ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 550 - Earth sciences  (18)
  • Englisch  (16)
  • Deutsch  (2)
  • 2005-2009  (18)
  • 1945-1949
  • 2008  (18)
Sammlung
Sprache
  • Englisch  (16)
  • Deutsch  (2)
Erscheinungszeitraum
  • 2005-2009  (18)
  • 1945-1949
Jahr
  • 1
    facet.materialart.
    Unbekannt
    In:  Hydrologie und Wasserbewirtschaftung
    Publikationsdatum: 2020-02-12
    Schlagwort(e): 550 - Earth sciences
    Sprache: Deutsch
    Materialart: info:eu-repo/semantics/article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2020-02-12
    Schlagwort(e): 550 - Earth sciences
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2020-02-12
    Beschreibung: A temporal seismic network recorded local seismicity along a 130 km long segment of the transpressional dextral strike-slip Liquiñe-Ofqui fault zone (LOFZ) in southern Chile. Seventy five shallow crustal events with magnitudes up to M(tief)w 3.8 and depths shallower than 25 km were observed in an 11-month period mainly occurring in different clusters. Those clusters are spatially related to the LOFZ, to the volcanoes Chaitén, Michinmahuida and Corcovado, and to active faulting on secondary faults. Further activity along the LOFZ is indicated by individual events located in direct vicinity of the surface expression of the LOFZ. Focal mechanisms were calculated using deviatoric moment tensor inversion of body wave amplitude spectra which mostly yield strike-slip mechanisms indicating a NE–SW direction of the P-axis for the LOFZ at this latitude. The seismic activity reveals the present-day activity of the fault zone. The recent M(tief)w 6.2 event near Puerto Aysén, Southern Chile at 45.4°S on April 21, 2007 shows that the LOFZ is also capable of producing large magnitude earthquakes and therefore imposing significant seismic hazard to this region.
    Schlagwort(e): 550 - Earth sciences
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2020-02-12
    Beschreibung: Magnetotelluric (MT) data from 66 sites along a 45-km-long profile across the San Andreas Fault (SAF) were inverted to obtain the 2-D electrical resistivity structure of the crust near the San Andreas Fault Observatory at Depth (SAFOD). The most intriguing feature of the resistivity model is a steeply dipping upper crustal high-conductivity zone flanking the seismically defined SAF to the NE, that widens into the lower crust and appears to be connected to a broad conductivity anomaly in the upper mantle. Hypothesis tests of the inversion model suggest that upper and lower crustal and upper-mantle anomalies may be interconnected.We speculate that the high conductivities are caused by fluids and may represent a deep-rooted channel for crustal and/or mantle fluid ascent. Based on the chemical analysis of well waters, it was previously suggested that fluids can enter the brittle regime of the SAF system from the lower crust and mantle. At high pressures, these fluids can contribute to fault-weakening at seismogenic depths. These geochemical studies predicted the existence of a deep fluid source and a permeable pathway through the crust. Our resistivity model images a conductive pathway, which penetrates the entire crust, in agreement with the geochemical interpretation. However, the resistivity model also shows that the upper crustal branch of the high-conductivity zone is locatedNEof the seismically defined SAF, suggesting that the SAF does not itself act as a major fluid pathway. This interpretation is supported by both, the location of the upper crustal highconductivity zone and recent studies within the SAFOD main hole, which indicate that pore pressures within the core of the SAF zone are not anomalously high, that mantle-derived fluids are minor constituents to the fault-zone fluid composition and that both the volume of mantle fluids and the fluid pressure increase to the NE of the SAF.We further infer from the MT model that the resistive Salinian block basement to the SW of the SAFOD represents an isolated body, being 5–8 km wide and reaching to depths 〉7 km, in agreement with aeromagnetic data. This body is separated from a massive block of Salinian crust farther to the SW. The NE terminus of resistive Salinian crust has a spatial relationship with a near-vertical zone of increased seismic reflectivity ∼15 km SW of the SAF and likely represents a deep-reaching fault zone.
    Schlagwort(e): 550 - Earth sciences
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2020-02-12
    Beschreibung: We propose a new rapid procedure for determining the energy magnitude Me for shallow events from broadband teleseismic P-wave signals within the distance range 20°–98°. To accomplish this task, we compute spectral amplitude decay functions for different periods using numerical simulations based on the reference Earth model AK135Q. By means of these functions, we correct the spectra of the teleseismic recordings for the propagation path effects, and calculate the radiated seismic energy ES, and hence Me. We use cumulative P-wave windows for simulating a real- or near real-time procedure and test it for 61 shallow earthquakes. The results show that our approach is able to provide a rapid and reliable Me determination within 7–15 minutes after the earthquake origin time, and is therefore suitable for implementation in rapid response systems.
    Schlagwort(e): 550 - Earth sciences
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2020-02-12
    Beschreibung: The lithospheric structure of the Aegean region is investigated by analysis of Rayleigh-wave fundamental mode dispersion measurements. Isotropic 1-D models for almost 100 two-station ray paths across the region display distinct variations in the Moho depth and crustal S-wave velocities. The descending slab of the subducting African plate can be resolved down to 120 km depth beneath the volcanic arc. Three different regions are distinguished in terms of Moho depth: (1) The forearc, with large crustal thicknesses between 38 and 48 km and an average of 43 km, (2) the northern Aegean, with an average Moho depth of 28 km and (3) the southern Aegean (central volcanic arc, i.e. Cyclades, and Sea of Crete) with an even thinner crust of around 25 km. Lateral variations in structure between 25 and 55 km depth indicate a marked difference between the western and eastern forearc, collocated with pronounced changes in trench and slab geometry as well as published deformation rates. S velocities between 25 and 55 km depth are low everywhere beneath the forearc but increase from the Peleponnesus to Crete. An abrupt change occurs between western and central Crete in terms of the visibility of the Aegean Moho and the seismic structure of the lithospheric mantle wedge: An Aegean mantle wedge with S velocities above 4.4 km s−1 is only observed to the east of central Crete, whereas to the west velocities of less than 4.0 km s−1 occur down to the plate contact. These low velocities above the slab may indicate the presence of a melange of metamorphic rocks at the depths. A low-velocity asthenospheric layer is observed beneath the Sea of Crete and the Cyclades below 40 km depth, between the thinned lithosphere above and the slab below. The observed radial anisotropy in the northern part of the Aegean is likely to be due to preferred orientation of anisotropic minerals within the lower crust, possibly caused by lateral ductile flow associated with recent lithospheric extension.
    Schlagwort(e): 550 - Earth sciences
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2020-02-12
    Beschreibung: Using three different short-period electromagnetic sensors with resonance frequencies of 1 Hz (Mark L4C-3D), 2 Hz (Mark L-22D), and 4.5 Hz (I/O SM-6), coupled with three digital acquisition system, the portable data acquisition system (PDAS) Teledyne Geotech, the refraction technology (REFTEK) 72A, and the Earth Data Logger PR6-24 (EDL), the effect of the seismic instruments on the horizontal-to-vertical spectral ratio (H/V) using seismic noise for frequencies less than 1 Hz has been evaluated. For all possible sensors–acquisition system pairs, the background seismic signal and instrumental self-noise power spectral densities have been calculated and compared. The results obtained when coupling the short-period sensors with different acquisition systems show that the performance of the considered instruments at frequencies 〈1 Hz strongly depends upon the sensor–acquisition system combination and the gain used, with the best performance obtained for sensors with the lowest resonance frequency. For all acquisition systems, it was possible to retrieve correctly the H/V peak down to 0.1–0.2 Hz by using a high gain and a 1-Hz sensor. In contrast, biased H/V spectral ratios were retrieved when low-gain values were considered. Particular care is required when using 4.5-Hz sensors, because they may not even allow the fundamental resonance frequency peak to be reproduced.
    Schlagwort(e): 550 - Earth sciences
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2020-02-12
    Beschreibung: This study focuses on the present-day deformation mechanisms of the south central Chile margin, at the transition zone between two megathrust earthquake segments defined from historical data: the Valdivia and Concepción sectors. New GPS data and finite-element models with complex geometries constrained by geophysical data are presented to gain insight into forearc kinematics and to address the role of upper plate faults on contemporary deformation. GPS vectors are heterogeneously distributed in two domains that follow these two earthquake segments. We find that models which simulate only interseismic locking on the plate interface fail to reproduce surface deformation in the entire study area. In the Concepción domain, models that include a crustal-scale fault in the upper plate better reproduce the GPS observations. In the Valdivia domain, GPS data show regional-scale vertical axis rotations, which could reflect postseismic deformation processes at the edge of the Mw 9.5 earthquake that ruptured in 1960 and/or activity of another crustal fault related to motion of a forearc sliver. Our study suggests that upper plate faults in addition to earthquake cycle transients may exert an important control on the surface velocity of subduction zone forearcs.
    Schlagwort(e): 550 - Earth sciences
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2020-02-12
    Beschreibung: Seismic anisotropy was investigated by measuring shear-wave splitting at 19 broadband stations in Greenland. We examined mostly SKS and SKKS phases, but also some PKS and depth phases of SKS (e.g. pSKS, sSKS) for deep events. Splitting parameters (fast polarization and time delay) were determined for these phases. The fast polarizations at nine sites in southern Greenland are quite uniformly oriented about N–NE. Two sites in central northern Greenland show a similar geometry to southern Greenland. Similar fast polarizations in southern and central northern Greenland suggest continuity of structural fabric beneath large parts of Greenland. This coherent pattern extends across a number of geological provinces of varying age and suggests a common cause of anisotropy not related to the bitwise formation of the Greenland continental block. Four sites in an east–west oriented belt crossing central Greenland show varying fast polarizations and suggest a separate process causing the anisotropy there, which may indicate that these processes are not currently active. The overall pattern of anisotropy in our results, with the exception of variations across central Greenland, is similar to results obtained from Rayleigh waves. The irregular geometry of splitting across central Greenland may be related to the impact of the Iceland plume at ∼ 60 Ma. Reported splitting time delays range from 0.4 to 1.4 s with an average of 0.8 s, which can generally not be explained by crustal anisotropy alone. If confined to a lithosphere of thickness on the order of 100 km, time delays of up to 1.4 s indicate anisotropy of up to about 6%, assuming that the a crystallographic axis of olivine is preferentially contained in the horizontal plane. We suggest that the anisotropy beneath Greenland is located mainly in the upper mantle but some contributions from the crust and lower mantle may be present.
    Schlagwort(e): 550 - Earth sciences
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2020-02-12
    Beschreibung: We describe results of an active-source seismology experiment across the Chilean subduction zone at 38.2◦S. The seismic sections clearly show the subducted Nazca plate with varying reflectivity. Below the coast the plate interface occurs at 25 km depth as the sharp lower boundary of a 2–5 km thick, highly reflective region, which we interpret as the subduction channel, that is, a zone of subducted material with a velocity gradient with respect to the upper and lower plate. Further downdip along the seismogenic coupling zone the reflectivity decreases in the area of the presumed 1960 Valdivia hypocentre. The plate interface itself can be traced further down to depths of 50–60 km below the Central Valley. We observe strong reflectivity at the plate interface as well as in the continental mantle wedge. The sections also show a segmented forearc crust in the overriding South American plate. Major features in the accretionary wedge, such as the Lanalhue fault zone, can be identified. At the eastern end of the profile a bright west-dipping reflector lies perpendicular to the plate interface and may be linked to the volcanic arc.
    Schlagwort(e): 550 - Earth sciences
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...