Hostun sand with varying amount (0–20%) and type (kaolin and calcigel bentonite) of plastic fines are presented. The specimens were prepared with different initial densities using the moist tamping method and consolidated at two different isotropic effective stresses. The results demonstrate that for both types of plastic fines, an increase in the fines content leads to a more contractive response and lower values of mobilized deviatoric stress. Despite similar relative density and fines content, the sand–kaolin mixtures showed a more contractive behavior than the sand–calcigel specimens. The steady-state lines (SSLs) in e–p´ space generally move downwards with increasing clay content. While the slopes of the SSLs for the clean Hostun sand and the mixtures with 10 and 20% kaolin are quite similar, the SSL lines for the specimens containing 10% or 20% calcigel run steeper or flatter, respectively. The inclination of the SSL in the q–p′ plane was found independent of clay type and content. The sand–kaolin mixtures were observed to be more susceptible to instability and flow liquefaction than the sand–calcigel mixtures.
    Keywords: ddc:550.78 ; Instability line ; Plastic fines content ; Sand–fines mixtures ; Steady-state line ; Undrained monotonic triaxial tests
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2024-01-12
    Description: We investigate the small‐scale magnetic field fluctuations and their associated turbulent nature in the Io flux tube (IFT) connected to Io's footprint tail (IFPT). Our study is based on the recent magnetic field measurements by the Juno spacecraft during the PJ12 Juno flyby. Here, we are interested in understanding what type of turbulence is consistent with the fluctuations in the quasi‐dispersionless frequency range of 0.2–800 Hz as observed by Sulaiman et al. (2020), https://doi.org/10.1029/2020GL088432. Knowledge of the turbulent fluctuations is important to constrain the acceleration mechanisms for ions and electrons in the IFT. In this work, we suggest that the observed temporal fluctuations in the spacecraft frame correspond to Doppler‐shifted spatial fluctuation structured perpendicular to the background magnetic field. This would imply an alternative reinterpretation of the spectral index of the observed magnetic power spectral density to be potentially the result of weak‐MHD and sub‐ion scale kinetic Alfvén wave turbulence in the low‐frequency regime. Our theoretical modelings show that turbulence can be driven both in the torus region and at high‐latitudes rendering results in agreement with the Juno measurements. Calculated turbulence heating rates are consistent with observed energy fluxes in the IFT and represent efficient drivers for particle acceleration. Moreover, a widening of the IFPT structure with respect to the IFT extent is consistent with propagating dispersive Alfvén waves modified by kinetic effects on their group velocities.
    Description: Key Points: Low‐frequency Juno observations in the Io flux tube (IFT) tail represent structures perpendicular to background magnetic field. Magnetic field fluctuations observed in the Io footprint tail (IFPT) are consistent with weak‐MHD and sub‐ion kinetic Alfvén wave turbulence. Dispersion effects on group velocity of Alfvén waves widens the IFT consistent with the observed width of the IFPT.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://doi.org/10.17189/1519711
    Description: https://doi.org/10.17189/1522461
    Keywords: ddc:523 ; Io ; Juno observations ; Alfvén waves ; magnetic field fluctuations
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2024-01-12
    Description: Thematic map creation is a meticulous process that requires several steps to be accomplished regardless of the type of map to be produced, from data collection, through data exploitation and map publication in print, image, and GIS format. Examples are geolithological, and geomorphological maps in which most of the highest time‐consuming tasks are those related to the discretization of single objects. Introducing also interpretative biases because of the different experience of the mappers in identifying a set of unique characteristics that describe those objects. In this setting, Deep Learning Computer Vision techniques could play a key role but lack the availability of a complete set of tools specific for planetary mapping. The aim of this work is to develop a comprehensive set of ready‐to‐use tools for landforms mapping based on validated Deep Learning methodologies and open‐source libraries. We present DeepLandforms, the first pre‐release of a toolset for landform mapping using Deep Learning that includes all the components for data set preparation, model training, monitoring, and inference. In DeepLandforms, users have full access to the workflow and control over all the processes involved, granting complete control and customization capabilities. In order to validate the applicability of our tool, in this work we present the results achieved using DeepLandforms in the science case of mapping sinkhole‐like landforms on Mars, as a first example that can lead us into multiple and diverse future applications.
    Description: Plain Language Summary: The creation of maps is a complex set of several tasks that, regardless of the type of map, are often very time‐consuming. For instance, all the occurrences of a specific object, natural or man‐made in a defined area, need to be identified, drawn and classified manually. Mapping large objects in small areas is an easy task but may be unmanageable in cases such as small landforms on the entire surface of a planet. Nowadays, especially on Earth, researchers and professionals take advantages of highly specialized software based on a technique called Deep Learning. Such software are almost never free nor ready‐to‐use and often requires higher knowledge in computer programming languages. In this work, we present the first pre‐release of a novel open‐source computer software, nearly ready‐to‐use, that provides all the instruments for approaching Deep Learning for automatic landforms mapping. We present also the results obtained by trying this software using data of Mars's surface to map sinkhole‐like landforms.
    Description: Key Points: Instance Segmentation methodology is used to map landforms obtaining vectorial data in geopackage file format. A newly developed composite toolset to perform image pre‐processing, data labeling, model training and inference tasks is presented. The results of a prime case of mapping pit and skylights on Mars surface are showed.
    Description: European Union's Horizon 2020 research and innovation programme
    Description: https://doi.org/10.5281/zenodo.7351391
    Description: https://doi.org/10.5281/zenodo.7488867
    Description: https://ode.rsl.wustl.edu/odeholdings/Mars_holdings.html
    Keywords: ddc:523 ; mapping ; Mars ; pits ; skylight ; deep learning ; toolset
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2023-01-14
    Description: The seasonal deposition and sublimation of CO2 constitute a major element in Martian volatile cycles. We reprocess the Mars Orbiter Laser Altimeter (MOLA) data and apply co‐registration procedures to obtain spatio‐temporal variations in levels of the Seasonal North Polar Cap (SNPC). The maximum level over the Residual North Polar Cap (RNPC) is 1.3 m, approximately half of that at the south pole (2.5 m). However, the maximum level in the dune fields at Olympia Undae can be up to 3.8 m. Furthermore, off‐season decreases up to 3 m during the northern winter at Olympia Undae are observed. These are likely due to metamorphism effects accentuated by the reduced snowfall at this period. Meanwhile, off‐season increases of up to 2 m during the northern spring are noted, the cause of which remains to be explored. The volume of the SNPC peaks at the end of northern winter and is estimated to be approximately 9.6 × 1012 m3, which is 2% more than that of the Seasonal South Polar Cap. The bulk density of the SNPC can go through phased decreases in accordance with phased accumulation at northern high‐latitudes. These findings can put important constraints on the Martian volatile cycling models.
    Description: Plain Language Summary: Due to its axial tilt, seasons also exist on Mars. Up to one third of the atmosphere's CO2 is in annual exchange with the polar regions through seasonal deposition/sublimation processes. Here, we make use of previously proposed approaches of analyzing the Mars Orbiter Laser Altimeter profiles and obtain spatio‐temporal level variations of the Seasonal North Polar Cap (SNPC). Particularly, we bring attention to abnormal behavior of the SNPC in the dune fields at Olympia Undae. Maximum level there can be all the way up to 4 m which is much higher than a maximum of 1.5 m over the Residual North Polar Cap. Meanwhile, off‐season decreases during the northern winter with magnitudes up to 3 m and off‐season increases during the northern spring of magnitudes up to 2 m are observed. These could possibly be related to metamorphism of the seasonal deposits and phased snowfall. The maximum volume of the SNPC is constrained to be 9.6 × 1012 m3. The bulk density of the SNPC does not continuously increase as previously assumed but can go through phased decreases in accordance with phased snowfall at the north pole. These findings can put important constraints on the Martian climate models.
    Description: Key Points: Through co‐registration of laser altimetry profiles, spatio‐temporal level variations of the Seasonal North Polar Cap (SNPC) of Mars are obtained. Maximum level of the SNPC can be up to 3.8 m at Olympia Undae and up to 1.3 m over the Residual North Polar Cap. Northern winter decreases of up to 3 m and northern spring increases of up to 2 m are observed at Olympia Undae.
    Description: China Scholarship Council
    Description: Deutsche Forschungsgemeinschaft
    Description: Institut National des Sciences de l’Univers
    Description: Centre National de la Recherche Scientifique
    Description: Centre National d’Etudes Spatiales
    Description: https://doi.org/10.17632/x953mzxxvv.1
    Description: https://doi.org/10.17632/z59b9nd6s9.2
    Description: https://pds-geosciences.wustl.edu/missions/mgs/pedr.html
    Description: https://naif.jpl.nasa.gov/pub/naif/pds/data/mgs-m-spice-6-v1.0/mgsp_1000/data/
    Description: https://www.uahirise.org/hiwish/browse
    Keywords: ddc:523 ; Mars ; seasonal polar cap ; CO2 ice ; MOLA ; level variation ; pseudo cross‐over
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2023-01-15
    Description: Key knowledge about planetary composition can be recovered from the study of thermal infrared spectral range datasets. This range has a huge diagnostic potential because it contains diagnostic absorptions from a planetary surface and atmosphere. The main goal of this study is to process and interpret the dataset from the Thermal Infrared channel (TIRVIM) which is part of the Atmospheric Chemistry Suite of the ExoMars2016 Trace Gas Orbiter mission to find and characterize dust and water ice clouds in the atmosphere. The method employed here is based on the application of principal component analysis and target transformation techniques to extract the independent variable components present in the analyzed dataset. Spectral shapes of both atmospheric dust and water ice aerosols have been recovered from the analysis of TIRVIM data. The comparison between our results with those previously obtained on Thermal Emission Spectrometer (TES) data and with previous analysis on TIRVIM data, validates the methodology here applied, showing that it allows to correctly recover the atmospheric spectral endmembers present in the TIRVIM data. Moreover, comparison with atmospheric retrievals on PFS, TES and IRIS data, allowed us to assess the temporal stability and homogeneity of dust and water ice components in the Martian atmosphere over a time period of almost 50 years.
    Description: Plain Language Summary: The analysis of thermal infrared datasets from planetary bodies is of key importance for the understanding of a planet's climate evolution and history: it contains valuable information about composition, temperature and state of the atmosphere. Moreover, surface properties and the surface‐atmosphere interaction can be studied. Here we investigated new thermal infrared data from the Thermal Infrared channel instrument of the ExoMars Trace Gas Orbiter with the main goal of carefully identifying Martian atmospheric dust and water ice clouds components. A methodology based on principal component and target transformation factor analysis techniques has been applied. Based on our results, this methodology can correctly recover both atmospheric dust and water ice aerosols spectral shapes and their abundances in the Martian atmosphere.
    Description: Key Points: First successful application of principal components and target transformation techniques to high‐resolution Thermal Infrared channel (TIRVIM) data. Spectral shapes of both atmospheric dust and water ice clouds are recognized and recovered. TIRVIM data are successfully modeled through a linear combination of the recovered water ice and dust end‐members.
    Description: Roscosmos and ESA
    Description: https://doi.org/10.5281/zenodo.7032738
    Keywords: ddc:523 ; Martian atmosphere ; TIRVIM data
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2023-06-05
    Description: A 6 degrees-of-freedom (6DoF) sensor, measuring three components of translational acceleration and three components of rotation rate, provides the full history of motion it is exposed to. In Earth sciences 6DoF sensors have shown great potential in exploring the interior of our planet and its seismic sources. In space sciences, apart from navigation, 6DoF sensors are, up to now, only rarely used to answer scientific questions. As a first step of establishing 6DoF motion sensing deeper into space sciences, this article describes novel scientific approaches based on 6DoF motion sensing with substantial potential for constraining the interior structure of planetary objects and asteroids. Therefore we estimate 6DoF-signal levels that originate from lander–surface interactions during landing and touchdown, from a body’s rotational dynamics as well as from seismic ground motions. We discuss these signals for an exemplary set of target bodies including Dimorphos, Phobos, Europa, the Earth’s Moon and Mars and compare those to self-noise levels of state-of-the-art sensors.
    Description: Horizon 2020 http://dx.doi.org/10.13039/501100007601
    Description: Projekt DEAL
    Keywords: ddc:523 ; Planetary exploration ; Planetary seismology ; Librations ; Tides ; 6DoF sensors
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2023-08-08
    Description: The unknown cooling-rate history of natural silicate melts can be investigated using differential scanning heat capacity measurements together with the limiting fictive temperature analysis calculation. There are a range of processes occurring during cooling and re-heating of natural samples which influence the calculation of the limiting fictive temperature and, therefore, the calculated cooling-rate of the sample. These processes occur at the extremes of slow cooling and fast quenching. The annealing of a sample at a temperature below the glass transition temperature upon cooling results in the subsequent determination of cooling-rates which are up to orders of magnitude too low. In contrast, the internal stresses associated with the faster cooling of obsidian in air result in an added exothermic signal in the heat capacity trace which results in an overestimation of cooling-rate. To calculate cooling-rate of glass using the fictive temperature method, it is necessary to create a calibration curve determined using known cooling- and heating-rates. The calculated unknown cooling-rate of the sample is affected by the magnitude of mismatch between the original cooling-rate and the laboratory heating-rate when using the matched cooling-/heating-rate method to derive a fictive temperature/cooling-rate calibration curve. Cooling-rates slower than the laboratory heating-rate will be overestimated, while cooling-rates faster than the laboratory heating-rate are underestimated. Each of these sources of error in the calculation of cooling-rate of glass materials—annealing, stress release and matched cooling/heating-rate calibration—can affect the calculated cooling-rate by factor of 10 or more.
    Description: Georg-August-Universität Göttingen (1018)
    Keywords: ddc:550.78 ; Fictive temperature ; Annealing ; Thermal stress ; Cooling-rate ; Calorimetry
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2023-08-08
    Description: In this study, the influence of CO〈sub〉2〈/sub〉 on the rheology of silica poor and K-rich melts from highly explosive eruptions from the Colli Albani Volcanic District (Italy) (CAVD) is measured for the first time. The investigated melts range from foidite to tephri-phonolite to tephrite from the CAVD to a phonolite from the Vesuvius (Italy) with CO〈sub〉2〈/sub〉 concentrations up to 0.50 wt%. Viscosity and calorimetric measurements are performed in the glass transition range Tg between 600 and 780 °C. Although nominally anhydrous, the investigated melts contain H〈sub〉2〈/sub〉O concentrations up to 0.23 wt%. The data exhibit a decrease in viscosity of approx. 100.40 Pa s for the phonolitic composition with ~ 0.07 wt% CO〈sub〉2〈/sub〉 and a Tg reduced by approx. 14 °C. For the tephritic composition, Tg is approx. 5 °C lower and has a viscosity reduced by 100.25 Pa s for the sample containing ~ 0.5 wt% CO〈sub〉2〈/sub〉. Calorimetric measurements of the tephri-phonolite show lowered onset of Tg by approx. 6 °C for the melt with ~ 0.11 wt% CO2 and Tg of the foidite appears not to be influenced by a CO〈sub〉2〈/sub〉 concentration of ~ 0.37 wt% CO〈sub〉2〈/sub〉. However, these tephri-phonolitic and foiditic melts foamed during calorimetric measurements preventing a reliable measurement. It would appear that most of this overall drop in viscosity is caused by the small amounts of H〈sub〉2〈/sub〉O in the melts with CO〈sub〉2〈/sub〉 slightly reducing the viscosity or having no effect on viscosity. Additionally, it is shown that the reduction in viscosity decreases with an increasing degree of the depolymerisation for the investigated melts. Consequently, the explosive style of the CAVD eruptions is mainly caused by crystals and bubbles which form and rise during magma storage and ascent which increases the magma viscosity whereas the CO〈sub〉2〈/sub〉 in the melt slightly reduces the viscosity.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Georg-August-Universität Göttingen (1018)
    Keywords: ddc:550.78 ; Viscosity ; Calorimetry ; Colli Albani ; Carbon dioxide ; Glass transition ; Foidite
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2023-08-08
    Description: Equilibria between Ti oxides and silicate melt lead to Ti isotope fractionation in terrestrial samples, with isotopically light Ti oxides and isotopically heavy coexisting melt. However, while Ti is mostly tetravalent in terrestrial samples, around 10% of the overall Ti is trivalent at f〈sub〉O2〈/sub〉 relevant to lunar magmatism (~ IW-1). The different valences of Ti in lunar samples, could additionally influence Ti stable isotope fractionation during petrogenesis of lunar basalts to an unknown extent. We performed an experimental approach using gas mixing furnaces to investigate the effect of Ti oxide formation at different f〈sub〉O2〈/sub〉 on Ti stable isotope fractionation during mare basalt petrogenesis. Two identical bulk compositions were equilibrated simultaneously during each experiment to guarantee comparability. One experiment was investigated with the EPMA to characterize the petrology of experimental run products, whereas the second experiment was crushed, and fabricated phases (i.e., oxides, silicates and glass) were handpicked, separated and digested. An aliquot of each sample was mixed with a Ti double-spike, before Ti was separated from matrix and interfering elements using a modified HFSE chemistry. Our study shows f〈sub〉O2〈/sub〉-dependent fractionation within seven samples from air to IW-1, especially ∆49Ti〈subs〈armalcolite〈/sub〉-melt and ∆49Ti〈sub〉armalcolite-orthopyroxene〈/sub〉 become more fractionated from oxidized to reduced conditions (− 0.092 ± 0.028-  − 0.200 ± 0.033 ‰ and  − 0.089 ± 0.027- − 0.250 ± 0.049 ‰, respectively), whereas ∆49Ti〈sub〉orthopyroxene〈/sub〉-melt shows only a minor fractionation (− 0.002 ± 0.017-0.050 ± 0.025 ‰). The results of this study show that Ti isotope fractionation during mare basalt petrogenesis is expected to be redox dependent and mineral-melt fractionation as commonly determined for terrestrial fO2 may not be directly applied to a lunar setting. This is important for the evaluation of Ti isotope fractionation resulting from lunar magmatism, which takes place under more reducing conditions compared to the more oxidized terrestrial magmatism.
    Description: Deutsche Forschungsgemeinschaft
    Description: Projekt DEAL
    Keywords: ddc:550.78 ; Titanium isotopes ; Lunar magma ocean ; Fractionation ; Experiments ; Ti oxides ; Armalcolite
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2023-08-08
    Description: Aquifer storage and recovery systems using multiple partially penetrating wells (MPPW-ASR) can form a viable solution to the problem of freshwater buoyancy when using brackish aquifers for freshwater storage. This study presents the result of a series of laboratory experiments that aimed at visualizing the shape of freshwater bodies injected into a brackish aquifer and determining the effect on the recovery efficiency (RE) of several MPPW-ASR operational variables. A model aquifer was built in a Plexiglas tank using glass beads and water was injected and abstracted through point and vertical wells, which were operated in various combinations. Numerical models were used to support the interpretation of the time-lapse photographs, and showed that three-dimensional flow effects had to be considered for a correct interpretation of the visible dye patterns. Upward migration of both fresh (during injection) and brackish water (during recovery) along the vertical wells was observed, indicating that the role of well infrastructure as conduits is a critical design criterion for real-world systems. Gravitational instabilities formed when freshwater did not extend all the way to the top of the aquifer, and this negatively impacted the RE by causing greater mixing. The positive freshwater buoyancy led to freshwater bodies that became narrower with depth, and the formation of thin, elongated buffer zones along the aquifer top in multicycle experiments. Up-coning below abstraction wells resulted in lower RE values, reinforcing the potential of scavenger wells to enhance MPPW-ASR system performance.
    Description: Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) (4230)
    Keywords: ddc:550.78 ; Artificial recharge ; Laboratory experiments/measurements ; Numerical modelling ; Multiple partially penetrating wells ; Salt-water/fresh-water relations
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2023-08-08
    Description: The partitioning of a large suite of trace elements between biotite and water-saturated granitic melt was measured at 2 kbar and 700—800 ˚C. To reach equilibrium and to grow biotite crystals large enough for analysis, runs usually lasted from 30 to 45 days. In every charge, a few trace elements were initially doped at the 0.1—0.5 wt. % level and analyzed by electron microprobe after the run. First-row transition metal ions are highly compatible in biotite with D〈sup〉biotite/melt〈/sup〉 of 17 for Ti, 35 for V, 47 for Co, 174 for Ni, and 5.8 for Zn. A very notable exception is Cu with D〈sup〉biotite/melt〈/sup〉 〈 0.9. This is likely one of the reasons why Cu is enriched together with Mo (D〈sup〉biotite/melt〈/sup〉 = 0.29) in porphyry deposits associated with intermediate to felsic plutons, while the other transition metals are not. Both Nb and Ta are mildly compatible in biotite with D〈sup〉biotite/melt〈/sup〉 being larger for Nb (3.69) than for Ta (1.89). Moderate (15—30%) biotite fractionation would be sufficient to reduce the Nb/Ta ratio from the chondritic value to the range observed in the continental crust. Moreover, the strong partitioning of Ti into biotite implies that already modest biotite fractionation suppresses the saturation of Ti-oxide phases and thereby indirectly facilitates the enrichment of Ta over Nb in the residual melt. The heavy alkalis, alkaline earths, and Pb are only mildly fractionated between biotite and melt (D〈sup〉biotite/melt〈/sup〉 = 3.8 for Rb, 0.6 for Cs, 0.6 for Sr, 1.8 for Ba, 0.7 for Pb). The rare earth elements are generally incompatible in biotite, with a minimum for Dbiotite/melt of 0.03–0.06 at Gd, Tb, and Dy, while both the light and heavy rare earths are less incompatible (e.g. D〈sup〉biotite/melt〈/sup〉 = 0.6 for La and 0.3 for Yb). This behavior probably reflects a partitioning into two sites, the K site for the light rare earths and the octahedral Mg site for the heavy rare earths. There is no obvious dependence of the rare earth partition coefficients on tetrahedral Al in the biotite, presumably because charge balancing by cation vacancies is possible. Allanite was found as run product in some experiments. For the light rare earths, D〈sup〉allanite/melt〈/sup〉 is very high (e.g. 385 to 963 for Ce and Nd) and appears to increase with decreasing temperatures. However, the rather high solubility of allanite in the melts implies that it likely only crystallizes during the last stages of cooling of most magmas, except if the source magma is unusually enriched in rare earths.
    Description: Deutsche Forschungsgemeinschaft
    Description: Universität Bayreuth (3145)
    Keywords: ddc:550.78 ; Biotite ; Allanite ; Granite ; Partitioning ; Solubility ; Rare earths ; Niobium ; Tantalum ; Nb/Ta ratio ; Porphyry copper deposits
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2023-08-02
    Description: Predicting the onset, style and duration of explosive volcanic eruptions remains a great challenge. While the fundamental underlying processes are thought to be known, a clear correlation between eruptive features observable above Earth’s surface and conditions and properties in the immediate subsurface is far from complete. Furthermore, the highly dynamic nature and inaccessibility of explosive events means that progress in the field investigation of such events remains slow. Scaled experimental investigations represent an opportunity to study individual volcanic processes separately and, despite their highly dynamic nature, to quantify them systematically. Here, impulsively generated vertical gas-particle jets were generated using rapid decompression shock-tube experiments. The angular deviation from the vertical, defined as the “spreading angle”, has been quantified for gas and particles on both sides of the jets at different time steps using high-speed video analysis. The experimental variables investigated are 1) vent geometry, 2) tube length, 3) particle load, 4) particle size, and 5) temperature. Immediately prior to the first above-vent observations, gas expansion accommodates the initial gas overpressure. All experimental jets inevitably start with a particle-free gas phase (gas-only), which is typically clearly visible due to expansion-induced cooling and condensation. We record that the gas spreading angle is directly influenced by 1) vent geometry and 2) the duration of the initial gas-only phase. After some delay, whose length depends on the experimental conditions, the jet incorporates particles becoming a gas-particle jet. Below we quantify how our experimental conditions affect the temporal evolution of these two phases (gas-only and gas-particle) of each jet. As expected, the gas spreading angle is always at least as large as the particle spreading angle. The latter is positively correlated with particle load and negatively correlated with particle size. Such empirical experimentally derived relationships between the observable features of the gas-particle jets and known initial conditions can serve as input for the parameterisation of equivalent observations at active volcanoes, alleviating the circumstances where an a priori knowledge of magma textures and ascent rate, temperature and gas overpressure and/or the geometry of the shallow plumbing system is typically chronically lacking. The generation of experimental parameterisations raises the possibility that detailed field investigations on gas-particle jets at frequently erupting volcanoes might be used for elucidating subsurface parameters and their temporal variability, with all the implications that may have for better defining hazard assessment.
    Description: Seventh Framework Programme http://dx.doi.org/10.13039/501100004963
    Description: Deutsche Forschungsgemeinschaft
    Description: European Research Council http://dx.doi.org/10.13039/501100000781
    Description: https://doi.org/10.5880/fidgeo.2020.030
    Keywords: ddc:550.78 ; Explosive volcanism, ; Experimental volcanology, ; Spreading angle, ; Shock-tube
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2023-06-23
    Description: Many explosive volcanic eruptions produce underexpanded starting gas-particle jets. The dynamics of the accompanying pyroclast ejection can be affected by several parameters, including magma texture, gas overpressure, erupted volume and geometry. With respect to the latter, volcanic craters and vents are often highly asymmetrical. Here, we experimentally evaluate the effect of vent asymmetry on gas expansion behaviour and gas jet dynamics directly above the vent. The vent geometries chosen for this study are based on field observations. The novel element of the vent geometry investigated herein is an inclined exit plane (5, 15, 30° slant angle) in combination with cylindrical and diverging inner geometries. In a vertical setup, these modifications yield both laterally variable spreading angles as well as a diversion of the jets, where inner geometry (cylindrical/diverging) controls the direction of the inclination. Both the spreading angle and the inclination of the jet are highly sensitive to reservoir (conduit) pressure and slant angle. Increasing starting reservoir pressure and slant angle yield (1) a maximum spreading angle (up to 62°) and (2) a maximum jet inclination for cylindrical vents (up to 13°). Our experiments thus constrain geometric contributions to the mechanisms controlling eruption jet dynamics with implications for the generation of asymmetrical distributions of proximal hazards around volcanic vents.
    Description: European Research Council http://dx.doi.org/10.13039/501100000781
    Keywords: ddc:550.78 ; Explosive eruptions ; Crater asymmetry ; Vent asymmetry ; Gas jets ; Inclined jets ; Tilted eruptions
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2023-06-23
    Description: The ascent of hydrous magma prior to volcanic eruptions is largely driven by the formation of H2O vesicles and their subsequent growth upon further decompression. Porosity controls buoyancy as well as vesicle coalescence and percolation, and is important when identifying the differences between equilibrium or disequilibrium degassing from textural analysis of eruptive products. Decompression experiments are routinely used to simulate magma ascent. Samples exposed to high temperature (T) and pressure (P) are decompressed and rapidly cooled to ambient T for analysis. During cooling, fluid vesicles may shrink due to decrease of the molar volume of H2O and by resorption of H2O back into the melt driven by solubility increase with decreasing T at P 〈 300 MPa. Here, we quantify the extent to which vesicles shrink during cooling, using a series of decompression experiments with hydrous phonolitic melt (5.3–3.3 wt% H2O, T between 1323 and 1373 K, decompressed from 200 to 110–20 MPa). Most samples degassed at near-equilibrium conditions during decompression. However, the porosities of quenched samples are significantly lower than expected equilibrium porosities prior to cooling. At a cooling rate of 44 K·s−1, the fictive temperature Tf, where vesicle shrinkage stops, is up to 200 K above the glass transition temperature (Tg), Furthermore, decreasing cooling rate enhances vesicles shrinkage. We assess the implications of these findings on previous experimental degassing studies using phonolitic melt, and highlight the importance of correctly interpreting experimental porosity data, before any comparison to natural volcanic ejecta can be attempted.
    Description: German Science Foundation
    Keywords: ddc:550.78 ; Decompression experiments ; Vesiculation ; Vesicle shrinkage ; Quench effect ; H2O resorption ; Fictive temperature
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2023-06-23
    Description: Supersaturation of H2O during magma ascent leads to degassing of melt by formation and growth of vesicles that may power explosive volcanic eruptions. Here, we present experiments to study the effect of initially dissolved H2O concentration (cH2Oini) on vesicle formation, growth, and coalescence in phonolitic melt. Vesuvius phonolitic melts with cH2Oini ranging between 3.3 and 6.3 wt% were decompressed at rates of 1.7 and 0.17 MPa·s−1 and at temperatures ≥ 1323 K. Decompression started from 270 and 200 MPa to final pressures of 150–20 MPa, where samples were quenched isobarically. Optical microscopy and Raman spectroscopic measurements confirm that the glasses obtained were free of microcrystals and Fe-oxide nanolites, implying that the experiments were superliquidus and phase separation of the hydrous melt was homogeneous. A minimum number of the initially formed vesicles, defined by the number density normalized to vesicle-free glass volume (VND), is observed at ~ 5 wt% cH2Oini with a logVND of ~ 5 (in mm−3). The logVND increases strongly towards lower and higher cH2Oini by one order of magnitude. Furthermore, an important transition in evolution of vesiculation occurs at ~ 5.6 wt% cH2Oini. At lower cH2Oini, the initial VND is preserved during further decompression up to melt porosities of 30–50%. At higher cH2Oini, the initial vesicle population is erased at low melt porosities of 15–21% during further decompression. This observation is attributed to vesicle coalescence favored by low melt viscosity. In conclusion, cH2Oini determines the VND of initial phase separation and the evolution of vesiculation during decompression that controls the style of volcanic eruptions.
    Description: German Science Foundation
    Keywords: ddc:550.78 ; Vesicle number density ; Phonolitic melt ; Spinodal decomposition ; Melt degassing ; H2O concentration ; Fe-oxide nanolites
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2023-08-25
    Description: The Earth-like planets and moons in our solar system have iron-rich cores, silicate mantles, and a basaltic crust. Differentiated icy moons can have a core and a mantle and an outer water–ice layer. Indirect evidence for several icy moons suggests that this ice is underlain by or includes a water-rich ocean. Similar processes are at work in the interiors of these planets and moons, including heat transport by conduction and convection, melting and volcanism, and magnetic field generation. There are significant differences in detail, though, in both bulk chemical compositions and relative volume of metal, rock and ice reservoirs. For example, the Moon has a small core [~ 0.2 planetary radii (RP)], whereas Mercury’s is large (~ 0.8 RP). Planetary heat engines can operate in somewhat different ways affecting the evolution of the planetary bodies. Mercury and Ganymede have a present-day magnetic field while the core dynamo ceased to operate billions of years ago in the Moon and Mars. Planets and moons differ in tectonic style, from plate-tectonics on Earth to bodies having a stagnant outer lid and possibly solid-state convection underneath, with implications for their magmatic and atmosphere evolution. Knowledge about their deep interiors has improved considerably thanks to a multitude of planetary space missions but, in comparison with Earth, the data base is still limited. We describe methods (including experimental approaches and numerical modeling) and data (e.g., gravity field, rotational state, seismic signals, magnetic field, heat flux, and chemical compositions) used from missions and ground-based observations to explore the deep interiors, their dynamics and evolution and describe as examples Mercury, Venus, Moon, Mars, Ganymede and Enceladus.
    Description: Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR) (4202)
    Keywords: ddc:523 ; Interior structure ; Terrestrial planets and moons ; Space exploration ; Gravity ; Rotation ; Magnetic fields ; Thermal evolution
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2023-07-20
    Description: The parameterization of the magnetospheric field contribution, generated by currents flowing in the magnetosphere is of major importance for the analysis of Mercury’s internal magnetic field. Using a combination of the Gauss and the Mie representation (toroidal–poloidal decomposition) for the parameterization of the magnetic field enables the analysis of magnetic field data measured in current carrying regions in the vicinity of Mercury. In view of the BepiColombo mission, the magnetic field resulting from the plasma interaction of Mercury with the solar wind is simulated with a hybrid simulation code and the internal Gauss coefficients for the dipole, quadrupole and octupole field are reconstructed from the data, evaluated along the prospective trajectories of the Mercury Planetary Orbiter (MPO) using Capon’s method. Especially, it turns out that a high-precision determination of Mercury’s octupole field is expectable from the future analysis of the magnetic field data measured by the magnetometer on board MPO. Furthermore, magnetic field data of the MESSENGER mission are analyzed and the reconstructed internal Gauss coefficients are in reasonable agreement with the results from more conventional methods such as the least-square fit.
    Description: Österreichische Forschungsförderungsgesellschaft http://dx.doi.org/10.13039/501100004955
    Description: Deutsches Zentrum für Luft- und Raumfahrt http://dx.doi.org/10.13039/501100002946
    Description: Technische Universität Braunschweig (1042)
    Keywords: ddc:523 ; Mie representation ; Poloidal and toroidal magnetic fields ; Thin shell approximation ; Gauss representation ; Capon’s method
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2023-07-20
    Description: The seismic activity of a planet can be described by the corner magnitude, events larger than which are extremely unlikely, and the seismic moment rate, the long‐term average of annual seismic moment release. Marsquake S1222a proves large enough to be representative of the global activity of Mars and places observational constraints on the moment rate. The magnitude‐frequency distribution of relevant Marsquakes indicates a $b$‐value of 1.06. The moment rate is likely between $1.55\times {10}^{15}\mathrm{N}\mathrm{m}/\mathrm{a}$ and $1.97\times {10}^{18}\mathrm{N}\mathrm{m}/\mathrm{a}$, with a marginal distribution peaking at $4.9\times {10}^{16}\mathrm{N}\mathrm{m}/\mathrm{a}$. Comparing this with pre‐InSight estimations shows that these tended to overestimate the moment rate, and that 30% or more of the tectonic deformation may occur silently, whereas the seismicity is probably restricted to localized centers rather than spread over the entire planet.
    Description: Plain Language Summary: The seismic moment rate is a measure for how fast quakes accumulate deformation of the planet's rigid outer layer, the lithosphere. In the past decades, several models for the deformation rate of Mars were developed either from the traces quakes leave on the surface, or from mathematical models of how quickly the planet's interior cools down and shrinks. The large marsquake that occurred on the 4th of May 2022 now allows a statistical estimation of the deformation accumulated on Mars per year, and thus to confront these models with reality. It turns out that, although there is a considerable overlap, the models published prior to InSight tend to overestimate the seismic moment rate, and hence the ongoing deformation on Mars. Possible explanations are that 30% or more of the deformation occurs silently, that is, without causing quakes, or that not the entire planet is seismically active but only specific regions.
    Description: Key Points: A single large marsquake suffices to constrain the global seismic moment rate. Pre‐InSight estimations tended to overestimate the moment rate. Either a significant part of the ongoing deformation occurs silent, or seismic activity is restricted to some activity centers, or both.
    Description: Eidgenössische Technische Hochschule Zürich http://dx.doi.org/10.13039/501100003006
    Description: National Aeronautics and Space Administration http://dx.doi.org/10.13039/100000104
    Description: UK Space Agency http://dx.doi.org/10.13039/100011690
    Description: Deutsches Zentrum für Luft‐ und Raumfahrt http://dx.doi.org/10.13039/501100002946
    Description: Insight SFI Research Centre for Data Analytics http://dx.doi.org/10.13039/501100021525
    Description: http://dx.doi.org/10.18715/SEIS.INSIGHT.XB_2016
    Description: http://doi.org/10.17189/1517570
    Keywords: ddc:523 ; Mars ; InSight ; seismic moment rate ; S1222a
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2023-07-20
    Description: We use global data from the Lunar Orbiter Laser Altimeter (LOLA) to retrieve the lunar tidal Love number h2 and find h2 = 0.0387 ± 0.0025. This result is in agreement with previous estimates from laser altimetry using crossover points of LOLA profiles. The Love numbers k2 and h2 are key constraints on planetary interior models. We further develop and apply a retrieval method based on a simultaneous inversion for the topography and the tidal signal benefiting from the large volume of LOLA data. By the application to the lunar tides, we also demonstrate the potential of the method for future altimetry experiments at other planetary bodies. The results of this study are very promising with respect to the determination of Mercury’s and Ganymede’s h2 from future altimeter measurements.
    Description: DLR Space Administration
    Description: International Max Planck Research School on Solar System Science at the University of Göttingen
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:523 ; Tides ; Laser altimetry ; Lunar Orbiter Laser Altimeter ; Lunar interior
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2023-07-27
    Description: Fracture toughness is one of the key parameters for the characterization of brittle rock fracturing. Yet, constraints on it mainly rest on measurements performed at ambient pressure, although rock fracturing frequently occurs at elevated pressures even in geotechnical applications. To address the lack of a generally accepted evaluation procedure for tests at elevated pressure we explored the conditions for initiation and propagation of mode I fractures in samples subjected to bending at elevated pressure by numerical modeling and analytical considerations of the involved angular moments. We derived an evaluation procedure and applied it to experimental observations for specimens with either a chevron or a single-edge notch of four different rocks (a granite, a limestone, a marble and a sandstone) subjected to three-point bending at confining pressures up to 30 MPa. Two sealing methods were considered. Specimens were either varnished or jacketed by a rubber tube, differing in whether pressure is allowed to build up inside the pre-fabricated notch or not, respectively. Irrespective of notch geometry and sealing method, the determined toughness values increase significantly with confining pressure. The apparent toughness determined for jacketed specimens is, however, larger than that for varnished specimens, for which toughness seems to reach a plateau with increasing pressure. The similarity of the pressure dependence of the toughness determined for varnished, i.e., uniformly pressurized, samples with that of other physical properties suggests that it is controlled by the closure of pre-existing micro-cracks; the absence of pressure dependence beyond some tens of MPa suggests that non-linearity effects may not be as severe at depths beyond a few kilometers as previously discussed. Our study points to the necessity of resolving numerical issues associated with compressed fractures and of further improving experimental facilities for the determination of fracture toughness at elevated pressure.
    Description: German Federal Ministry of Economy
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Ruhr-Universität Bochum (1007)
    Keywords: ddc:550.78 ; Toughness ; Confining pressure ; Three-point bending tests ; Chevron-edge notch
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2023-07-27
    Description: Along with the advance of the working face, coal experiences different loading stages. Laboratory tests and numerical simulations of fracture and damage evolution aim to better understand the structural stability of coal layers. Three-dimensional lab tests are performed and coal samples are reconstructed using X-ray computer tomography (CT) technique to get detailed information about damage and deformation state. Three-dimensional discrete element method (DEM)-based numerical models are generated. All models are calibrated against the results obtained from uniaxial compressive strength (UCS) tests and triaxial compression (TRX) tests performed in the laboratory. A new approach to simulate triaxial compression tests is established in this work with significant improved handling of the confinement to get realistic simulation results. Triaxial tests are simulated in 3D with the particle-based code PFC3D using a newly developed flexible wall (FW) approach. This new numerical simulation approach is validated by comparison with laboratory tests on coal samples. This approach involves an updating of the applied force on each wall element based on the flexible nature of a rubber sleeve. With the new FW approach, the influence of the composition (matrix and inclusions) of the samples on the peak strength is verified. Force chain development and crack distributions are also affected by the spatial distribution of inclusions inside the sample. Fractures propagate through the samples easily at low confining pressures. On the contrary, at high confining pressure, only a few main fractures are generated with orientation towards the side surfaces. The evolution of the internal fracture network is investigated. The development of microcracks is quantified by considering loading, confinement, and structural character of the rock samples. The majority of fractures are initiated at the boundary between matrix and inclusions, and propagate along their boundaries. The internal structure, especially the distribution of inclusions has significant influence on strength, deformation, and damage pattern.
    Description: Technische Universität Bergakademie Freiberg (3135)
    Keywords: ddc:550.78 ; Coal sample ; X-ray CT ; Sample reconstruction ; Triaxial compression test ; Discrete element modeling ; Flexible wall approach
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2023-07-27
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Results from the Cassini‐Huygens space mission at Enceladus revealed a substantial inventory of organic species embedded in plume and E ring ice grains originating from a global subsurface and putative habitable ocean. Compositional analysis by the Cosmic Dust Analyzer indicated the presence of aromatic species and constrained some structural features, although their exact nature remains unclear. As indicated by many studies, among other organic species, low‐mass aromatics likely played a role in the emergence of life on Earth and may be linked to potential prebiotic or biogenic chemistry on icy moons. Here, we study the behavior of single‐ringed aromatic compounds—benzoic acid and two isomeric derivatives, 2,3‐dihydroxybenzoic acid and 2,5‐dihydroxybenzoic acid—using Laser‐Induced Liquid Beam Ion Desorption (LILBID), an analogue setup to simulate the impact ionization mass spectra of ice grains in space. These compounds share common structural features but also exhibit differences in functional groups and substituent positions. We investigate the fragmentation behavior and spectral appearance of each molecule over three simulated impact velocities, in both positive and negative ion modes. Parent compounds can be distinguished easily from their derivatives due to various spectral differences, including the (de)protonated molecular ion peaks appearing at different 〈italic〉m〈/italic〉/〈italic〉z〈/italic〉 values. We conclude that distinction between structural isomers in LILBID is more challenging, but some insights can be revealed by considering intermolecular bonding regimes. This work will guide future investigations into elucidating the composition of isomeric biosignatures in ice grains, relevant for future space missions to Enceladus and Europa.〈/p〉
    Description: Plain Language Summary: The Cassini‐Huygens space mission discovered a plume at Enceladus that ejects gases and frozen ice grains originating from an ocean of liquid water below its icy shell. In these ice grains, a range of interesting organic molecules were discovered by Cassini's Cosmic Dust Analyzer mass spectrometer. Organic molecules are important in the search for life beyond Earth as they form the basis of all known Earth life, and active biology elsewhere would likely have a discernible effect on the local inventory of organic species. One class of organic, with a ring structure of carbon atoms, called aromatics, were discovered in the plume. We investigate the spectral appearance of one example of aromatic compound, benzoic acid, as well as two similar compounds with additional chemical groups attached to the aromatic ring. The two similar compounds have the same mass and general structure, but slightly different arrangements of the additional groups, known as isomers. We find that it is simple to distinguish mass spectral features between benzoic acid and its related compounds, but more difficult to explain the differences between the isomers. This work will assist the analysis of mass spectrometry data from future habitability‐investigating space missions to ocean‐bearing icy moons.〈/p〉
    Description: Key Points: Cassini revealed a variety of organic compounds including clear evidence of aromatics in the plume of Enceladus. Identifying mass spectral features of isomeric organics enhances our ability to assess the astrobiological potential of Enceladus/Europa. Parent aromatic compounds can be easily distinguished from their derivatives in ice grains with impact ionization mass spectrometry.
    Description: European Research Council Consolidator
    Description: http://dx.doi.org/10.17169/refubium-37960
    Description: https://lilbid-db.planet.fu-berlin.de/
    Keywords: ddc:523 ; mass spectrometry ; LILBID and impact ionization ; aromatics and isomeric derivatives ; Enceladus and Europa ; space missions ; habitability
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2023-07-27
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The Radiation Assessment Detector (RAD) on board the Mars Science Laboratory's Curiosity rover has been monitoring the surface radiation environment on Mars for just over 10 years. It has been found by Wimmer‐Schweingruber et al. (2015, 〈ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1002/2015gl066664"〉https://doi.org/10.1002/2015gl066664〈/ext-link〉) that within the narrow view cone of RAD, the directionality of the radiation field is close to but not completely isotropic. In order to better understand the directionality of the surface radiation over a wide range of zenith angles (〈italic〉θ〈/italic〉), we perform a three‐dimensional Geant4 Monte Carlo simulation to derive the 〈italic〉θ〈/italic〉‐dependence of the surface dose rate. The results show that galactic cosmic ray protons, coming in at 〈italic〉θ〈/italic〉 ∼ 74° make the greatest contribution to the surface dose. For helium ions, this angle is at around 46°. This is a consequence of the increasing column depth at larger zenith angles and the complex interplay of the destruction of primary and the creation of secondary particles as the primary cosmic ray interacts with the Martian atmosphere. We also compared the simulated results with the RAD measurements and found a reasonable agreement. Our results are important for future human exploration of Mars, for instance, to estimate the effectiveness of radiation shielding of a given geometry or for optimizing the radiation shielding design of a Martian habitat.〈/p〉
    Description: Plain Language Summary: Space agencies and private companies are working to place humans on the surface of Mars. Astronauts would be exposed to a different and considerably harsher radiation environment on Mars than humans are on Earth. Space radiation is largely determined by galactic cosmic rays, which have sufficient energy to reach the Martian surface. Thus, a better understanding of the radiation on the surface of Mars is needed. The shielding provided by the atmosphere increases with the zenith angle, and it also causes an increase in the creation of secondary particles. To better understand this, we perform a Geant4 Monte Carlo simulation to derive the dependence of the surface dose rate on the zenith angle 〈italic〉θ〈/italic〉. The results show that the radiation dose on the surface of Mars depends on the incoming angle of the primary radiation. Moreover, the radiation dose rate is significantly modulated by solar activity, and the Mars surface dose rate differs by about 50% between solar maximum and minimum periods. We validate our simulation by comparing the dose measured by the Mars Science Laboratory Radiation Assessment Detector and find good agreement.〈/p〉
    Description: Key Points: We model the downward radiation dose on the surface of Mars and find that it only depends weakly on the zenith angle. The surface dose rate depends on solar modulation, and weaker modulation results in higher dose rate for each.The local topographical features influence the Martian surface radiation.
    Description: Deutsches Zentrum für Luft‐und Raumfahrt http://dx.doi.org/10.13039/501100002946
    Description: Jet Propulsion Laboratory http://dx.doi.org/10.13039/100006196
    Description: Strategic Priority Program of CAS
    Description: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Description: Civil Aerospace Technologies
    Description: NASA Johnson Space Center
    Description: https://doi.org/10.17189/1519761
    Description: https://doi.org/10.17189/1519760
    Description: https://doi.org/10.17189/1523028
    Description: https://doi.org/10.5281/zenodo.7257306
    Keywords: ddc:523 ; space radiation ; Mars exploration ; MSL mission ; zenith angle
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2023-07-27
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉In this paper we describe a method to compute spatial scales for images acquired by NASA's Mars Curiosity rover (Mars Science Laboratory, MSL). The method is based on the assumption that the rover stands on an infinite plane that may have any orientation with respect to the local gravity vector. While not new, it is the first time that this method is systematically applied to Martian images acquired by a lander. A continuously run software pipeline processes the images acquired by the rover within a 20 m radius, adds approximate scalebars to the raw images, and generates, whenever possible, rectified (warped) versions of those images. The products of this software pipeline and the chemical compositions of relevant rover science targets from NASA's Planetary Data System archive, are made available to the public via the Approximate Scale for Images and Chemistry website, which has been developed in collaboration with the Planetary Data System Analyst's Notebook for the MSL mission. Hyperlinks connect the two resources.〈/p〉
    Description: Plain Language Summary: We developed a software pipeline that calculates the spatial scale of images acquired by NASA's Mars Curiosity rover. The software pipeline is linked to a new website: the Approximate Scale for Images and Chemistry, in which the scalebar products are paired with information about the shape, size, color, and chemical composition of the imaged site, obtained by the rover suite of instruments. The images mimic the vantage point of human eyes and are therefore well‐suited to inspire field geologists (including those mainly working on Earth) to interpret Martian geologic features.〈/p〉
    Description: Key Points: A systematic method to generate approximate scalebars for obliquely acquired Martian landscape images was developed. A newly created Approximate Scale for Images and Chemistry (ASIC) website links images, color, spatial scale, and chemistry, as returned by NASA's Curiosity rover in Gale crater. The ASIC website is complementary and strongly linked to the Analyst's Notebook, the data resource for Martian/lunar landed missions.
    Description: Deutsche Forschungsgemeinschaft
    Description: Project DEAL
    Description: https://asic.mps.mpg.de/
    Description: https://an.rsl.wustl.edu/msl/
    Description: http://pds-geosciences.wustl.edu/msl/msl-m-chemcam-libs-4_5-rdr-v1/mslccm_1xxx/data/moc/
    Description: http://pds-geosciences.wustl.edu/msl/msl-m-chemcam-libs-4_5-rdr-v1/mslccm_1xxx/extras/rmi_mosaics/
    Description: http://pds-geosciences.wustl.edu/msl/msl-m-chemcam-libs-4_5-rdr-v1/mslccm_1xxx/extras/rmi_contours_in_mcam_images/
    Description: http://pds-geosciences.wustl.edu/msl/msl-m-apxs-4_5-rdr-v1/mslapx_1xxx/extras/
    Keywords: ddc:523 ; Mars ; Curiosity rover ; images ; spatial scale ; science targets ; chemistry
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2023-07-21
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Parameterised by the Love number 〈italic〉k〈/italic〉〈sub〉2〈/sub〉 and the tidal quality factor 〈italic〉Q〈/italic〉, and inferred from lunar laser ranging (LLR), tidal dissipation in the Moon follows an unexpected frequency dependence often interpreted as evidence for a highly dissipative, melt‐bearing layer encompassing the core‐mantle boundary. Within this, more or less standard interpretation, the basal layer's viscosity is required to be of order 10〈sup〉15〈/sup〉–10〈sup〉16〈/sup〉 Pa s and its outer radius is predicted to extend to the zone of deep moonquakes. While the reconciliation of those predictions with the mechanical properties of rocks might be challenging, alternative lunar interior models without the basal layer are said to be unable to fit the frequency dependence of tidal 〈italic〉Q〈/italic〉. The purpose of our paper is to illustrate under what conditions the frequency‐dependence of lunar tidal 〈italic〉Q〈/italic〉 can be interpreted without the need for deep‐seated partial melt. Devising a simplified lunar model, in which the mantle is described by the Sundberg‐Cooper rheology, we predict the relaxation strength and characteristic timescale of elastically accommodated grain boundary sliding in the mantle that would give rise to the desired frequency dependence. Along with developing this alternative model, we test the traditional model with a basal partial melt; and we show that the two models cannot be distinguished from each other by the available selenodetic measurements. Additional insight into the nature of lunar tidal dissipation can be gained either by measurements of higher‐degree Love numbers and quality factors or by farside lunar seismology.〈/p〉
    Description: Plain Language Summary: As the Moon raises ocean tides on the Earth, the Earth itself gives rise to periodic deformation of the Moon. Precise measurements of lunar shape and motion can reveal those deformations and even relate them to our natural satellite's interior structure. In this work, we discuss two interpretations of those measurements. According to the first one, the lunar interior is hot and a small part of it might have melted, forming a thick layer of weak material buried more than 1,000 km deep under the lunar surface. According to the second one, there is no such layer, and the measured deformation can be explained by the behavior of solid rocks at relatively low temperatures. We show that the two possibilities cannot be distinguished from each other by the existing data.〈/p〉
    Description: Key Points: A lunar mantle governed by the Andrade model fits selenodetic constraints only with a very weak frequency dependence of tidal dissipation. We seek the parameters of two more complex models that may explain the anomalous frequency dependence of tidal 〈italic〉Q〈/italic〉 measured by lunar laser ranging. Both a dissipative basal layer and elastically accommodated grain‐boundary sliding in the deep mantle can result in the same tidal response.
    Description: Czech Science Foundation
    Description: https://doi.org/10.5281/zenodo.7788121
    Keywords: ddc:523 ; Moon ; tidal dissipation ; interior structure
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2023-07-29
    Description: It is commonly assumed that dry and saturated sands exhibit similar cone resistance–relative density relationships. Some studies pointed out that partial saturation and calcareous sands with considerable fines content are potential factors affecting these relationships. However, there is experimental evidence in Shaqour Bull Eng Geol Environ 66:59-70, (2006) that clean uncemented quartz sand may exhibit lower cone resistance in saturated conditions. The present study aims on contributing towards better understanding the effect of water saturation on cone resistance in sand. For this purpose, Ticino sand samples were prepared dry and saturated in a calibration chamber and cone penetration tests were performed over a wide range of relative densities and at two consolidation stresses. Overall, it was observed that dry and saturated samples exhibited similar cone resistances. Only slightly higher cone resistances were observed for dry samples at the lower consolidation stress. Two anomalous samples, which were tested dry at medium relative density, were found to exhibit way higher cone resistances than expected from published cone resistance–relative density relationships. The Young's modulus was observed to be proportional to cone resistance and independent of whether a sample was tested dry or saturated, being therefore considered as more robust soil property for cone resistance relationships.
    Description: Bundesministerium für Wirtschaft und Energie http://dx.doi.org/10.13039/501100006360
    Keywords: ddc:550.78 ; Cone penetration test ; Water saturation ; Dry sand ; Calibration chamber ; Relative density ; Young’s modulus
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2022-12-06
    Description: Pore space controls the mechanical and transport properties of rocks. At the laboratory scale, seismic modeling is usually performed in relatively homogeneous settings, and the influence of the pore space on the recorded wavefields is determined by rock‐fluid interactions. Understanding this influence in dry rocks is instrumental for assessing the impact of pore topology on waves propagating in heterogeneous environments, such as volcanoes. Here, we simulated the propagation of shear waves as a function of pore space parameters in computational models built as proxies for volcanic rocks. The spectral‐element simulations provide results comparable with ultrasonic experiments, and the outcome shows that the size, shape, volume, and location of pores impact amplitudes and phases. These variations intensify in waveform coda after multiple scattering. Our results confirm that pore topology is one of the primary regulators of the propagation of elastic waves in dry rocks regardless of porosity.
    Description: Plain Language Summary: Pores control the non‐elastic behavior and, in general, the petrophysical and mechanical properties of rocks. Such properties are essential to assess potential resources such as aquifers and reservoirs or hazards posed by earthquakes, volcanoes, and constructions. The factors controlling the elasticity of rocks are texture, pore space and the fluids filling the pores. While volcanoes represent a key target for rock characterization, measuring and modeling these factors in volcanic rocks remains challenging due to their intrinsic heterogeneities. In this study, we analyzed how pore space parameters influence the overall elastic properties of rocks by changing one parameter at a time. We created synthetic samples and performed computational simulations that show the individual contribution of the amount, size, location, and shape on waveform phases and amplitudes. The findings demonstrate that we can constrain the pore space in heterogeneous rocks in simple but realistic scenarios. Our results are the first step to provide computationaly‐driven forward models of seismic signals in heterogeneous volcanic media, necessary to predict the responses of volcanic rocks to stress.
    Description: Key Points: Computational modeling quantifies the influence of pore space topology on S‐wave propagation in volcanic rocks. Amount, size and location of pores impact ultrasonic wave propagation in dry rocks independently of porosity. Path effects dominate the waveforms and depend on the location of the pores.
    Description: https://doi.org/10.17632/b5p54xtvv9.3
    Keywords: ddc:550.78 ; volcanic rocks ; pore space topology ; S-wave propagation ; computational modeling
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2022-12-10
    Description: Differently aged impact melt in lunar samples is key to unveiling the early bombardment history of the Moon. Due to the mixing of melt products ejected from distant craters, the interpretations of the origin of lunar samples are difficult. We use numerical modeling for a better quantitative understanding of the production of impact‐induced melt and in particular its distribution in ejecta blankets for lunar craters with sizes ranging from 1.5 to 50 km. We approximate the lunar stratigraphy with a porosity gradient, which represents the gradual transition from upper regolith via megaregolith to the solid crustal material. For this lunar setting, we quantify the melt production relative to crater volume and derive parameters describing its increasing trend with increasing transient crater size. We found that about 30%–40% of the produced melt is ejected from the crater. The melt concentration in the ejecta blanket increases almost linearly with distance from the crater center, while the thickness of the ejecta blanket decreases following a power law. Our study demonstrates that if in lunar samples the concentration of a melt with a certain age is interpreted to be of a nonlocal origin, these melts could be the impact products of a large crater (〉10 km) located hundreds of kilometers away.
    Description: Plain Language Summary: Lunar samples contain abundant impact‐induced melt that crystallized at different ages. The melt ages record the formation time of its source craters and are key for a better understanding of the lunar bombardment history. In samples, there is not only the melt derived from the sampling region but also some that originate far away by being entrained in the ejecta of distant craters. Recognizing the distant‐derived melt is essential for the more credible sample interpretation, which requires knowledge of the melt distribution in the ejecta. We use numerical modeling to quantify the production of impact‐induced melt and in particular its distribution in ejecta blankets for lunar craters. We found that the melt concentration in the ejecta blanket increases with distance from the crater center. If the concentration of distant‐derived melt of a certain age in lunar samples is rather high (〉30%), it could originate from large craters (〉10 km) located hundreds of kilometers away.
    Description: Key Points: The melt concentration in the ejecta blanket increases almost linearly with distance from the crater center. Near‐surface porosity causes an increase in melt production. Due to decreasing porosity with depth, it is more prominent at small craters. The melt concentration in distal ejecta of crater of 10's km is rather high (〉30%).
    Description: Deutsche Forschungsgemeinschaft DFG http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:523 ; lunar craters ; melt production ; numerical modeling
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2022-10-13
    Description: In order to gain further insights into early solar system aggregation processes, we carried out an experiment on board the International Space Station, which allowed us to study the behavior of dust particles exposed to electric arc discharges under long‐term microgravity. The experiment led to the formation of robust, elongated, fluffy aggregates, which were studied by scanning electron microscopy, electron backscatter diffraction, and synchrotron micro‐computed tomography. The morphologies of these aggregates strongly resemble the typical shapes of fractal fluffy‐type calcium‐aluminum‐rich inclusions (CAIs). We conclude that a small amount of melting could have supplied the required stability for such fractal structures to have survived transportation and aggregation to and compaction within planetesimals. Other aggregates produced in our experiment have a massy morphology and contain relict grains, likely resulting from the collision of grains with different degrees of melting, also observed in some natural CAIs. Some particles are surrounded by igneous rims, which remind in thickness and crystal orientation of Wark–Lovering rims; another aggregate shows similarities to disk‐shaped CAIs. These results imply that a (flash‐)heating event with subsequent aggregation could have been involved in the formation of different morphological CAI characteristics.
    Description: BIOVIA
    Description: Nordlicht GmbH
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Bundesministerium für Wirtschaft und Energie http://dx.doi.org/10.13039/501100006360
    Description: NanoRacks LLC
    Description: Dr. Rolf M. Schwiete Stiftung http://dx.doi.org/10.13039/501100020027
    Description: Deutsches Zentrum für Luft‐ und Raumfahrt http://dx.doi.org/10.13039/501100002946
    Description: DreamUp
    Description: Carl Zeiss Meditec AG http://dx.doi.org/10.13039/501100002806
    Keywords: ddc:550.78
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2022-09-30
    Description: On October 7, 2008, the asteroid 2008 TC3 exploded as it entered the Earth’s atmosphere, producing significant dust (in the atmosphere) and delivering thousands of stones in a strewn field in Sudan, collectively known as the Almahata Sitta (AhS) stones. About 600 fragments were officially recovered in 2008 and 2009. Further rocks were collected since the fall event by local people. From these stones, 249 were classified at the Institut für Planetologie in Münster (MS) known as MS‐xxx or MS‐MU‐xxx AhS subsamples. Most of these rocks are ureilitic in origin (168; 67%): 87 coarse‐grained ureilites, 60 fine‐grained ureilites, 15 ureilites with variable texture/mineralogy, four trachyandesites, and two polymict breccias. We identified 81 non‐ureilitic fragments, corresponding to 33% of the recovered samples studied in Münster. These included chondrites, namely 65 enstatite chondrites (43 EL; 22 EH), 11 ordinary chondrites (OC), one carbonaceous chondrite, and one unique R‐like chondrite. Furthermore, three samples represent a unique type of enstatite achondrite. Since all AhS stones must be regarded as individual specimens independent from each other, the number of fresh ureilite and enstatite chondrite falls in our meteorite collections has been increased by several hundred percent. Overall, the samples weigh between 〈1 and 250 g and have a mean mass of ~15 g. If we consider—almost 15 years after the fall—the mass calculations, observations during and after the asteroid entered the atmosphere, the mineralogy of the C1 stones AhS 91A and AhS 671, and the experimental work on fitting the asteroid spectrum (e.g., Goodrich et al., 2019; Jenniskens et al., 2010; Shaddad et al., 2010), the main portion of the meteoroid was likely made of the fine‐grained (carbonaceous) dust and was mostly lost in the atmosphere. In particular, the fact that C1 materials were found has important implications for interpreting asteroid 2008 TC3's early spectroscopic results. Goodrich et al. (2019) correctly suggested that if scientists had not recovered the “water‐free” samples (e.g., ureilites, enstatites, and OC) from the AhS strewn field, 2008 TC3 would have been assumed to be a carbonaceous chondrite meteoroid. Considering that the dominating mass of the exploding meteoroid consisted of carbonaceous materials, asteroid 2008 TC3 cannot be classified as a polymict ureilite; consequently, we state that the asteroid was a polymict carbonaceous chondrite breccia, specifically a polymict C1 object that may have formed by late accretion at least 50–100 Ma after calcium–aluminum‐rich inclusions.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Alexander von Humboldt Foundation http://dx.doi.org/10.13039/100005156
    Keywords: ddc:549.112 ; ddc:523
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2022-10-04
    Description: The seasonal deposition and sublimation of CO2 represents a major element in the Martian volatile cycle. Here, co‐registration strategies are applied to Mars Orbiter Laser Altimeter profiles to obtain spatio‐temporal variations in snow/ice level of the Seasonal South Polar Cap (SSPC), in grid elements of 0.5° in latitude from 60° to 87°S and 10° in longitude. The maximum snow/ice level in the range of 2–2.5 m is observed over the Residual South Polar Cap. Peak level at the Residual South Polar Cap in Martian Year 25 (MY25) are found to be typically ∼0.5 m higher than those in MY24. The total volume is estimated to peak at approximately 9.4 × 1012 m3. In addition, a map of average bulk density of the SSPC during its recession is derived. It implies much more snowfall‐like precipitation at the Residual South Polar Cap and its surroundings than elsewhere on Mars.
    Description: Plain Language Summary: Each Martian year, up to one third of the atmosphere's CO2 is transported from pole to pole, being deposited and sublimated depending on the season. Accurate measurements of snow level and volume variations of the resulting seasonal polar caps can serve as crucial constraints on the Martian volatile cycles. In this study, we apply new approaches of analyzing the Mars Orbiter Laser Altimeter profiles, which lead to spatially and temporally resolved measurements of snow/ice level of the Seasonal South Polar Cap (SSPC). Based on that, the maximum snow level, interannual maximum level change from Martian Year 24 (MY24) to MY25, and how the volume of the SSPC changes with time are measured. We also estimate the bulk density of the snow/ice deposition during southern winter. It is inferred that there is much more snowfall at the Residual South Polar Cap and its surroundings than elsewhere on the planet.
    Description: Key Points: Using co‐registration of Mars Orbiter Laser Altimeter profiles, spatio‐temporal level variations of the seasonal snow/ice deposits at the Martian south pole are obtained. Maximum level can be up to 2.5 m; Peak level increased by ∼0.5 m at the Residual South Polar Cap from Martian Year 24 (MY24) to MY25. Obtained bulk density map of the seasonal deposits implies that snowfall concentrates at the Residual South Polar Cap and its surroundings.
    Description: China Scholarship Council
    Description: Deutsche Forschungsgemeinschaft
    Description: Institut National des Sciences de l’Univers
    Description: Centre National de la Recherche Scientifique
    Description: Centre National d’Etudes Spatiales
    Description: https://pds-geosciences.wustl.edu/missions/mgs/pedr.html
    Description: https://naif.jpl.nasa.gov/pub/naif/pds/data/mgs-m-spice-6-v1.0/mgsp_1000/data/
    Description: https://doi.org/10.17632/z59b9nd6s9.2
    Description: https://doi.org/10.14768/8cba4407-d6a0-4d16-aeaf-d0ebfd2b480a
    Keywords: ddc:523
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2022-10-06
    Description: We analyze Hubble Space Telescope observations of Ganymede made with the Space Telescope Imaging Spectrograph between 1998 and 2017 to generate a brightness map of Ganymede's oxygen emission at 1,356 Å. Our Mercator projected map demonstrates that the brightness along Ganymede's northern and southern auroral ovals strongly varies with longitude. To quantify this variation around Ganymede, we investigate the brightness averaged over 36°‐wide longitude corridors centered around the sub‐Jovian (0° W), leading (90° W), anti‐Jovian (180° W), and trailing (270° W) central longitudes. In the northern hemisphere, the brightness of the auroral oval is 3.7 ± 0.4 times lower in the sub‐Jovian and anti‐Jovian corridors compared to the trailing and leading corridors. The southern oval is overall brighter than the northern oval, and only 2.5 ± 0.2 times fainter on the sub‐ and anti‐Jovian corridors compared to the trailing and leading corridors. This demonstrates that Ganymede's auroral ovals are strongly structured in auroral crescents on the leading side (plasma downstream side) and on the trailing side (plasma upstream side). We also find that the brightness is not symmetric with respect to the 270° meridian, but shifted by ∼20° towards the Jovian‐facing hemisphere. Our map will be useful for subsequent studies to understand the processes that generate the aurora in Ganymede's non‐rotationally driven, sub‐Alfvénic magnetosphere.
    Description: Plain Language Summary: Northern lights often illuminate the night sky in a shimmering green or red tone at high geographic latitudes. This emission, scientifically referred to as aurora, is a result of electrically charged particles that move along Earth's magnetic field lines and interact with its atmosphere to produce auroral emission. Apart from the Earth, multiple other planets in our solar system also exhibit auroral emission. By characterizing the brightness and structure of these lights, we are therefore able to deduce insights about a planet's atmosphere, magnetic field and the physical processes occurring along the field lines from afar. In this work, we used observations from the Hubble Space Telescope to analyze the auroral emission of Jupiter's largest moon Ganymede. We combined multiple images of Ganymede to create the first complete map that displays the auroral brightness. Our map revealed that the emission on Ganymede's auroral ovals varies strongly in brightness with divisions into two distinct bright and faint regions. They resemble two auroral crescents in the north and south respectively, and demonstrate the uniqueness of Ganymede's aurora in comparison with the auroral ovals of other planets in the solar system.
    Description: Key Points: Brightness map of Ganymede's ultraviolet auroral emission has been constructed based on Hubble Space Telescope observations from 1998 to 2017. Auroral ovals are structured in upstream and downstream “crescents”. Brightness on sub‐Jovian and anti‐Jovian side is strongly reduced by a factor of 3–4 compared to upstream and downstream side.
    Description: European Research Council (ERC)
    Description: http://archive.stsci.edu/hst/
    Keywords: ddc:523
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2022-10-06
    Description: The behavior of the shallow portion of the subduction zone, which generates the largest earthquakes and devastating tsunamis, is still insufficiently constrained. Monitoring only a fraction of a single megathrust earthquake cycle and the offshore location of the source of these earthquakes are the foremost reasons for the insufficient understanding. The frictional‐elastoplastic interaction between the megathrust interface and its overlying wedge causes variable surface strain signals such that the wedge strain patterns may reveal the mechanical state of the interface. To contribute to this understanding, we employ Seismotectonic Scale Modeling and simplify elastoplastic megathrust subduction to generate hundreds of analog seismic cycles at a laboratory scale and monitor the surface strain signals over the model's forearc across high to low temporal resolutions. We establish two compressional and critical wedge configurations to explore the mechanical and kinematic interaction between the shallow wedge and the interface. Our results demonstrate that this interaction can partition the wedge into different segments such that the anelastic extensional segment overlays the seismogenic zone at depth. Moreover, the different segments of the wedge may switch their state from compression/extension to extension/compression domains. We highlight that a more segmented upper plate represents megathrust subduction that generates more characteristic and periodic events. Additionally, the strain time series reveals that the strain state may remain quasi‐stable over a few seismic cycles in the coastal zone and then switch to the opposite mode. These observations are crucial for evaluating earthquake‐related morphotectonic markers and short‐term interseismic time series of the coastal regions.
    Description: Key Points: Analog earthquake cycle experiments provide observations to evaluate the surface strain signals from the shallow megathrust. The extensional segment of the forearc overlays the seismogenic zone at depth. The strain state may remain quasi‐stable over a few seismic cycles in the coastal zone.
    Description: SUBITOP Marie Sklodowska‐Curie Action project from the European Union's EU Framework Programme
    Description: Deutsche Forschungsgemeinschaft (CRC 1114) “Scaling Cascades in Complex Systems”
    Description: https://doi.org/10.5880/fidgeo.2022.015
    Keywords: ddc:551.8 ; ddc:550.78
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2022-09-22
    Description: Io's movement relative to the plasma in Jupiter's magnetosphere creates Alfvén waves propagating along the magnetic field lines which are partially reflected along their path. These waves are the root cause for auroral emission, which is subdivided into the Io Footprint (IFP), its tail and leading spot. New observations of the Juno spacecraft by Mura et al. (2018, https://doi.org/10.1126/science.aat1450) have shown puzzling substructure of the footprint and its tail. In these observations, the symmetry between the poleward and equatorward part of the footprint tail is broken and the tail spots are alternatingly displaced. We show that the location of these bright spots in the tail are consistent with Alfvén waves reflected at the boundary of the Io torus and Jupiter's ionosphere. Then, we investigate three different mechanisms to explain this phenomenon: (a) The Hall effect in Io's ionosphere, (b) travel time differences of Alfvén waves between Io's Jupiter facing and its opposing side and (c) asymmetries in Io's atmosphere. For that, we use magnetohydrodynamic simulations within an idealized geometry of the system. We use the Poynting flux near the Jovian ionosphere as a proxy for the morphology of the generated footprint and its tail. We find that the Hall effect is the most important mechanism under consideration to break the symmetry causing the “Alternating Alfvén spot street.” The travel time differences contributes to enhance this effect. We find no evidence that the inhomogeneities in Io's atmosphere contribute significantly to the location or shape of the tail spots.
    Description: Key Points: Hall effect in Io's ionosphere produces Poynting flux morphology similar to observed alternating Alfvén spot street in Io footprint tail (IFP). Alfvén wave travel time difference and asymmetries in Io's atmosphere are not sufficient to produce observed structures in IFP. IFP emission inter‐spot distance correlates with reflected Alfvén waves.
    Description: Regional Computing Center of the University of Cologne (RRZK)
    Description: European Research Council (ERC)
    Description: http://plutocode.ph.unito.it/download.html
    Keywords: ddc:523
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2022-06-17
    Description: In preparation for future human habitats on Mars, it is important to understand the Martian radiation environment. Mars does not have an intrinsic magnetic field and Galactic cosmic ray (GCR) particles may directly propagate through and interact with its atmosphere before reaching the surface and subsurface of Mars. However, Mars has many high mountains and low‐altitude craters where the atmospheric thickness can be more than 10 times different from one another. We thus consider the influence of the atmospheric depths on the Martian radiation levels including the absorbed dose, dose equivalent and body effective dose rates induced by GCRs at varying heights above and below the Martian surface. The state‐of‐the‐art Atmospheric Radiation Interaction Simulator based on GEometry And Tracking Monte Carlo method has been employed for simulating particle interactions with the Martian atmosphere and terrain. We find that higher surface pressures can effectively reduce the heavy ion contribution to the radiation, especially the biologically weighted radiation quantity. However, enhanced shielding (both by the atmosphere and the subsurface material) can considerably enhance the production of secondary neutrons which contribute significantly to the effective dose. In fact, both neutron flux and effective dose peak at around 30 cm below the surface. This is a critical concern when using the Martian surface material to mitigate radiation risks. Based on the calculated effective dose, we finally estimate some optimized shielding depths, under different surface pressures (corresponding to different altitudes) and various heliospheric modulation conditions. This may serve for designing future Martian habitats.
    Description: Plain Language Summary: Thanks to Earth's magnetic field and atmosphere, high‐energy cosmic particles can be efficiently shielded from causing radiation risks for humans on Earth. However, for crewed space missions, in particular long‐term missions to Mars, space radiation is a major risk for the health of astronauts. Mars does not have an intrinsic global magnetic field and its atmosphere is too thin to effectively shield against radiation. Here, we model the Martian radiation environment induced by omnipresent cosmic rays in Mars's atmosphere and terrain. Given that Mars has many high mountains and low‐altitude craters where the atmospheric thickness can be more than 10 times different from one another, we also consider different model setups with different atmospheric profiles. We find that with more shielding the heavy ion contribution to the radiation is reduced while the neutron contribution is enhanced. For a given threshold of the annual biologically weighted radiation effective dose, for example, 100 mSv, the required regolith depth ranges between about 1 and 1.6 m. At a deep crater where the surface pressure is higher, the needed extra regolith shielding is slightly smaller. Our study may serve for mitigating radiation risks when designing future Martian habitats using natural surface material as shielding protection.
    Description: Key Points: We calculate dose, dose equivalent, and effective dose rates induced by various components of galactic cosmic rays on and below Mars surface. Surface pressure which is related to geographic altitude influences the surface and subsurface radiation level. Subsurface secondary neutrons contribute significantly to the effective dose and are a critical concern for radiation risks on Mars.
    Description: CAS strategic priority program
    Description: National Natural Science Foundation of China (NSFC) http://dx.doi.org/10.13039/501100001809
    Description: CNSA pre‐research Project on Civil Aerospace Technologies
    Description: The Key Research Program of the Chinese Academy of Sciences
    Description: German Aerospace Center (DLR)
    Description: https://et-wiki.physik.uni-kiel.de/atris/atris
    Keywords: ddc:523
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2022-11-01
    Description: The transport of sand by wind shapes the Earth's surface and constitutes one major factor for the emission of dust aerosols. The accurate modeling of wind‐blown sand transport is thus important to achieve reliable climate simulations and to make predictions about the propagation of desertification. Previous models of wind‐blown sand were designed to compute sand transport rates over a thick sand layer, such as the surface of large, active sand dunes. However, natural soils encompass a broad range of low sand availability conditions, such as crusted or bare soils. It has been a long‐standing open question how wind‐blown sand transport rates respond to wind velocity when the bare ground is covered by a thin layer of sand. Here we calculate the trajectories of wind‐blown sand grains and find that sand transport rates increase faster with wind speed under low sand availability conditions than over sand dunes. The reason for this behavior is elucidated in our simulations: The hopping sand grains fly higher the less sand is covering the hard surface. We obtain mathematical expressions for the sand transport rates as a function of the thickness of sand covering the bare soil, which will be important to improve climate models.
    Description: Key Points: We introduce a particle‐based model in investigating Aeolian (wind‐blown) sand transport when the sand cover on the soil is sparse. The scaling of the Aeolian transport rate with the wind shear velocity has a dependency on the sand cover thickness. There is an anomaly in the functional dependence of the transport rate on the sand cover thickness, depending on the rigid ground roughness.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://doi.org/10.6084/m9.figshare.19469501
    Keywords: ddc:550.78
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2023-01-12
    Description: Transient magnetic reconnection plays an important role in energetic particle acceleration in planetary magnetospheres. Jupiter's magnetosphere provides a unique natural laboratory to study processes of energy transport and transformation. Strong electric fields in spatially confined structures such as plasmoids can be responsible for ion acceleration to high energies. In this study we focus on the effectiveness of ion energization and acceleration in plasmoids. Therefore, we present a statistical study of plasmoid structures in the predawn magnetotail, which were identified in the magnetometer data of the Juno spacecraft from 2016 to 2018. We additionally use the energetic particle observations from the Jupiter Energetic Particle Detector Instrument which discriminates between different ion species. We are particularly interested in the analysis of the acceleration and energization of oxygen, sulfur, helium, and hydrogen ions. We investigate how the event properties, such as the radial distance and the local time of the observed plasmoids in the magnetotail, affect the ion intensities close to the current sheet center. Furthermore, we analyze if ion acceleration is influenced by magnetic field turbulence inside the plasmoids. We find significant heavy ion acceleration in plasmoids close to the current sheet center which is in line with the previous statistical results based on Galileo observations conducted by Kronberg et al. (2019, https://doi.org/10.1029/2019JA026553). The observed effectiveness of the acceleration is dependent on the position of Juno in the magnetotail during the plasmoid event observation. Our results show no correlation between magnetic field turbulence and nonadiabatic acceleration for heavy ions during plasmoids.
    Description: Key Points: Intensity of heavy ions is strongly increased during plasmoids close to the current sheet center. Significant increase of heavy ion intensities is observed in plasmoids with larger wave power. Acceleration of heavy and light ions in plasmoids due to resonant interaction with the magnetic field fluctuations could not be observed.
    Description: Volkswagen Foundation (VolkswagenStiftung) http://dx.doi.org/10.13039/501100001663
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: NASA
    Description: https://pds-ppi.igpp.ucla.edu/
    Keywords: ddc:523 ; plasmoids ; Juno ; JEDI ; ion acceleration
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2023-01-13
    Description: Recent observations by the Juno spacecraft have shown that electrons contributing to Jupiter's main auroral emission appear to be frequently characterized by broadband electron distributions, but also less often mono‐energetic electron distributions are observed as well. In this work, we quantitatively derive the occurrence rates of the various electron distributions contributing to Jupiter's aurora. We perform a statistical analysis of electrons measured by the JEDI‐instrument within 30–1,200 keV from Juno's first 20 orbits. We determine the electron distributions, either pancake, field‐aligned, mono‐energetic, or broadband, through energy and pitch angles to associate various acceleration mechanisms. The statistical analysis shows that field‐aligned accelerated electrons at magnetic latitudes greater than 76° are observed in 87.6% ± 7.2% of the intervals time averaged over the dipole L‐shells according the main oval. Pancake distributions, indicating diffuse aurora, are prominent at smaller magnetic latitudes (〈76°) with an occurrence rate of 86.2% ± 9.6%. Within the field‐aligned electron distributions, we see broadband distributions 93.0% ± 3.8% of the time and a small fraction of isolated mono‐energetic distribution structures 7.0% ± 3.8% of the time. Furthermore, these occurrence statistics coincide with the findings from our energy flux statistics regarding the electron distributions. Occurrence rates thus also characterize the overall energetics of the different distribution types. This study indicates that stochastic acceleration is dominating the auroral processes in contrast to Earth where the discrete aurora is dominating.
    Description: Plain Language Summary: With the Juno spacecraft arriving in the magnetosphere of Jupiter, first flyby particle measurements have changed the knowledge about the developing process of Jupiter's intense aurora. The observations of auroral particles show a stochastic behavior rather than a preference for specific energy. Our statistical analysis of the first 20 flybys at Jupiter compares the occurrence of different particle distributions and highlights the importance of different generation theories for Jupiter's aurora. A generation via stochastic rather than mono‐energetic behavior is deduced and supports previous observations.
    Description: Key Points: We present a statistical study of Jupiter's auroral electrons within 30–1,200 keV based on Juno's first 20 perijoves. Broadband electron distributions dominates Jupiter's main auroral zone as they are observed in 93% ± 3% of the intervals studied here. Dominance of broadband distributions underlines the importance of a turbulent or stochastic acceleration process.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Universität zu Köln http://dx.doi.org/10.13039/501100008001
    Description: https://lasp.colorado.edu/home/mop/files/2015/02/CoOrd_systems7.pdf
    Description: https://pds-ppi.igpp.ucla.edu/mission/JUNO/JNO/JEDI
    Description: https://lasp.colorado.edu/home/mop/files/2020/04/20190412_Imai_MagFootReader_UIowa_rev.pdf
    Keywords: ddc:523 ; auroral precipitation budget ; particle distribution ; Jupiter ; Juno
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2023-01-20
    Description: We constrain Europa's tenuous atmosphere on the subsolar hemisphere by combining two sets of observations: oxygen emissions at 1,304 and 1,356 Å from Hubble Space Telescope (HST) spectral images and Galileo magnetic field measurements from its closest encounter, the E12 flyby. We describe Europa's atmosphere with three neutral gas species: global molecular (O2) and atomic oxygen (O), and localized water (H2O) present as a near‐equatorial plume and as a stable distribution concentrated around the subsolar point on the moon's trailing hemisphere. Our combined modeling based on the ratio of OI 1,356 to OI 1,304 Å emissions from Roth (2021; https://doi.org/10.1029/2021gl094289) and on magnetic field data allows us to derive constraints on the density and location of O2 and H2O in Europa's atmosphere. We demonstrate that 50% of the O2 and between 50% and 75% of the H2O abundances from Roth (2021; https://doi.org/10.1029/2021gl094289) are required to jointly explain the HST and Galileo measurements. These values are conditioned on a column density of O close to the upper limit of 6 × 1016 m−2 derived by Roth (2021; https://doi.org/10.1029/2021gl094289), and on a strongly confined stable H2O atmosphere around the subsolar point. Our analysis yields column densities of 1.2 × 1018 m−2 for O2, and 1.5 × 1019 to 2.2 × 1019 m−2 at the subsolar point for H2O. Both column densities, however, still lie within the uncertainties of Roth (2021; https://doi.org/10.1029/2021gl094289). Our results provide additional evidence for the existence of a stable H2O atmosphere at Europa.
    Description: Key Points: We combine Hubble Space Telescope spectral images and Galileo magnetometer data to constrain the density and location of water vapor in Europa's atmosphere. We simulate the plasma interaction for the Galileo E12 flyby with a three‐component atmosphere: global O2, stable confined H2O, and a plume. Using 50% of O2 and from 50% to 75% of H2O column densities from Roth (2021) yields magnetic field signatures consistent with both observations.
    Description: European Research Council http://dx.doi.org/10.13039/100010663
    Description: http://doi.org/10.17189/1519667
    Keywords: ddc:523 ; Europa ; Jupiter ; moon‐magnetosphere interaction ; icy moons ; atmosphere
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2023-01-20
    Description: Understanding conditions in the Earth's interior requires data derived from laboratory experiments. Such experiments provide important insights into the conditions under which mineral reactions take place as well as processes that control the localization of deformation in the deep Earth. We performed Griggs‐type general shear experiments in combination with numerical models, based on continuum mechanics, to quantify the effect of evolving sample geometry of the experimental assembly. The investigated system is constituted by CaCO3 and the experimental conditions are near the calcite‐aragonite phase transition. All experimental samples show a heterogeneous distribution of the two CaCO3 polymorphs after deformation. This distribution is interpreted to result from local stress variations. These variations are in agreement with the observed phase‐transition patterns and grain‐size gradients across the experimental sample. The comparison of the mechanical models with the sample provides insights into the distribution of local mechanical parameters during deformation. Our results show that, despite the use of homogeneous sample material (here calcite), stress variations develop due to the experimental geometry. The comparison of experiments and numerical models indicates that aragonite formation is primarily controlled by the spatial distribution of mechanical parameters. Furthermore, we monitor the maximum pressure and σ1 that is experienced in every part of our model domain for a given amount of time. We document that local pressure (mean stress) values are responsible for the transformation. Therefore, if the role of stress as a thermodynamic potential is investigated in similar experiments, an accurate description of the state of stress is required.
    Description: Plain Language Summary: To understand processes in the Earth's interior, we can simulate the extreme conditions via laboratory experiments by compressing and heating millimeter‐sized samples. Such experiments provide important insights into mineral reactions and processes that control deformation in the Earth. We performed rock deformation experiments close to calcite‐aragonite phase (CaCO3) transition. Deforming the sample leads to stress variations due to the experimental geometry. These variations are documented by locally occurring phase transition and variation in the grain‐size. We performed computer simulations of the deforming sample to quantify, for the first time, the effect of sample geometry on the distribution of mechanical variables, such as stress, pressure, or deformation, inside the sample. The new findings document that any mechanical variable cannot be treated as homogeneous within the sample because the variations can be significant. Deforming the sample leads to stress concentrations. By comparing the experimental observations and simulation results, we show that locally high pressure triggers the phase transition to aragonite, the high‐pressure polymorph. This has important consequences for further thermodynamic interpretations of systems under stress, where the role of deformation, pressure, or maximum principal stress on mineral reactions is investigated.
    Description: Key Points: Heterogeneous stress distribution in deformation experiments is investigated by numerical models, locally resolving mechanical variables. Resolving the mechanical variables in experiments suggests a link between local pressure (mean stress) variations and phase transition. Thermodynamic interpretations of deformed samples require a detailed understanding of local mechanical parameters.
    Description: ETH Zürich Foundation http://dx.doi.org/10.13039/501100012652
    Description: https://doi.org/10.5281/zenodo.6974768
    Keywords: ddc:550.78 ; deformation experiments ; numerical modeling ; phase transition ; rock deformation ; localization ; stress variations
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2023-06-17
    Description: Knowledge of pressure-dependent static and dynamic moduli of porous reservoir rocks is of key importance for evaluating geological setting of a reservoir in geo-energy applications. We examined experimentally the evolution of static and dynamic bulk moduli for porous Bentheim sandstone with increasing confining pressure up to about 190 MPa under dry and water-saturated conditions. The static bulk moduli (Ks) were estimated from stress–volumetric strain curves while dynamic bulk moduli (Kd) were derived from the changes in ultrasonic P- and S- wave velocities (~ 1 MHz) along different traces, which were monitored simultaneously during the entire deformation. In conjunction with published data of other porous sandstones (Berea, Navajo and Weber sandstones), our results reveal that the ratio between dynamic and static bulk moduli (Kd/Ks) reduces rapidly from about 1.5 − 2.0 at ambient pressure to about 1.1 at high pressure under dry conditions and from about 2.0 − 4.0 to about 1.5 under water-saturated conditions, respectively. We interpret such a pressure-dependent reduction by closure of narrow (compliant) cracks, highlighting that Kd/Ks is positively correlated with the amount of narrow cracks. Above the crack closure pressure, where equant (stiff) pores dominate the void space, Kd/Ks is almost constant. The enhanced difference between dynamic and static bulk moduli under water saturation compared to dry conditions is possibly caused by high pore pressure that is locally maintained if measured using high-frequency ultrasonic wave velocities. In our experiments, the pressure dependence of dynamic bulk modulus of water-saturated Bentheim sandstone at effective pressures above 5 MPa can be roughly predicted by both the effective medium theory (Mori–Tanaka scheme) and the squirt-flow model. Static bulk moduli are found to be more sensitive to narrow cracks than dynamic bulk moduli for porous sandstones under dry and water-saturated conditions.
    Description: Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum - GFZ (4217)
    Keywords: ddc:550.78 ; Porous sandstone ; Static bulk modulus ; Dynamic bulk modulus ; Narrow (compliant) cracks ; Equant (stiff) pores
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2023-06-16
    Description: The angular momentum of the Earth‐Moon system was initially dominated by Earth's rotation with a short solar day of around 5 hr duration. Since then, Earth gradually transferred angular momentum through tidal friction to the orbit of the Moon, resulting in an increasing orbital radius and a deceleration of Earth's rotation. Geologic observations of tidal deposits can be used to verify and constrain models of lunar orbital evolution. In this work we reexamine the oldest tidal record suitable for analysis from the Moodies Group, South Africa, with an age of 3.22 billion years. Time frequency analysis of the series of thicknesses of the sandstone‐shale layers yields a periodicity of 15.0 layers, taking into account the possibility of missing laminae. Assuming a mixed tidal system, the duration of two neap‐spring‐neap cycles was 30.0 lunar days for dominant semidiurnal or 30.0 sidereal days for dominant diurnal tides. We derive the relationship between this observation and the past Earth‐Moon distance and re‐visit related published work. We find that the Earth‐Moon distance 3.2 billion years ago was about 70% of today's value. The Archean solar day was around 13 hr long. The ratio of solar to lunar tide‐raising torque controls the leakage of angular momentum from the Earth‐Moon system, but deviation from the assumed ratio of 0.211 results in only moderate changes. A duration of a postulated 21‐hr atmospheric resonance shorter than 200 million years would be consistent with our observation; it would significantly alter the Earth‐Moon distance.
    Description: Plain Language Summary: After its formation 4.5 billion years ago, the Moon circled Earth in a low orbit while Earth rotated faster than today around its axis. In the course of time, the Moon gradually evolved to a higher orbit while the rotation of Earth slowed due to the frictional effect of tides. Theoretical models can describe the evolution of the distance between Earth and the Moon with time until today. Counting the thickness of thin sandstone‐shale couplets of known age, which are layered due to tides, can constrain these models. In this work we reexamine the oldest of these geological records in the Moodies Group of South Africa, with an age of 3.2 billion years. The thickness of layers changes with a periodicity of 15 layers which is assumed to originate from varying strengths of currents between successive spring tides. Kepler's third law and the law of conservation of angular momentum allow us to derive the parameters of the lunar orbit from this measurement. According to our analysis, the Earth‐Moon distance was around 70% of today's value 3.2 billion years ago. The faster rotation rate of Earth resulted in a length of day of around 13 hr.
    Description: Key Points: Time frequency analysis yields 30.0 layers per two neap‐spring‐neap cycles, taking missing laminae in the tidal record into account. Earth‐Moon distance of ca. 70% of today's value 3.2 billion years ago results in a solar day of 13 hr duration. Duration of 21‐hr atmospheric resonance for 〈200 million years is consistent with our observation, alters estimate of Earth‐Moon distance.
    Keywords: ddc:523 ; Earth‐Moon system ; lunar orbital evolution ; tidal friction ; Moodies Group ; tidal deposits ; time‐frequency analysis
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2023-06-12
    Description: A multiphase-field approach for elasto-plastic and anisotropic brittle crack propagation in geological systems consisting of different regions of brittle and ductile materials is presented and employed to computationally study crack propagation. Plastic deformation in elasto-plastic materials such as frictional, granular or porous materials is modelled with the pressure-sensitive Drucker-Prager plasticity model. This plasticity model is combined with a multiphase-field model fulfilling the mechanical jump conditions in diffuse solid-solid interfaces. The validity of the plasticity model with phase-inherent stress and strain fields is shown, in comparison with sharp interface finite element solutions. The proposed model is capable of simulating crack formation in heterogeneous multiphase systems comprising both purely elastic and inelastic phases. We investigate the influence of different material parameters on the crack propagation with tensile tests in single- and two-phase materials. To show the applicability of the model, crack propagation in a multiphase domain with brittle and elasto-plastic components is performed.
    Keywords: ddc:550.78 ; Multiphase-field ; Drucker-Prager plasticity ; Brittle fracture ; Elasto-plastic fracture
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2023-06-19
    Description: Energetic particle acceleration and energization in planetary magnetotails are often associated with dipolarization fronts characterized by a rapid increase of the meridional component of the magnetic field. Despite many studies of dipolarization events in Earth's magnetotail, Jupiter’s magnetotail provides an almost ideal environment to study high‐energetic ion acceleration by dipolarization fronts because of its large spatial scales and plasma composition of heavy and light ions. In this study, we focus on the response of different high‐energetic ion intensities (H, He, S, and O) to prominent magnetic dipolarization fronts inside the Jovian magnetotail. We investigate if ion energization and acceleration are present in the observations around the identified dipolarization fronts. Therefore, we present a statistical study of 87 dipolarization front signatures, which are identified in the magnetometer data of the Juno spacecraft from July 2016 to July 2021. For the ion intensity analysis, we use the energetic particle observations from the Jupiter Energetic Particle Detector Instrument. Our statistical study reveals that less than half of the identified events are accompanied by an increase of the ion intensities, while most of the other events show no significant change in the ion intensity dynamics. In about 40% of the events located in the dawn sector a significant decrease of the energy spectral index is detected indicating ion acceleration by the dipolarization fronts.
    Description: Key Points: Eighty‐seven prominent dipolarization front signatures are observed in the MAG data during Juno's prime mission during 21:00–05:30 local time. Less than half of the identified events are accompanied by an increase of the ion intensities. In 40% of the events observed on the dawn side a significant decrease of the energy spectral index indicates ion acceleration by the fronts.
    Description: Volkswagen Foundation http://dx.doi.org/10.13039/501100001663
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://doi.org/10.17189/1519711
    Description: https://doi.org/10.17189/1519713
    Keywords: ddc:523 ; Juno ; Jovian magnetotail ; energetic ions ; dipolarization fronts ; JEDI
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2023-06-19
    Description: The knowledge of tree species dependent turnover of soil organic matter (SOM) is limited, yet required to understand the carbon sequestration function of forest soil. We combined investigations of 13C and 15N and its relationship to elemental stoichiometry along soil depth gradients in 35-year old monocultural stands of Douglas fir (Pseudotsuga menziesii), black pine (Pinus nigra), European beech (Fagus sylvatica) and red oak (Quercus rubra) growing on a uniform post-mining soil. We investigated the natural abundance of 13C and 15N and the carbon:nitrogen (C:N) and oxygen:carbon (O:C) stoichiometry of litterfall and fine roots as well as SOM in the forest floor and mineral soil. Tree species had a significant effect on SOM δ13C and δ15N reflecting significantly different signatures of litterfall and root inputs. Throughout the soil profile, δ13C and δ15N were significantly related to the C:N and O:C ratio which indicates that isotope enrichment with soil depth is linked to the turnover of organic matter (OM). Significantly higher turnover of OM in soils under deciduous tree species depended to 46% on the quality of litterfall and root inputs (N content, C:N, O:C ratio), and the initial isotopic signatures of litterfall. Hence, SOM composition and turnover also depends on additional—presumably microbial driven—factors. The enrichment of 15N with soil depth was generally linked to 13C. In soils under pine, however, with limited N and C availability, the enrichment of 15N was decoupled from 13C. This suggests that transformation pathways depend on litter quality of tree species.
    Description: Universität Trier (3163)
    Keywords: ddc:550.78 ; Stable isotopes ; Microbial turnover ; Litter ; Roots ; Common garden experiment ; Recultivated forest soil
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2023-06-19
    Description: Dissolved organic carbon (DOC) from Oa horizons has been proposed to be an important contributor for subsoil organic carbon stocks. We investigated the fate of DOC by directly injecting a DOC solution from 13C labelled litter into three soil depths at beech forest sites. Fate of injected DOC was quantified with deep drilling soil cores down to 2 m depth, 3 and 17 months after the injection. 27 ± 26% of the injected DOC was retained after 3 months and 17 ± 22% after 17 months. Retained DOC was to 70% found in the first 10 cm below the injection depth and on average higher in the topsoil than in the subsoil. After 17 months DOC in the topsoil was largely lost (− 19%) while DOC in the subsoil did not change much (− 4.4%). Data indicated a high stabilisation of injected DOC in the subsoils with no differences between the sites. Potential mineralisation as revealed by incubation experiments however, was not different between DOC injected in topsoil or subsoils underlining the importance of environmental factors in the subsoil for DOC stabilisation compared to topsoil. We conclude that stability of DOC in subsoil is primary driven by its spatial inaccessibility for microorganisms after matrix flow while site specific properties did not significantly affect stabilisation. Instead, a more fine-textured site promotes the vertical transport of DOC due to a higher abundance of preferential flow paths.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:550.78 ; Forest subsoils ; Cascade model ; Incubation experiment ; 13C ; Field experiment
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2024-01-19
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Faults and fractures may emplace fresh material onto Europa's surface, originating from shallow reservoirs within the ice shell or directly from the subsurface ocean. Ménec Fossae is a region of particular interest as it displays the interaction of several geological features, including bands, double ridges, chaotic terrains, and fossae, within a relatively small area. These features might affect the emplacement of buried material and subsequent exposure of fresh volatiles, prime targets for the upcoming 〈italic〉JUICE〈/italic〉 and 〈italic〉Europa Clipper〈/italic〉 missions in order to assess Europa's astrobiological potential. Previous studies have already revealed that a deep central trough is present at Ménec Fossae, flanked by several subparallel minor troughs and by a few asymmetrical scarps with lobate planforms. The presence of such features has motivated this study, given its potential to provide clear indications on the tectonic regime involved. Through detailed geomorphological‐structural mapping using 〈italic〉Galileo〈/italic〉 Solid State Imager data and terrain analysis on Digital Terrain Models, we could develop a novel hypothesis on the formation mechanisms that might have been involved in the study area. We propose that Ménec Fossae has been shaped by transtensional (strike‐slip with an extensional component) tectonic activity, as indicated by the orientation and relationship of the tectonic features present. Likely, such transtensional tectonism occurred above or associated with shallow subsurface water, consistent with the overall morphology and topography of the study area and the presence of chaotic terrains and double ridges. These results strengthen the case for widely distributed shallow water reservoirs within Europa's ice shell.〈/p〉
    Description: Plain Language Summary: Tectonic cracks, which can originate from shallow water bodies within the icy crust or directly from the subsurface ocean, may emplace fresh material onto Europa's surface. This kind of material is a prime target for upcoming space missions to assess Europa's habitability. We investigated the area of Ménec Fossae, which is characterized by many different geological features and structures within a relatively small area and can therefore provide clues on the mechanisms that shaped it. Our analyses were based on imaging and new topographic data, we developed a new hypothesis involving a combination of different tectonic styles as the driving processes for the formation of this area. This kind of tectonic activity could be related to a liquid water pocket located at a shallow depth within Europa's icy crust, which might explain the concurrent presence of some particular geological features in the area. These findings strengthen the case for the wide distribution of shallow water pockets distributed within the icy crust, which could allow future space missions to more easily assess Europa's habitability.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Detailed geomorphological‐structural analysis of Ménec Fossae has been conducted, using imaging and newly processed topographic data〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Ménec Fossae has been shaped by transtensional tectonic activity, potentially related to the emplacement of a shallow water reservoir〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The hypothesis that shallow water reservoirs are widely distributed within Europa's ice shell is strengthened〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: HORIZON EUROPE European Research Council http://dx.doi.org/10.13039/100019180
    Description: https://doi.org/10.17189/1520425
    Description: https://doi.org/10.5066/P9VKKK7C
    Description: https://doi.org/10.35003/8CU23S
    Keywords: ddc:523 ; Europa ; tectonics ; strike‐slip ; digital terrain models ; shallow water bodies ; Europa Clipper
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2024-01-15
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉On 7 June 2021 the Juno spacecraft visited Ganymede and provided the first in situ observations since Galileo's last flyby in 2000. The measurements obtained along a one‐dimensional trajectory can be brought into global context with the help of three‐dimensional magnetospheric models. Here we apply the magnetohydrodynamic model of Duling et al. (2014, 〈ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1002/2013ja019554"〉https://doi.org/10.1002/2013ja019554〈/ext-link〉) to conditions during the Juno flyby. In addition to the global distribution of plasma variables we provide mapping of Juno's position along magnetic field lines, Juno's distance from closed field lines and detailed information about the magnetic field's topology. We find that Juno did not enter the closed field line region and that the boundary between open and closed field lines on the surface matches the poleward edges of the observed auroral ovals. To estimate the sensitivity of the model results, we carry out a parameter study with different upstream plasma conditions and other model parameters.〈/p〉
    Description: Plain Language Summary: In June 2021 the Juno spacecraft flew close to Ganymede, the largest moon of Jupiter, and explored its magnetic and plasma environment. Ganymede's own magnetic field forms a magnetosphere, which is embedded in Jupiter's large‐scale magnetosphere, and which is unique in the solar system. The vicinity of Ganymede is separated into regions that differ in whether the magnetic field lines connect to Ganymede's surface at both or one end or not at all. These regions are deformed by the plasma flow and determine the state of the plasma and the location of Ganymede's aurora. We perform simulations of the plasma flow and interaction to reveal the three‐dimensional structure of Ganymede's magnetosphere during the flyby of Juno. The model provides the three‐dimensional state of the plasma and magnetic field, predicted locations of the aurora and the geometrical magnetic context for Juno's trajectory. These results are helpful for the interpretation of the in situ and remote sensing obtained during the flyby. We find that Juno did not cross the region with field lines that connect to Ganymede's surface at both ends. Considering possible values for unknown model parameters, we also estimate the uncertainty of the model results.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Our magnetohydrodynamic model illustrates the state of Ganymede's magnetosphere during Juno's flyby and locates its trajectory outside closed field lines〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The location of the open‐closed‐field line‐boundary is predicted and matches the poleward edges of the aurora as observed by Juno〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉We investigate model uncertainties caused by incomplete knowledge of upstream conditions and other parameters〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: H2020 European Research Council http://dx.doi.org/10.13039/100010663
    Description: University of Iowa http://dx.doi.org/10.13039/100008893
    Description: National Aeronautics and Space Administration http://dx.doi.org/10.13039/100000104
    Description: Southwest Research Institute http://dx.doi.org/10.13039/100011766
    Description: http://www.netpurgatory.com/zeusmp.html
    Description: https://doi.org/10.17189/1519711
    Description: https://doi.org/10.5281/zenodo.7096938
    Description: https://doi.org/10.5281/zenodo.7105334
    Keywords: ddc:523 ; Ganymede ; Juno spacecraft ; MHD model ; magnetosphere ; magnetohydrodynamics ; simulation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2023-11-17
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Laser ablation multi‐collector‐inductively coupled plasma‐mass spectrometry (LA‐MC‐ICP‐MS) has become a valuable tool for the 〈italic toggle="no"〉in situ〈/italic〉 measurement of the boron isotope composition of geological samples at high (tens to hundreds of μm) spatial resolution. That said, this application suffers from significant analytical challenges. We focus in this study on the underlying processes of two of the main causes for inaccuracies using this technique. We provide empirical evidence that not only Ca ions (Sadekov 〈italic〉et al〈/italic〉. 2019, Standish 〈italic〉et al〈/italic〉. 2019, Evans 〈italic〉et al〈/italic〉. 2021) but also Ar ions, that are reflected within the flight tube of the mass spectrometer, are the source for previously reported issues with spectral baselines. We also address the impact of plasma conditions on the instrumental mass fractionation as a source for matrix‐ and mass‐load‐related analytical biases. Comparing experimental data with the results of a dedicated release and diffusion model (RDM) we estimate that a close to complete (~ 97%) release of boron from the sample aerosol is needed to allow for consistently accurate LA boron isotope measurement results without the need for corrections.〈/p〉
    Description: Key Points: 〈list list-type="bullet" id="ggr12500-list-0101"〉 〈list-item〉〈p〉Two separate main sources for inaccuracy of boron isotope measurements by laser ablation: B isotope fractionation in the ICP and the known scattered ion baseline problem.〈/p〉〈/list-item〉 〈list-item〉〈p〉Boron isotope fractionation in the ICP varies systematically with plasma condition (NAI).〈/p〉〈/list-item〉 〈list-item〉〈p〉Behaviour of B isotopes within the ICP simulated by a release and diffusion model (RDM).〈/p〉〈/list-item〉 〈/list〉 〈boxed-text position="anchor" content-type="graphic" id="ggr12511-blkfxd-0001" xml:lang="en"〉 〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:16394488:media:ggr12511:ggr12511-toc-0001"〉 〈/graphic〉 〈/boxed-text〉 〈/p〉
    Keywords: ddc:550.78 ; boron isotopes ; laser ablation ; scattered ions ; mass fractionation ; plasma conditions
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2023-11-13
    Description: Rifting and continental break‐up are fundamental tectonic processes, the understanding of which is of prime importance. However, the vast temporal and spatial scales involved pose major limitations to researchers. Analog tectonic modeling represents a great means to mitigate these limitations, but studying the complex internal deformation of lithospheric‐scale models remains a challenge. We therefore present a novel method for lithospheric‐scale rifting models that are uniquely monitored in an X‐ray CT scanner, which combined with digital image correlation (DIC) techniques, provides unparalleled insights into model deformation. Our first models illustrate how the degree of coupling between competent lithospheric layers, which are separated by a weak lower crustal layer, strongly impacts rift system development. Low coupling isolates the upper crust from the upper lithospheric mantle layer below, preventing an efficient transfer of deformation between both layers. By contrast, fast rifting increases coupling, so that deformation in the mantle is efficiently transferred to the upper crust, inducing either a symmetric or asymmetric (double) rift system. Furthermore, oblique divergence may lead to en echelon graben arrangements and delayed exhumation of the lower crustal layer. The successful application of our novel modeling approach, yielding these first‐order insights, provides a clear incentive to continue running lithospheric‐scale rifting models, and to apply advanced monitoring techniques to extract as much information from models as possible. There is indeed a broad range of opportunities for follow‐up studies within (and beyond) the field of rift tectonics.
    Description: Plain Language Summary: The Earth's surface consists of tectonic plates that are in constant motion, driven by titanic forces deep within the planet. One of the key plate tectonic processes is the stretching (rifting) and eventual break‐up of continents, leading to the opening of oceanic basins. Understanding the mechanisms involved is of great importance. However, studying continental break‐up is challenging due to the vast size of plate tectonic systems, and the extensive timescales over which they evolve: plate tectonic processes can rarely be directly observed. A practical solution to this issue is the use of analog experiments, which reproduce these processes in a matter of hours or days in a modestly sized laboratory. However, a major obstacle that remains is the opacity of these models: similar to tectonic plates, these models are opaque, so that their internal evolution remains hidden. X‐ray CT‐scanning provides an unrivaled means to reveal a model's internal structures during a model run. Here we present the first‐ever application of CT‐scanning to monitor relatively complex lithospheric‐scale models of continental rifting. The CT scans provide unique insights into the internal evolution of such models, and we point out various possibilities for interesting follow‐up studies.
    Description: Key Points: We present the first‐ever lithospheric‐scale analog models of rifting monitored in a CT scanner, revealing their complex internal deformation. We quantify this deformation via Digital Image Correlation analysis, and show the impact of coupling and oblique rifting on rift evolution. The successful application of our novel modeling approach provides a strong incentive for follow‐up tectonic modeling studies.
    Description: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung http://dx.doi.org/10.13039/501100001711
    Description: Helmholtz‐Zentrum Potsdam ‐ Deutsches GeoForschungsZentrum GFZ http://dx.doi.org/10.13039/501100010956
    Description: https://doi.org/10.5880/fidgeo.2022.030
    Description: https://doi.org/10.5880/fidgeo.2022.008
    Description: https://doi.org/10.5880/fidgeo.2023.006
    Description: https://doi.org/10.5880/fidgeo.2023.005
    Keywords: ddc:550.78 ; rifting ; analog modeling ; continental break‐up ; X‐ray CT‐scanning ; visualization ; monitoring
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2023-11-13
    Description: The aim of this work is to provide a complete data set of direct shear tests and to propose a corresponding simulation approach. Tests have been conducted on crystalline rock samples applying constant normal load (CNL) and constant normal stiffness (CNS) boundary conditions. A physical consistent algorithm which explicitly calculates the forces acting on the fracture surface (FFS) has been developed. This FFS approach can explain the occurrence of surface degradation and shows the main shear characteristics. After all, shearing of rough rock joints remains a complex process and the differences between laboratory and simulation results are still significant in some cases. All data and input files are provided free for download and testing.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Technische Universität Bergakademie Freiberg (3135)
    Description: http://www.ufz.de/record/dmp/archive/7925
    Description: http://www.ufz.de/record/dmp/archive/7924
    Description: https://github.com/Poetschke/Ecodist
    Keywords: ddc:550.78 ; GeomInt project ; Direct shear test ; Rock surface scanning ; Rock joint ; Joint constitutive model
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2023-11-14
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Standard models of force balance along Jovian field lines predict the location of the Io Plasma Torus to be the centrifugal equator of Jupiter’s magnetosphere, that is, the position along the magnetic field lines farthest away from Jupiter’s rotational axis. In many models, the centrifugal equator is assumed to lay on a plane, calculated from a (shifted) dipole magnetic field, rather than on a warped surface which incorporates Jupiter’s higher magnetic field moments. In this work, we use Hubble Space Telescope observations of the Io Main Footprint to constrain density, scale height, and lateral position of the Io Plasma Torus. Therefore, we employ the leading angle of the footprints to calculate expected travel times of Alfvén waves and carry out an inversion of the observations. For the magnetic field, we use the JRM33 magnetic field model. The inversion results show peak densities between 〈italic〉ρ〈/italic〉〈sub〉0〈/sub〉 = 1,830 cm〈sup〉−3〈/sup〉 and 〈italic〉ρ〈/italic〉〈sub〉0〈/sub〉 = 2,032 cm〈sup〉−3〈/sup〉 and scale heights between 〈italic〉H〈/italic〉 = 0.92〈italic〉R〈/italic〉〈sub〉〈italic〉J〈/italic〉〈/sub〉 and 〈italic〉H〈/italic〉 = 0.97〈italic〉R〈/italic〉〈sub〉〈italic〉J〈/italic〉〈/sub〉 consistent with current literature values. Using a warped multipole centrifugal equator instead of a planar dipole increases the quality of the fit by about 25%. We additionally develop two tests to confirm that the multipole centrifugal equator from the JRM33 model fits explains the applied data set better than the dipole centrifugal equator. The quadropole moments alter Io’s relative position to the torus, which changes the plasma density around Io by up to Δ〈italic〉ρ〈/italic〉/〈italic〉ρ〈/italic〉 = 20%.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Based on the Io Footprint positions, we show quantitatively that the Io Plasma Torus is centered on the centrifugal equator of Jupiter’s multipole magnetic field〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Position of the Io Footprint can be used to constrain a density model of the Io Plasma Torus〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The displacement of the Io Plasma Torus due to higher magnetic field moments can change the plasma density at Io by up to 20%〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: HORIZON EUROPE European Research Council
    Description: International Space Science Institute (ISSI) in Bern, through ISSI International Team project 515
    Description: https://doi.org/10.5281/zenodo.8214702
    Keywords: ddc:523 ; Io Plasma Torus ; inversion ; Io Footprint ; Alfven wings ; magnetic field model
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2023-11-14
    Description: We report results of Hubble Space Telescope observations from Ganymede's orbitally trailing side which were taken around the flyby of the Juno spacecraft on 7 June 2021. We find that Ganymede's northern and southern auroral ovals alternate in brightness such that the oval facing Jupiter's magnetospheric plasma sheet is brighter than the other one. This suggests that the generator that powers Ganymede's aurora is the momentum of the Jovian plasma sheet north and south of Ganymede's magnetosphere. Magnetic coupling of Ganymede to the plasma sheet above and below the moon causes asymmetric magnetic stresses and electromagnetic energy fluxes ultimately powering the auroral acceleration process. No clear statistically significant timevariability of the auroral emission on short time scales of 100s could be resolved. We show that electron energy fluxes of several tens of mW m−2 are required for its OI 1,356 Å emission making Ganymede a very poor auroral emitter.
    Description: Plain Language Summary: Jupiter's moon Ganymede is the largest moon in the solar system and the only known moon with an intrinsic magnetic field and two auroral ovals around its north and south poles. Earth also possesses two auroral ovals, which are bands of emission around its poles. This emission is also referred to as northern and southern lights. We use the Hubble Space Telescope to observe Ganymede's aurora around the time when NASA's Juno spacecraft had a close flyby at Ganymede. We find that the brightness of the northern and southern ovals alternate in intensity with a period of 10 hr. Additionally, we derive that an energy flux of several tens of milli‐Watt per square meter is necessary to power the auroral emission. This energy flux comes from energetic electrons accelerated in the vicinity of Ganymede.
    Description: Key Points: Hubble Space Telescope observations of Ganymede's orbitally trailing hemisphere on 7 June 2021 in support of Juno flyby. Brightness ratio of northern and southern auroral ovals oscillates such that the oval facing the Jovian plasma sheet is brighter. Oscillation suggests the aurora is driven by magnetic stresses coupling the moon's magnetic field to the surrounding Jovian plasma sheet.
    Description: European Research Council, ERC
    Description: NASA
    Description: http://archive.stsci.edu/hst/
    Keywords: ddc:523 ; Ganymede ; auroral ovals ; Hubble Space Telescope ; Juno spacecraft
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2024-03-25
    Description: This study aims to experimentally investigate the possibility of combining two extended continuum theories for two‐phase flow. One of these theories considers interfacial area as a separate state variable, and the other explicitly discriminates between connected and disconnected phases. This combination enhances our potential to effectively model the apparent hysteresis, which generally dominates two‐phase flow. Using optical microscopy, we perform microfluidic experiments in quasi‐2D artificial porous media for various cyclic displacement processes and boundary conditions. Specifically for a number of sequential drainage processes, with detailed image (post‐)processing, pore‐scale parameters such as the interfacial area between the phases (wetting, non‐wetting, and solid), and local capillary pressure, as well as macroscopic parameters like saturation, are estimated. We show that discriminating between connected and disconnected clusters and the concept of the interfacial area as a separate state variable can be an appropriate way of modeling hysteresis in a two‐phase flow scheme. The drainage datasets of capillary pressure, saturation, and specific interfacial area, are plotted as a surface, given by f (P〈sup〉c〈/sup〉, s〈sup〉w〈/sup〉, a〈sup〉wn〈/sup〉) = 0. These surfaces accommodate all data points within a reasonable experimental error, irrespective of the boundary conditions, as long as the corresponding liquid is connected to its inlet. However, this concept also shows signs of reduced efficiency as a modeling approach in datasets gathered through combining experiments with higher volumetric fluxes. We attribute this observation to the effect of the porous medium geometry on the phase distribution. This yields further elaboration, in which this speculation is thoroughly studied and analyzed.
    Description: Key Points: A large number of two‐phase displacement microfluidic experiments under different boundary conditions are performed. A code has been developed in order to spatially and temporally resolve the experiments with high accuracy. Including both connectivity and interfacial area as state variables in two‐phase flow continuum theories improves modeling hysteresis.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Stuttgart Center for Simulation Science, Universität Stuttgart http://dx.doi.org/10.13039/501100022175
    Description: https://doi.org/10.18419/darus-2250
    Keywords: ddc:550.78 ; microfluidic experiments ; optical microscopy ; two‐phase flow in porous medium ; image processing ; extended theory of porous medium ; phase connectivity
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2024-04-03
    Description: To complement the information provided by deterministic seismic imaging at length scales above a certain resolution limit we present the first application of adjoint envelope tomography (AET) to experimental data. AET uses the full envelopes of seismic records including scattered coda waves to obtain information about the distribution of absorption and small‐scale heterogeneity which provide complementary information about the investigated medium. Being below the resolution limit this small‐scale structure cannot be resolved by conventional tomography but still affects wave propagation by attenuating ballistic waves and generating scattered waves. Using ultrasound data from embedded sensors in a meter‐sized concrete specimen we image the distribution of absorption and heterogeneity expressed by the intrinsic quality factor Q〈sup〉−1〈/sup〉 and the fluctuation strength ɛ that characterizes the strength of the heterogeneity. The forward problem is solved by modeling the 2‐D multiple nonisotropic scattering in an acoustic medium with spatially variable heterogeneity and attenuation using the Monte‐Carlo method. Gradients for the model updates are obtained by convolution with the back‐propagated envelope misfit using the adjoint formalism in analogy to full waveform inversion. We use a late coda time window to invert for absorption and an earlier time window to infer the distribution of heterogeneity. The results successfully locate an area of salt concrete with increased scattering and concentric anomalies of intrinsic attenuation. The resolution test shows that the recovered anomalies constitute reasonable representations of internal structure of the specimen.
    Description: Plain Language Summary; No matter how small the structures are that a seismic imaging method is able to resolve, there is structure with smaller length scale. On the one hand this small‐scale structure causes unwanted signals for conventional imaging approaches. But on the other hand it provides complementary information about the investigated medium. To turn this to our advantage we, for the first time, apply a new imaging method that uses the waves which are caused by the small‐scale structure. Using data of an experiment in a concrete block we demonstrate that we can identify areas of anomalous small‐scale structure. The results may help in the future to locate minute perturbations in the medium as they occur in the advent of volcanic eruptions or after earthquakes and to obtain new information about the geologic history of subsurface materials. The approach can be transferred to investigate man‐made materials and structures, such as deteriorating concrete constructions.
    Description: Key Points: Adjoint envelope tomography is for the first time applied to image the scattering and absorption structure with the real data. The iterative inversion uses envelopes of ultrasound signals from embedded transducers in a meter‐sized reinforced concrete specimen. We successfully image the distribution of statistical parameters characterizing the small‐scale heterogeneity and attenuation.
    Description: China Scholarship Council http://dx.doi.org/10.13039/501100004543
    Description: https://doi.org/10.5281/zenodo.7152278
    Keywords: ddc:550.78 ; seismic tomography ; adjoint method ; small‐scale heterogeneity ; attenuation ; ultrasonic experiment ; reinforced concrete
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2024-04-19
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The Ismenius Lacus region of Mars has a diverse geological history, and we present the first high‐resolution map of Deuteronilus Cavus (36.2°N; 14.0°E, ∼120 km diameter) in the fretted terrain south of the dichotomy boundary. Strong evidence suggests a volcanic origin of the regional plains, based on the ∼50 m thick volcanic bed underlying 180–300 m of sublimation residue associated with Amazonian plateau glaciation. Pervasive external volcanic flooding, internal erosional modification, and enlargement of a pre‐existing crater by up to 175%–200% resulted in the cavus' present shape. The phyllosilicates detected within Deuteronilus Cavus could be primary materials associated with the surficial aqueous activity, subsurface alteration products excavated by impacts, or a combination of both. We observe branching fluvial channels that are more recent than the traditional valley networks and may be related to fretted terrain resurfacing during the waning period of a high‐obliquity glaciation phase. This is consistent with our interpretation of the ∼600 m thick lobate and lineated deposits, which are remnants of receding glaciers. The glacial ice, protected by a 15–20 m insulating layer of debris cover, is of significant interest for future landing missions because of its potential to preserve biological and climatological signatures, to provide a critical test of Amazonian plateau glaciation, and to be used for in situ resource utilization. With our detailed geological mapping, we improved our understanding of the geological evolution and climatic conditions in the enigmatic fretted terrain near the dichotomy boundary.〈/p〉
    Description: Plain Language Summary: The ∼120 km long Deuteronilus Cavus was initiated by an impact event. The resulting impact crater was modified by glacial erosional and fluvial processes, leading to the enlargement of 175%–200% of the pre‐existing crater. In addition, we find strong evidence for recent glaciation (〈1 Ga) that left 180–300 m of sublimation residue on the plateau superimposed on a ∼50 m thick volcanic bed, suggesting a volcanic origin of the regional plains. During the waning period of a high‐glacial phase, the meltwater ponded on the surface of the cavus, altered surface rocks to produce phyllosilicates, formed channels (now observed as inverted sinuous ridges), and locally distributed branched fluvial channels that are more recent than the traditional valley networks. Glacial landforms still contain up to 600 m of remnant ice from the retreating glaciers at the end of the last glacial period. The relatively pure ice, protected by a 15–20 m insulating layer of debris cover, is critical for future landing missions because of its potential to preserve biological and climatological signatures and to be used for in situ resource utilization. Overall, this research enhances our understanding of the geological evolution and climatic history of Mars.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉We have produced the first high‐resolution map of Deuteronilus Cavus in the fretted terrain south of the Martian dichotomy boundary〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The region records a complex erosional and depositional history, including fluvial and glacial processes in the Amazonian period〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉This study provides a framework for exploration of high‐obliquity mid‐latitude plateau glaciation〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: Deutsches Zentrum für Luft‐ und Raumfahrt http://dx.doi.org/10.13039/501100002946
    Description: https://doi.org/10.5281/zenodo.8205276
    Description: https://doi.org/10.17189/1520332
    Description: https://doi.org/10.17189/1520266
    Description: https://doi.org/10.17189/1520303
    Description: https://doi.org/10.5270/esa-pm8ptbq
    Keywords: ddc:523 ; Mars ; Deuteronilus Cavus ; geological mapping ; glaciation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2024-02-21
    Description: Subsurface oceans rich in salts may be prevalent in the icy worlds of the outer solar system. Surface observations have led to various hypotheses for the transport of materials from the seafloor to the surface by hydrothermal plumes, and raise questions about heat transfer mechanisms. Chemical heterogeneity affects the vigor of convection, the forms of plumes, the generation and destruction of stratified or finger structures in the ocean, and thus the transport of heat and materials from the interior to the surface. Here, we investigate the layering phenomenon in a double‐diffusive convection system, which can occur when both the temperature and concentration influence the density of the fluid. The persistence of layers may depend on the buoyancy ratio, the Rayleigh number, boundary conditions, and initial conditions, which alter the chemical distribution and thus the balance between thermal and chemical buoyancies. Our simulations suggest that the layering could exist for a longer duration if the buoyancy ratio is raised with boundary conditions that maintain a large concentration difference. When the layers are present, heat and material transport are significantly inhibited through the subsurface ocean from the silicate interior to the base of the icy shell.
    Description: Plain Language Summary: The subsurface oceans of icy satellites are almost certainly salt to some degree, and this gives rise to the possibility of layering by the process of double‐diffusive convection. The evolution of layers has long been a topic of interest for the terrestrial ocean, and under subsurface ocean conditions there are additional motives to study this phenomenon, as the layers can hinder heat and material transport and thus have to be taken into account when considering the evolution of the icy moons and what could be observed on the surface. We investigate the evolution of layers in a double‐diffusive convection system, where both the temperature and the concentration affect the density of the fluid. We examine the development of the first and subsequent layers, how they emerge and finally disappear, and what could prolong their lifetimes.
    Description: Key Points: Layer formation is possible in a subsurface ocean that is heated from below, enriched in salts at the bottom and fresher on top. Layering is a transient feature, but this can be long lasting if the concentration difference between the top and bottom is large. As heat and material transport is inhibited while layers exist, the subsurface ocean may not be efficient in transport.
    Description: DFG
    Description: https://doi.org/10.35003/OIT7ZO
    Keywords: ddc:523 ; subsurface oceans ; icy moons ; layering ; transport mechanism
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2024-02-12
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Chaos terrains are geologically young and extensively disrupted surface features of Europa, thought to be an expression of the subsurface ocean interacting with the surface. The most prominent examples of this terrain on Europa are Conamara Chaos, and Thera and Thrace Maculae, all prime targets for the upcoming JUICE and Europa Clipper missions to assess the astrobiological potential of Europa. Of the three features, Thrace Macula is currently the least studied and understood. It intersects both Agenor Linea to the north and Libya Linea to the south, two important regional‐scale bands whose interaction with Thrace is yet to be fully unraveled, especially in terms of their relative ages of emplacement and activity. Using Galileo Solid State Imager data and Digital Terrain Models, we conducted detailed structural mapping and terrain analysis to develop a novel hypothesis on the mechanisms involved in the study area. We find that Thrace Macula is bordered along most sides by preexisting strike‐slip faults that have constrained its emplacement and areal distribution. We determine a sequence of events in the area involving the formation of Agenor Linea, followed by that of Libya Linea first and Thrace Macula later, and ultimately by strike‐slip tectonic activity likely driven by Libya Linea, that displaced a portion of Thrace Macula. Therefore, Thrace's subsurface material, uprising along faults postdating its formation, represents the freshest possible that could be sampled by future spacecraft in this region, a major consideration for the upcoming Europa Clipper mission.〈/p〉
    Description: Plain Language Summary: Europa, an icy moon of Jupiter with a large subterranean water reservoir, has unique surface features known as chaos terrains, believed to result from interactions between its subsurface ocean and surface. Of these terrains, Conamara Chaos and Thera and Thrace Maculae are prime targets for upcoming missions to investigate the astrobiological potential of Europa. However, Thrace Macula, which is situated between Agenor Linea to the north and Libya Linea to the south (two large‐scale bands, linear geological features), remains poorly understood. In this study, we used detailed mapping of faults and lineaments, together with topographical analysis, to propose a new hypothesis for the formation and evolution of Thrace Macula. Our findings suggest that preexisting tectonic faults constrained its emplacement and distribution, while a sequence of events starting with the formation of Agenor Linea, followed by Libya Linea first and Thrace Macula later, culminated in strike‐slip tectonic activity likely driven by Libya Linea that displaced a portion of Thrace Macula. These results imply that future spacecraft could sample Thrace's subsurface material uplifting along faults postdating its formation, the freshest available in this region. This research sheds light on Europa's regional history and its astrobiological potential.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉We conducted structural analysis on Thrace Macula, a chaotic terrain on Europa, based on imaging and newly processed topographic data〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉We found that preexisting strike‐slip faults border Thrace Macula and have constrained its emplacement and areal distribution〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉We provide insights into the history of Thrace and identify it as a prime location for future missions to sample fresh subsurface material〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: HORIZON EUROPE European Research Council http://dx.doi.org/10.13039/100019180
    Description: https://doi.org/10.17189/1520425
    Description: https://doi.org/10.5066/P9VKKK7C
    Description: https://doi.org/10.17169/refubium-38694
    Keywords: ddc:523 ; Europa ; chaos ; Thrace Macula ; strike‐slip tectonics ; Digital Terrain Models ; Europa Clipper
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2024-02-14
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Aseismic slip may occur during a long preparatory phase preceding earthquakes, and what controls it remains poorly understood. In this study, we explored the role of load point velocity and surface roughness on slow slip during the preparatory stage prior to stick‐slip events. To that end, we conducted displacement‐rate controlled friction experiments by imposing varying load point velocities on sawcut granite samples with different surface roughness at a confining pressure of 35 MPa. We measured the average slip along the fault with the recorded far‐field displacements and strain changes, while acoustic emission sensors and local strain gages were used to capture local slip variations. We found that the average amount of aseismic slip during the preparatory stage increases with roughness, whereas precursory slip duration decreases with increased load point velocity. These results reveal a complex slip pattern on rough faults which leads to dynamic ruptures at high load point velocities.〈/p〉
    Description: Plain Language Summary: Earthquakes occur mostly along preexisting faults in the earth crust. These faults exhibit various geometrical complexities and are subjected to different strain rates. In the laboratory, we produce earthquake analogs by sliding sawcut granite blocks. We vary the geometrical complexity of the faults by roughening their surfaces and modify the strain rate by displacing the blocks at varying velocities. Under these different conditions, we measure how the forces accumulated by friction are released, by measuring stresses and displacements applied on the block's edges, using local strain deformation sensors, and by recording very small earthquakes occurring during sliding along the sawcut faults. We find that smooth sawcut faults tend to release all the energy accumulated very abruptly, after a very small amount of slip, regardless of the load point velocity applied. The processes leading to failure in the case of a rough fault are much more complex, involving a large amount of slip, and numerous small earthquakes which are distributed heterogeneously in space and time.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Acoustic emissions highlight the complex preparatory phase prior stick‐slips on rough faults〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Preparatory slip increases with roughness and the duration of the preparatory phase decreases with increasing load point velocity〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Rough and heterogeneous faults are more stable than smooth faults, but can become unstable with a small increase of load point velocity〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: SAIDAN
    Description: https://doi.org/10.5281/zenodo.6411819
    Keywords: ddc:550.78 ; rock friction ; roughness ; dynamic rupture ; acoustic emissions
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2024-04-25
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Mercury is the smallest and innermost planet of our solar system and has a dipole‐dominated internal magnetic field that is relatively weak, very axisymmetric and significantly offset toward north. Through the interaction with the solar wind, a magnetosphere is created. Compared to the magnetosphere of Earth, Mercury's magnetosphere is smaller and more dynamic. To understand the magnetospheric structures and processes we use in situ MESSENGER data to develop further a semi‐empiric model of the magnetospheric magnetic field, which can explain the observations and help to improve the mission planning for the BepiColombo mission en‐route to Mercury. We present this semi‐empiric KTH22‐model, a modular model to calculate the magnetic field inside the Hermean magnetosphere. Korth et al. (2015, 〈ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1002/2015JA021022"〉https://doi.org/10.1002/2015JA021022〈/ext-link〉, 2017, 〈ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1002/2017gl074699"〉https://doi.org/10.1002/2017gl074699〈/ext-link〉) published a model, which is the basis for the KTH22‐model. In this new version, the representation of the neutral sheet current magnetic field is more realistic, because it is now based on observations rather than ad‐hoc assumptions. Furthermore, a new module is added to depict the eastward ring shaped current magnetic field. These enhancements offer the possibility to improve the main field determination. In addition, analyzing the magnetic field residuals allows us to investigate the field‐aligned currents and their possible dependencies on external drivers. We see increasing currents under more disturbed conditions inside the magnetosphere, but no clear dependence on the z‐component of the interplanetary magnetic field nor on the magnetosheath plasma 〈italic〉β〈/italic〉.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉We present a revised model of Mercury's magnetospheric magnetic field〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The model now includes an eastward ring shaped current and the neutral sheet current is calculated more precisely with Biot Savart's law〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The strength of the field‐aligned currents increases with higher magnetic activity〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: German Ministerium für Wirtschaft und Klimaschutz and the German Zentrum für Luft‐ und Raumfahrt
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: ESA Research Fellowship
    Keywords: ddc:523 ; Mercury ; magnetosphere ; field‐aligned currents ; modeling ; neutral sheet current ; planetary dipole moment
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2024-04-25
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The seasonal deposition and sublimation of CO〈sub〉2〈/sub〉 constitute a major element in the Martian volatile cycle. Here, we propose to use the shadow variations of the ice blocks at the foot of the steep scarps of the North Polar Layered Deposits (NPLD) to infer the vertical evolution of the seasonal deposits. We conduct an experiment at a steep scarp centered at (85.0°N, 151.5°E). We assume that no snowfall remains on top of the selected ice blocks, the frost ice layer is homogeneous around the ice blocks and their surroundings, and no significant moating is present. We show that the average thickness of the seasonal deposits due to snowfalls in Mars Year 31 is 0.97 ± 0.13 m at Ls = 350.7° in late winter. The large depth measured makes us wonder if snowfalls are more frequent and violent than previously thought. Meanwhile, we show that the average frost thickness in Mars Year 31 reaches 0.64 ± 0.18 m at Ls = 350.7° in late winter. Combined, the total thickness of the seasonal cover in Mars Year 31 reaches 1.63 ± 0.22 m at Ls = 350.7° in late winter, continuously decreases to 0.45 ± 0.06 m at Ls = 42.8° in middle spring and 0.06 ± 0.05 m at Ls = 69.6° in late spring. These estimates are up to 0.8 m lower than the existing Mars Orbiter Laser Altimeter results during the spring. Meanwhile, we observe that snow in the very early spring of Mars Year 36 can be 0.36 ± 0.13 m thicker than that in Mars Year 31. This study demonstrates the dynamics of the Martian climate and emphasizes the importance of its long‐term monitoring.〈/p〉
    Description: Plain Language Summary: Like Earth, Mars also has seasons. Up to one third of the atmospheric CO〈sub〉2〈/sub〉 annually exchanges with the polar surface through seasonal deposition/sublimation processes. Deposition can be either atmospheric precipitation as snowfall or direct surface condensation as frost. At the steep scarps of the North Polar Layered Deposits (NPLD), fractured ice fragments can detach and fall to form ice blocks. We propose to use variations in the shadows of these ice blocks, observed in the High Resolution Imaging Science Experiment images, to infer the thickness evolution of the seasonal deposits. We make reasonable assumptions about the distribution of snowfall and frost around the ice blocks and their surroundings, which allow us to separately measure the thickness of snowfall and frost. Meanwhile, we introduce a novel approach that allows us to estimate the thickness of the seasonal deposits during late winter and early spring when image quality is insufficient. This approach also enables us to peer into the interannual thickness variations of snowfall. We carry out a successful experiment at a scarp centered at (85.0°N, 151.5°E). The obtained thickness measurements demonstrate the dynamics of the Martian volatile cycling and can be used to constrain the Martian climate models.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉We propose to examine the shadow variations of the ice blocks at the Martian polar region to infer the thickness of the seasonal deposits〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Maximum thickness of the seasonal deposits at the study scarp in MY31 is 1.63 ± 0.22 m to which snowfalls contribute 0.97 ± 0.13 m〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Seasonal deposits at the study scarp are up to 0.8 m shallower than previous measurements during spring〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: HX, LML, and PJG
    Description: https://doi.org/10.17189/1520303
    Description: https://doi.org/10.17632/5yy475dbry.1
    Description: https://doi.org/10.17632/x953mzxxvv.1
    Description: https://doi.org/10.17189/1520101
    Description: http://www.msss.com/moc_gallery/2001
    Keywords: ddc:523 ; Mars ; seasonal polar caps ; thickness ; ice blocks ; HiRISE ; CO2
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2024-05-22
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Regardless of the steady increase of computing power during the last decades, numerical models in a 3D spherical shell are only used in specific setups to investigate the thermochemical convection in planetary interiors, while 2D geometries are typically favored in most exploratory studies involving a broad range of parameters. The 2D cylindrical and the more recent 2D spherical annulus geometries are predominantly used in this context, but the extent to how well they reproduce the 3D spherical shell results in comparison to each other and in which setup has not yet been extensively investigated. Here we performed a thorough and systematic study in order to assess which 2D geometry reproduces best the 3D spherical shell. In a first set of models, we investigated the effects of the geometry on thermal convection in steady‐state setups while varying a broad range of parameters. Additional thermal evolution models of three terrestrial bodies, namely Mercury, the Moon, and Mars, which have different interior structures, were used to compare the 2D and 3D geometries. Our investigations show that the 2D spherical annulus geometry provides results closer to models in a 3D spherical shell compared to the 2D cylindrical geometry. Our study indicates where acceptable differences can be expected when using a 2D instead of a 3D geometry and where to be cautious when interpreting the results.〈/p〉
    Description: Plain Language Summary: In geodynamic modeling, numerical models are used in order to investigate how the interior of a terrestrial planet evolves from the earliest stage, after the planetary formation, up to present day. Often, the mathematical equations that are used to model the physical processes in the interior of rocky planets are discretized and solved using geometric meshes. The most commonly applied geometries are the 3D spherical shell, the 2D cylinder, and the 2D spherical annulus. While being the most accurate and realistic, the 3D geometry is expensive in terms of computing power and time of execution. On the other hand, 2D geometries provide a reduced accuracy but are computationally faster. Here we perform an extensive comparison between 2D and 3D geometries in scenarios of increasing complexity. The 2D spherical annulus geometry shows much closer results to the 3D spherical shell when compared to the 2D cylinder and should be given preference in 2D modeling studies.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Interior dynamics models using the 2D spherical annulus geometry match the results of a 3D spherical shell better than the 2D cylinder〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The difference between 2D and 3D geometries decreases when models are heated from below by the core and from within by radioactive elements〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The 2D spherical annulus shows negligible differences to 3D for the thermal evolution of Mercury and the Moon, and acceptable values for Mars〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: Ministry of Science, Research and the Arts Baden‐Württemberg
    Description: Federal Ministry of Education and Research
    Description: https://doi.org/10.5281/zenodo.8047757
    Keywords: ddc:523 ; mantle convection ; thermal evolution ; spherical annulus ; Mars ; Moon ; Mercury
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2024-05-23
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉NASA's Juno mission delivered gravity data of exceptional quality. They indicate that the zonal winds, which rule the dynamics of Jupiter's cloud deck, must slow down significantly beyond a depth of about 3,000 km. Since the underlying inversion is highly non‐unique additional constraints on the flow properties at depth are required. These could potentially be provided by the magnetic field and its Secular Variation (SV) over time. However, the role of these zonal winds in Jupiter's magnetic field dynamics is little understood. Here we use numerical simulations to explore the impact of the zonal winds on the dynamo field produced at depth. We find that the main effect is an attenuation of the non‐axisymmetric field, which can be quantified by a modified magnetic Reynolds number Rm that combines flow amplitude and electrical conductivity profile. Values below Rm = 3 are required to retain a pronounced non‐axisymmetric feature like the Great Blue Spot (GBS), which seems characteristic for Jupiter's magnetic field. This allows for winds reaching as deep as 3,400 km. A SV pattern similar to the observation can only be found in some of our models. Its amplitude reflects the degree of cancellation between advection and diffusion rather than the zonal wind velocity at any depth. It is therefore not straightforward to make inferences on the deep structure of cloud‐level winds based on Jupiter's SV.〈/p〉
    Description: Plain Language Summary: The dynamics in Jupiter's cloud layer is dominated by eastward and westward directed wind jets that circumvent the planet and reach velocities of up to 150 m per second. For the first time, NASA's Juno mission could measure the tiny gravity changes caused by these winds. The data show that the winds reach down to a depth of about 3,000 km, roughly 4% of Jupiter's radius. However, the interpretation is difficult and several alternative wind profiles have been suggested. In this paper we use numerical simulations to explore how these winds would affect Jupiter's magnetic field, which has also been measured with high precision by Juno. The field shows a strong inward‐directed local patch just south of the equator, called the GBS. The impact of the winds on the magnetic field rapidly increases with depth because of the increase in the electrical conductivity. Our simulations show that winds reaching deeper than about 3,400 km would practically wipe out the GBS. This confirms that they have to remain shallower. Juno also observed an east‐ward drift of the GBS. While some of our simulations also show an east‐ward drift it is typically much too slow.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉We study the magnetic field variations caused by Jupiter's deep‐reaching surface winds for various flow and electrical conductivity models〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Zonal winds reaching deeper than 3,400 km would yield a very axisymmetric surface field and are thus unrealistic〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉It seems questionable that Jupiter's secular variation carries any useful information on the zonal winds〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: Engineering and Physical Sciences Research Council http://dx.doi.org/10.13039/501100000266
    Description: https://doi.org/10.17617/3.CNVRWD
    Keywords: ddc:523 ; Jupiter ; magnetic field ; atmospheric dynamics ; zonal winds
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2024-05-23
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The microphysical structure of the lunar regolith provides information on the geologic history of the Moon. We used remote sensing measurements of thermal emission and a thermophysical model to determine the microphysical properties of the lunar regolith. We expand upon previous investigations by developing a microphysical thermal model, which more directly simulates regolith properties, such as grain size and volume filling factor. The modeled temperatures are matched with surface temperatures measured by the Diviner Lunar Radiometer Experiment on board the Lunar Reconnaissance Orbiter. The maria and highlands are investigated separately and characterized in the model by a difference in albedo and grain density. We find similar regolith temperatures for both terrains, which can be well described by similar volume filling factor profiles and mean grain sizes obtained from returned Apollo samples. We also investigate a significantly lower thermal conductivity for highlands, which formally also gives a very good solution, but in a parameter range that is well outside the Apollo data. We then study the latitudinal dependence of regolith properties up to ±80° latitude. When assuming constant regolith properties, we find that a variation of the solar incidence‐dependent albedo can reduce the initially observed latitudinal gradient between model and Diviner measurements significantly. A better match between measurements and model can be achieved by a variation in intrinsic regolith properties with a decrease in bulk density with increasing latitude. We find that a variation in grain size alone cannot explain the Diviner measurements at higher latitudes.〈/p〉
    Description: Plain Language Summary: The Moon is covered by a layer of fine grained material called regolith. To extract information about the regolith, such as grain size or stratification, we used data from the Diviner instrument on board the Lunar Reconnaissance Orbiter. Diviner measures the surface temperature of the regolith for each location on the Moon and all times during day and night. To derive regolith properties, we developed a model and varied its model parameters until the simulated surface temperatures matched the measured ones. We applied the model up to a latitude of 80° and find as the best solution a decrease in regolith packing density with increasing latitude. We also find that a variation of regolith grain size alone cannot explain the measurements. These predictions are valuable for planning future missions targeting higher latitudes and can be compared with future in situ measurements and returned samples. However, the fraction of sunlight that actually heats the regolith is quite unknown, especially at high latitudes. A variation of this fraction can explain the measured surface temperatures reasonably well even without a variation of the regolith properties with latitude.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉We developed a microphysical thermal model accounting for regolith grain size and volume filling factor〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The best match between model and Lunar Reconnaissance Orbiter/Diviner data was achieved with a decrease in bulk density between 30° and 80° latitude〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉We also found a reasonable agreement between observed and modeled surface temperatures when varying the solar incidence dependent albedo〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: LRO project
    Description: https://doi.org/10.17189/WJ0S-W188
    Description: https://doi.org/10.5281/zenodo.8433837
    Description: https://doi.org/10.5281/zenodo.10781188
    Keywords: ddc:523 ; Moon ; regolith ; Diviner ; thermal modeling ; lunar
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2024-05-23
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Craters on the lunar surface can provide valuable information about the timing and sequence of surface‐forming processes on the Moon. A commonly used method for age determination is the analysis of the crater size‐frequency distribution (CSFD) to which a production function (PF) is fitted that represents the size‐frequency distribution of the impactors. However, the commonly used PF of Neukum (1983) is valid for crater diameters between 10 m and 300 km. Neukum et al. (2001, 〈ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1007/978-94-017-1035-0_3"〉https://doi.org/10.1007/978-94-017-1035-0_3〈/ext-link〉) revised the PF for crater diameters of 100 m–200 km. However, it is suggested to also be valid for the diameter range of 10 m–300 km as well. To assess whether we can extend a PF to craters ≤10 m in diameter, we investigated the slopes of the CSFDs of small craters formed on ejecta of young Copernican‐aged craters Giordano Bruno, Moore F, North Ray, and South Ray. A PF for smaller diameters would allow dating of young geological units, which are typically small, and would reduce the statistical error in age determinations, since smaller craters are more abundant. However, small craters are strongly influenced by geological factors, such as target properties, crater degradation, and secondary craters. For craters between 10 and 20 m we obtain a steeper CSFD slope than Neukum's proposed −3 slope (cumulative), whereas for craters ≤10 m the slope is about −3. We conclude that the PF of Neukum (1983) provides a reasonable CSFD slope for smaller craters, although it was not developed for this crater diameter range.〈/p〉
    Description: Plain Language Summary: Since the formation of the Moon, impactors have randomly hit the lunar surface. Older areas have larger and more abundant craters compared to younger areas. This relationship allows the determination of relative ages for different surfaces. A mathematical function can be fitted to the number and size of craters. This function has a specific shape and can be used to date a surface. Frequently used functions are valid between crater diameters of 10 m and 300 km. Dating young geological units is only possible if the observed craters are 〈bold〉≥〈/bold〉10 m in diameter. Therefore, an extension of these functions to crater diameters ≤10 m would be beneficial. However, small craters are strongly influenced by geological factors, such as target properties, crater degradation, and secondary craters. We consider these influences in our investigation. To compare our results with previous findings, we look more closely at the slope of the function that results from the number and size of the craters. Generally, we find that one function fits well for craters ≤10 m, even though it was not designed for this diameter range. This allows a more robust age determination because small craters are more abundant, reducing the statistical error.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉We studied small craters on young ejecta blankets to evaluate if the lunar production function (PF) is viable for craters ≤10 m〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The crater size‐frequency distributions (CSFDs) indicate that the PF can indeed be extended to crater diameters ≤10 m〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Our observed slopes of CSFDs at the studied Copernican‐aged craters are consistent with previous findings〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Deutsches Zentrum für Luft‐ und Raumfahrt http://dx.doi.org/10.13039/501100002946
    Description: https://doi.org/10.35003/V9AFAZ
    Description: https://doi.org/10.17189/1520341
    Description: https://ode.rsl.wustl.edu/moon/
    Description: https://wms.lroc.asu.edu/lroc/rdr_product_select
    Description: https://astrogeology.usgs.gov/search/map/Moon/Clementine/UVVIS/Lunar_Clementine_UVVIS_Warp_ClrRatio_Global_200m
    Description: https://aaronclauset.github.io/powerlaws/
    Keywords: ddc:523 ; crater size‐frequency distribution ; production function ; slope ; small craters ; Moon
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...