ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Geological Society Special Publication 245: 165-186.
    Publication Date: 2007-10-08
    Description: We compare recent magnetotelluric investigations of four large fault systems: (i) the actively deforming, ocean-continent interplate San Andreas Fault (SAF); (ii) the actively deforming, continent-continent interplate Dead Sea Transform (DST); (iii) the currently inactive, trench-linked intraplate West Fault (WF) in northern Chile; and (iv) the Waterberg Fault/Omaruru Lineament (WF/OL) in Namibia, a fossilized intraplate shear zone formed during early Proterozoic continental collision. These fault zones show both similarities and marked differences in their electrical subsurface structure. The central segment of the SAF is characterized by a zone of high conductivity extending to a depth of several kilometres and attributed to fluids within a highly fractured damage zone. The WF exhibits a less pronounced but similar fault-zone conductor (FZC) that can be explained by meteoric waters entering the fault zone. The DST appears different as it shows a distinct lack of a FZC and seems to act primarily as an impermeable barrier to cross-fault fluid transport. Differences in the electrical structure of these faults within the upper crust may be linked to the degree of deformation localization within the fault zone. At the DST, with no observable fault-zone conductor, strain may have been localized for a considerable time span along a narrow, metre-scale damage zone with a sustained strength difference between the shear plane and the surrounding host rock. In the case of the SAF, a positive correlation of conductance and fault activity is observed, with more active fault segments associated with wider, deeper and more conductive fault-zone anomalies. Fault-zone conductors, however, do not uniquely identify specific architectural or hydrological units of a fault. A more comprehensive whole-fault picture for the brittle crust can be developed in combination with seismicity and structural information. Giving a window into lower-crustal shear zones, the fossil WF/OL in Namibia is imaged as a subvertical, 14 km-deep, 10 km-wide zone of high and anisotropic conductivity. The present level of exhumation suggests that the WF/OL penetrated the entire crust as a relatively narrow shear zone. Contrary to the fluid-driven conductivity anomalies of active faults, the anomaly here is attributed to graphitic enrichment along former shear planes. Once created, graphite is stable over very long time spans and thus fault/shear zones may remain conductive long after activity ceases.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-10-07
    Description: Energy and natural resources are crucial to the sustainability of worldwide economies, security, and overall well-being. However, the future workforce in the energy and natural-resources sector is at risk, and meeting the challenges of this dwindling workforce requires well-educated geoscientists in exploration and applied geophysics and related geoscience and technology disciplines. Programs such as geophysical field courses that are supported by SEG and industry, in partnership with academic institutions and government laboratories, are important approaches to maintaining and enhancing expertise in exploration geophysics. One example of a geophysical field course devoted to educating our future workforce is the Summer of Applied Geophysical Experience (SAGE), a four-week program based in Santa Fe, New Mexico, designed to actively engage students in all phases of applied geophysical research. SAGE is a unique educational experience that combines teaching and research as a partnership among universities, industry, government agencies, and professional societies. SAGE teaches the principles and applications of refraction and reflection seismology, magnetics, gravity, GPS, heat flow, several electromagnetic (EM) methods, and ground-penetrating radar (GPR) in a field-based, hands-on setting. More than 850 students and qualified professionals have attended SAGE, many of whom have gone on to become leaders in academia, industry, and government. SAGE students are exposed to the exciting challenges that face earth scientists today, and they develop skills that are necessary to address the world's growing energy demands. Examples of SAGE research projects include mapping archaeological sites and tectonic structure and investigating water and geothermal resources in the Rio Grande rift.
    Print ISSN: 1070-485X
    Electronic ISSN: 1938-3789
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-11-04
    Description: The Study of Extension and maGmatism in Malawi aNd Tanzania (SEGMeNT) project acquired a comprehensive suite of geophysical and geochemical datasets across the northern Malawi (Nyasa) rift in the East Africa rift system. Onshore/offshore active and passive seismic data, long-period and wideband magnetotelluric data, continuous Global Positioning System data, and geochemical samples were acquired between 2012 and 2016. This combination of data is intended to elucidate the sedimentary, crustal, and upper-mantle architecture of the rift, patterns of active deformation, and the origin and age of rift-related magmatism. A unique component of our program was the acquisition of seismic data in Lake Malawi, including seismic reflection, onshore/offshore wide-angle seismic reflection/refraction, and broadband seismic data from lake-bottom seismometers, a towed streamer, and a large towed air-gun source.
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-02-08
    Description: The distribution of volcanogenic massive sulfide (VMS), porphyry-epithermal, Alaska-type ultramafic-mafic complexes, intrusion-related Au, and granitoid Sn-W ore deposits in southwest Alaska supports current metallogenic models linking the formation of these deposit types to the emplacement of different suites of igneous rocks during the evolution of this convergent plate margin. Regional-scale aeromagnetic data provide a continuous set of observations over the deposits and show contrasting patterns over the igneous rock suites hosting the various deposit types. Combined with surface geologic data and regional metallogenic constraints, aeromagnetic data—filtered to enhance the anomalous magnetic field and map magnetic domains—were used to produce a mineral potential map across this accreted island-arc setting. The reduced-to-pole, upward continuation, and total horizontal gradient transform maps show anomalies that could represent porphyry-epithermal deposits within the intraoceanic- and continental-arc terranes. The tilt derivative transform highlights lineaments within the back arc that may represent zones with potential for VMS deposits. The truncations of tilt derivative lineaments outline a major magnetic domain boundary between the back-arc and craton margin, which is prospective for granitoid Sn-W deposits. Annular tilt derivative highs outline granitoids that could be associated with intrusion-related Au deposits within the craton margin. Shallow, magnetite-rich Alaska-type ultramafic-mafic complexes are mapped by their short-wavelength, high-amplitude anomalies. Successful mineral potential mapping across southwestern Alaska as performed in the present study suggests that filtered aeromagnetic data can be effectively used in mineral exploration in convergent continental margin settings.
    Print ISSN: 0361-0128
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-03-09
    Description: Aeromagnetic data are used to better understand the geology and mineral resources near the Late Cretaceous Pebble porphyry Cu-Au-Mo deposit in southwestern Alaska. The reduced-to-pole (RTP) transformation of regional-scale aeromagnetic data shows that the Pebble deposit is within a cluster of magnetic anomaly highs. Similar to Pebble, the Iliamna, Kijik, and Neacola porphyry copper occurrences are in magnetic highs that trend northeast along the crustal-scale Lake Clark fault. A high-amplitude, short- to moderate-wavelength anomaly is centered over the Kemuk occurrence, an Alaska-type ultramafic complex. Similar anomalies are found west and north of Kemuk. A moderate-amplitude, moderate-wavelength magnetic low surrounded by a moderate-amplitude, short-wavelength magnetic high is associated with the gold-bearing Shotgun intrusive complex. The RTP transformation of the district-scale aeromagnetic data acquired over Pebble permits differentiation of a variety of Jurassic to Tertiary magmatic rock suites. Jurassic-Cretaceous basalt and gabbro units and Late Cretaceous biotite pyroxenite and granodiorite rocks produce magnetic highs. Tertiary basalt units also produce magnetic highs, but appear to be volumetrically minor. Eocene monzonite units have associated magnetic lows. The RTP data do not suggest a magnetite-rich hydrothermal system at the Pebble deposit. The 10-km upward continuation transformation of the regional-scale data shows a linear northeast trend of magnetic anomaly highs. These anomalies are spatially correlated with Late Cretaceous igneous rocks and in the Pebble district are centered over the granodiorite rocks genetically related to porphyry copper systems. The spacing of these anomalies is similar to patterns shown by the numerous porphyry copper deposits in northern Chile. These anomalies are interpreted to reflect a Late Cretaceous magmatic arc that is favorable for additional discoveries of Late Cretaceous porphyry copper systems in southwestern Alaska.
    Print ISSN: 0361-0128
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-07
    Description: Advancements in aeromagnetic acquisition technology over the past few decades have led to greater resolution of shallow geologic sources with low magnetization, such as intrasedimentary faults and paleochannels. Detection and mapping of intrasedimentary faults in particular can be important for understanding the overall structural setting of an area, even if exploration targets are much deeper. Aeromagnetic methods are especially useful for mapping structures in mountain-piedmont areas at the margins of structural basins, where mineral exploration and seismic-hazard studies may be focused, and where logistical or data-quality issues encumber seismic methods. Understanding if the sources of aeromagnetic anomalies in this context originate from sedimentary units or bedrock is important for evaluating basin structure and/or depth to shallow exploration targets.
    Print ISSN: 1070-485X
    Electronic ISSN: 1938-3789
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-04-01
    Description: Hydrothermal alteration can create low-permeability zones, potentially resulting in elevated pore-fluid pressures, within a volcanic edifice. Strength reduction by rock alteration and high pore-fluid pressures have been suggested as a mechanism for edifice flank instability. Here we combine numerical models of multiphase heat transport and groundwater flow with a slope-stability code that incorporates three-dimensional distributions of strength and pore-water pressure to address the following questions: (1) What permeability distributions and contrasts produce elevated pore-fluid pressures in a stratovolcano? (2) What are the effects of these elevated pressures on flank stability? (3) Finally, what are the effects of magma intrusion on potential flank failure in an edifice? Simulation results show that under a range of plausible parameters, water tables in a stratovolcano can be elevated or perched. These elevated water tables result in universally lower stability (lower factor of safety) compared with equivalent dry edifices, indicating a higher likelihood of flank collapse. Low-permeability (〈1 × 10−17 m2) layers such as altered pyroclastic deposits or breccias can result in locally saturated regions (perched water) and lower factors of safety near the ground surface but may actually reduce liquid water saturation and pore pressures in the core of the edifice and thus may favor small, shallow collapses over larger, deeper collapses. Magma intrusion into the base of the edifice increases pore-fluid pressures and decreases the factor of safety. However, the shear strength of edifice rocks also exerts a significant control on stability, so both mechanical properties and pore-fluid pressures are important for stability assessments. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
  • 10
    Publication Date: 2005-11-23
    Description: During recent years, efforts at better understanding the physical properties of precursory ultra-low frequency pre-seismic electric signals (SES) have been intensified. Experiments show that SES cannot be observed at all points of the Earth's surface but only at certain so-called sensitive sites. Moreover, a sensitive site is capable of collecting SES from only a restricted number of seismic areas (selectivity effect). Therefore the installation of a permanent station appropriate for SES collection should necessarily be preceded by a pilot study over a broad area and for a long duration. In short, a number of temporary stations are installed and, after the occurrence of several significant earthquakes (EQs) from a given seismic area, the most appropriate (if any) of these temporary stations, in the sense that they happen to collect SES, can be selected as permanent. Such a long experiment constitutes a serious disadvantage in identifying a site as SES sensitive. However, the SES sensitivity of a site should be related to the geoelectric structure of the area that hosts the site as well as the regional geoelectric structure between the station and the seismic focal area. Thus, knowledge of the local and regional geoelectric structure can dramatically reduce the time involved in identifying SES sites. In this paper the magnetotelluric method is used to investigate the conductivity structure of an area where a permanent SES station is in operation. Although general conclusions cannot be drawn, the area surrounding an SES site near Ioannina, Greece is characterized by: (1) major faults in the vicinity; (2) highly resistive structure flanked by abrupt conductivity contrasts associated with large-scale geologic contacts, and (3) local inhomogeneities in conductivity structure. The above results are consistent with the fact that electric field amplitudes from remotely-generated signals should be appreciably stronger at such sites when compared to neighboring sites.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...