ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Berlin [u.a.] : Springer  (24)
  • Wuppertal : Wuppertal Institute for Climate, Environment and Energy  (20)
  • Washington, D.C. : Mineralogical Society of America  (11)
  • English  (55)
  • Finnish
  • Russian
  • 2000-2004  (55)
  • 1
    Monograph available for loan
    Monograph available for loan
    Berlin [u.a.] : Springer
    Call number: AWI G8-08-0028
    Type of Medium: Monograph available for loan
    Pages: XLVI, 486 S. : Ill., graph. Darst., Kt.
    ISBN: 354042640X
    Series Statement: Springer-Praxis books in geophysical sciences
    Language: English
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    Berlin [u.a.] : Springer
    Call number: 5/M 14.0137
    Description / Table of Contents: This book on the terrestrial space environment is directed at a broad group of students and scientists, who seek knowledge of the methods and results of space research. The only prerequisites are fundamental physics and mathematics as usually acquired in introductory college courses in science or engineering curricula. Stressing physical insight rather than mathematical precision, "Physics of the Earth's Space Environment" derives further knowledge on selected topics as each phenomenon is considered and strives to present experimental results in conjunction with basic reasoning about the underlying physics. The content's breadth and introductory nature make this an ideal reader for students in geophysics, meteorology, space sciences and astronomy
    Type of Medium: Monograph available for loan
    Pages: XV, 513 S. , Ill., graph. Darst.
    ISBN: 3540214267 , 978-3-540-21426-7
    Uniform Title: Physik des erdnahen Weltraums
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Monograph available for loan
    Monograph available for loan
    Berlin [u.a.] : Springer
    Call number: AWI G4-04-0085
    Type of Medium: Monograph available for loan
    Pages: X, 331 Seiten , Illustrationen
    ISBN: 3-540-21477-1
    Language: English
    Note: Contents 1 Introduction 2 Features of the Arctic Seas of Russia and Their Ecosystems 2.1 Brief History of the Studies 2.2 Physical Geography 2.3 Features of Geological Structure and Sedimentation 2.4 Hydrology 2.5 Hydrochemistry 2.5.1 Oxygen 2.5.2 pH 2.5.3 Alkalinity 2.5.4 Nutrients (P, N, and Si) 3 Biological Production of the Arctic Seas of Russia 3.1 Introduction 3.2 Barents Sea 3.3 White Sea 3.4. Kara Sea 3.5. Seas of the East Arctic 4 Particulate Matter and Vertical Carbon Fluxes in the Water–Bottom System 4.1 Introduction 4.2 Barents Sea 4.3 White Sea 4.4 Kara Sea 4.5 Laptev, East Siberian, and Chukchi Seas 4.6 Carbon Fluxes from the Photic Zone to the Seafloor 4.7 Conclusion 5 Horizontal Carbon Fluxes in the Land–Sea System 5.1 Riverine Runoff and Carbon Fluxes 5.1.1 Water Runoff and Particulate Matter Supply 5.1.2 Carbon runoff 5.2 Coastal Abrasion and Carbon Fluxes 5.3 Aerosols and Eolian Carbon Fluxes 5.4 Underground and Glacial Runoff 5.4.1 Underground Runoff 5.4.2 Ice and Glacial Discharge 5.4.3 Interstitial Waters 6 Carbon in the Bottom Sediments 6.1 Introduction 6.2 Brief History of the Studies of Carbon and Organic Matter Composition 6.3 Selected Features of the Polar Lithogenesis 6.4 Organo-Chemical Composition of the Sediments 6.5 Distribution and Accumulation Rate of Carbon in the Bottom Sediments 6.5.1 Contents of TOC and Ccarb in Different Types of the Sediments 6.5.2 Distribution of TOC and its Accumulation Rate in the Bottom Sediments 6.5.3 Distribution of Ccarb and its Accumulation Rates in the Bottom Sediments 7 Elements of Carbon Balance and Cycling in the Arctic Seas of Russia 7.1 Fluxes and Balance of Masses 7.2 Ecological Features of the Arctic Seas and their Influence on Carbon Cycling References Index
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Call number: AWI G10-04-0095
    Type of Medium: Monograph available for loan
    Pages: XVI, 364 Seiten , Illustrationen , 1 CD-ROM (12 cm) , 28 cm
    ISBN: 3540434577
    Language: English
    Note: Contents (I) Motivation and Methods (A) The Antarctic Ice Sheet and its Role in the Global System (A.1) Main Geographic and Glaciologic Provinces of Antarctica (A.2) Climatic Change, Sea-Level Rise,and Changes in the Cryosphere (A.3) Modeling Versus Measuring B) Satellite Remote Sensing (B.1) An Overview of Ice Sheet Observations by Satellite (B.2) Satellite Radar Altimetry (B.2.1) Satellite Missions with Radar Altimeter Observations (B.2.1.1) SEASAT (B.2.1.2) GEOSAT (B.2.1.3) ERS-1 and ERS-2 (B.2.1.4) Other Missions with Altimeters, and Related Missions (B.2.2) Mission Types: Exact Repeat Missions and Geodetic Missions (B.2.3) Radar Measurement Principles (B.3) Analysis of Satellite Radar Altimeter Data over Ice Sheets and Glaciers (B.3.1) Problems and Methods of Mapping Ice Surface Elevation (B.3.2) Derivation of Ice Surface Roughness and Morphology (C) Data Analysis Methods Applied in the Antarctic Atlas (C.0) Introduction (C.1) Corrections of Radar Altimeter Data (C.1.1) Corrections Applied to Satellite Radar Altimeter Data for Ice Surface Mapping (C.1.2) The Bad-Track Problem (C.1.3) The Need for Interpolation of Geophysical Line Survey Data (C.2) Map Projection and Atlas Mapping (C.2.1) The UTM Projection (C.2.2) The Atlas Mapping Problem (C.2.3) The Solution: The Antarctic Atlas Mapping Scheme (C.2.4) Map Sheet Calculation with TRANSVIEW (C.3) Geostatistical Estimation (C.3.1) Concept of the Regionalized Variable and Principles of Variography (C.3.2) Kriging (C.3.3) Variography for Satellite Radar Altimeter Data over Antarctic Ice Surfaces (C.3.4) Application: Search Algorithm and Kriging Parameters for Antarctic Atlas DTMs. Mapping Parameters (C.3.4.1) Search Routine for Geophysical Line Survey Data and Software (C.3.4.2) Grid Spacing (C.3.4.3) Mapping Parameters: Contouring and Coloring Scheme (C.3.5) Error Analysis (C.3.6) Influence of the Radar Altimeter Sensor Compared to Influence of the Variogramin Kriging for GEOSAT and ERS-1 Data (C.4) The Role of the Geodetic Reference Surface (C.4.1) Ellipsoid and Geoid Concepts (C.4.2) Mapping of Ice Surfaces with Reference to Geoid Models (II) The Atlas (D) Atlas Maps (D.0) Map Organization and Description Principles (D.1) Latitude Row 63-68°S: Maps from GEOSAT and ERS-1 Radar Altimeter Data Map m45e37-53n63-68 Casey Bay Map m57e49-65n63-68 Napier Mountains Map m69e61-77n63-68 Mawson Coast East Map m81e73-89n63-68 Leopold and Astrid Coast Map m93e85-101n63-68 Queen Mary Coast Map m105e97-113n63-68 Knox Coast Map m117e109-125n63-68 Sabrina Coast Map m129e121-137n63-68 Clarie Coast Map m141e133-149n63-68 Adélie Coast Map m153e145-161n63-68 Ninnis Glacier Tongue Map m297e289-305n63-68 Antarctic Peninsula (Graham Land) (D.2) Latitude Row 67-72.1°S: Maps from GEOSAT and ERS-1 Radar Altimeter Data Map m15we23W-7Wn67-721 Ekström Ice Shelf Map m3we11w-5n67-721 Fimbul Ice Shelf Map m9e1-17n67-721 Princess Astrid Coast Map m21e13-29n67-721 Erskine Iceport Map m33e25-41n67-721 Riiser-Larsen Peninsula Map m45e37-53n67-721 Prince Olav Coast Map m57e49-65n67-721 Kemp Coast Map m69e61-77n67-721 Lambert Glacier Map m81e73-89n67-721 Ingrid Christensen Coast Map m93e85-101n67-721 Wilkes Land (e85-101n67-721) Map m105e97-113n67-721 Wilkes Land (e97-113n67-721) Map m117e109-125n67-721 Wilkes Land (e109-125n67-721) Map m129e121-137n67-721 Wilkes Land (e121-137n67-721) Map m141e133-149n67-721 Wilkes Land (e133-149n67-721) Map m153e145-161n67-721 Cook Ice Shelf Map m165e157-173n67-721 Pennell Coast Map m292e284-300n67-721 Antarctic Peninsula (Palmer Land) (D.3) Latitude Row 71-77°S: Maps from ERS-1 Radar Altimeter Data Map m333e315-351n71-77 Riiser-Larsen Ice Shelf Map m357e339-15n71-77 New Schwabenland Map m21e3-39n71-77 Sør Rondane Mountains Map m45e27-63n71-77 Belgica Mountains Map m69e51-87n71-77 Upper Lambert Glacier Map m93e75-111n71-77 American Highland Map m117e99-135n71-77 Dome Charlie Map m141e123-159n71-77 Southern Wilkes Land (e123-159) Map m165e147-183n71-77 Victoria Land Map m213e195-231n71-77 Ruppert Coast Map m237e219-255n71-77 Bakutis Coast Map m261e243-279n71-77 Walgreen Coast Map m285e267-303n71-77 Ellsworth Land Map m309e291-327n71-77 Black Coast (D.4) Latitude Row 75-80°S: Maps from ERS-1 Radar Altimeter Data Map m333e315-351n75-80 Coats Land Map m357e339-15n75-80 Western Queen Maud Land (North) Map m21e3-39n75-80 Central Queen Maud Land (North) Map m45e27-63n75-80 Valkyrie Dome Map m69e51-87n75-80 South of Lambert Glacier Map m93e75-111n75-80 East Antarctica (Sovetskaya) Map m117e99-135n75-80 East Antarctica (Vostok) Map m141e123-159n75-80 East Antarctica (Mt. Longhurst) Map m165e147-183n75-80 Scott Coast Map m189e171-207n75-80 Roosevelt Island Map m213e195-231n75-80 Saunders Coast Map m237e219-255n75-80 Northern Marie Byrd Land Map m261e243-279n75-80 Northern Hollick-Kenyon Plateau Map m285e267-303n75-80 Zumberge Coast Map m309e291-327n75-80 Ronne Ice Shelf (D.5) Latitude Row 78-81.5°S: Maps from ERS-1 Radar Altimeter Data Map m333e315-351n78-815 Filchner Ice Shelf Map m357e339-15n78-815 Western Queen Maud Land (South) Map m21e3-39n78-815 Central Queen Maud Land (South) Map m45e27-63n78-815 Eastern Queen Maud Land (South) Map m69e51-87n78-815 Dome Argus Map m93e75-111n78-815 East Antarctica (e75-111n78-815) Map m117e99-135n78-815 EastAntarctica (e99-135n78-815) Map m141e123-159n78-815 Byrd Glacier Map m165e147-183n78-815 Hillary Coast Map m189e171-207n78-815 Ross Ice Shelf Map m213e195-231n78-815 Shirase Coast Map m237e219-255n78-815 Southern Marie Byrd Land Map m261e243-279n78-815 Southern Hollick-Kenyon Plateau Map m285e267-303n78-815 Ellsworth Mountains Map m309e291-327n78-815 Berkner Island (III) Applications (E) Monitoring Changes in Antarctic Ice SurfaceTopography: The Example of the Lambert Glacier/Amery Ice Shelf System (E.1) The Problem of Monitoring Changes (E.2) Time Series of Digital Terrain Models and Maps (E.3) Altimeter Data: Acquisition and Corrections (E.4) Visual Comparison - Quantitative Comparison (E.5) Calculation of Elevation Changes (E.6) Discussion of Results on Elevation Changes (E.6.1) Results of the Monitoring Study (E.6.2) Comparison with Other Maps of Lambert Glacier/Amery Ice Shelf (E.7) On the Potential Existence of Surge Glaciers in the Lambert Glacier/Amery Ice Shelf System (E.7.1) Introduction to the Surge Phenomenon and Relationship to Results of the Monitoring Study (E.7.2) Discussion of the Surge Hypothesis in the Glaciologic Literature (F) Detailed Studies of Selected Antarctic Outlet Glaciers and Ice Shelves (F.0) Introduction (F.1) Detail Map 1: Slessor Glacier (ERS-1 Data 1995) (F.2) Detail Map 2: Stancomb-Wills Glacier (ERS-1 Data 1995) (F.3) Detail Map 3: Jutulstraumen Glacier (ERS-1 Data 1995) (F.4) Detail Map 4: Shirase Glacier (ERS-1 Data 1995) (F.5) Detail Map 5: Lambert Glacier (ERS-1 Data 1995) (F.6) Detail Map 6: West Ice Shelf (ERS-1 Data 1995) (F.7) Detail Map 7: Denman Glacier (ERS-1 Data 1995) (F.8) Detail Map 8: Vanderford Glacier (ERS-1 Data 1995) (F.9) Detail Map 9: Totten Glacier (ERS-1 Data 1995) (F.10) Detail Maps 10: Mertz Glacier,11: Ninnis Glacier, and 12: Mertz and Ninnis Glaciers (GEOSAT Data 1985-86) (F.11) Detail Map 13: Rennick Glacier (ERS-1 Data 1995) (F.12) Detail Map 14: David Glacier/Drygalski Ice Tongue (ERS-1 Data 1995) (F.13) Detail Map15: Thwaites Glacier (ERS-1 Data 1995) (F.14) Detail Map 16: PineIsland Glacier (ERS-1 Data 1995) (G) Combination of SAR and Radar Altimeter Data: Lambert Glacier/Amery Ice Shelf (IV) References and Appendix (H) References (I) Appendix (I.1)Glaciological Glossary (I.2) Index of Place Names (I.3) Antarctic Expeditions (I.3.1) Early Seagoing Expeditions (I.3.2) Expeditions to the Antarctic Continent (I.3.3) Antarctic Expeditions after the International Geophysical Year
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 01.0314
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: The first half-century of X-ray crystallography, beginning with the elucidation of the sodium chloride structure in 1914, was devoted principally to the determination of increasingly complex atomic topologies at ambient conditions. The pioneering work of the Braggs, Pauling, Wyckoff, Zachariasen and many other investigators revealed the structural details and underlying crystal chemical principles for most rock-forming minerals (see, for example, Crystallography in North America, edited by D. McLachlan and J. P. Glusker, NY, American Crystallographic Association, 1983). These studies laid the crystallographic foundation for modem mineralogy. The past three decades have seen a dramatic expansion of this traditional crystallographic role to the study of the relatively subtle variations of crystal structure as a function of temperature, pressure, or composition. Special sessions on "High temperature crystal chemistry" were first held at the Spring Meeting of the American Geophysical Union (April 19, 1972) and the Ninth International Congress of Crystallography (August 30, 1972). The Mineralogical Society of America subsequently published a special 11-paper section of American Mineralogist entitled "High Temperature Crystal Chemistry," which appeared as Volume 58, Numbers 5 and 6, Part I in July-August, 1973. The first complete three-dimensional structure refinements of minerals at high pressure were completed in the same year on calcite (Merrill and Bassett, Acta Crystallographica B31, 343-349, 1975) and on gillespite (Hazen and Burnham, American Mineralogist 59, 1166-1176, 1974). Rapid advances in the field of non-ambient crystallography prompted Hazen and Finger to prepare the monograph Comparative Crystal Chemistry: Temperature, Pressure, Composition and the Variation of Crystal Structure (New York: Wiley, 1982). At the time, only about 50 publications documenting the three-dimensional variation of crystal structures at high temperature or pressure had been published, though general crystal chemical trends were beginning to emerge. That work, though increasingly out of date, remained in print until recently as the only comprehensive overview of experimental techniques, data analysis, and results for this crystallographic sub-discipline. This Reviews in Mineralogy and Geochemistry volume was conceived as an updated version of Comparative Crystal Chemistry. A preliminary chapter outline was drafted at the Fall 1998 American Geophysical Union meeting in San Francisco by Ross Angel, Robert Downs, Larry Finger, Robert Hazen, Charles Prewitt and Nancy Ross. In a sense, this volume was seen as a "changing of the guard" in the study of crystal structures at high temperature and pressure. Larry Finger retired from the Geophysical Laboratory in July, 1999, at which time Robert Hazen had shifted his research focus to mineral-mediated organic synthesis. Many other scientists, including most of the authors in this volume, are now advancing the field by expanding the available range of temperature and pressure, increasing the precision and accuracy of structural refinements at non-ambient conditions, and studying ever more complex structures. The principal objective of this volume is to serve as a comprehensive introduction to the field of high-temperature and high-pressure crystal chemistry, both as a guide to the dramatically improved techniques and as a summary of the voluminous crystal chemical literature on minerals at high temperature and pressure. The book is largely tutorial in style and presentation, though a basic knowledge of X-ray crystallographic techniques and crystal chemical principles is assumed. The book is divided into three parts. Part I introduces crystal chemical considerations of special relevance to non-ambient crystallographic studies. Chapter 1 treats systematic trends in the variation of structural parameters, including bond distances, cation coordination, and order-disorder with temperature and pressure, while Chapter 2 considers P-V-T equation-of-state formulations relevant to x-ray structure data. Chapter 3 reviews the variation of thermal displacement parameters with temperature and pressure. Chapter 4 describes a method for producing revealing movies of structural variations with pressure, temperature or composition, and features a series of "flip-book" animations. These animations and other structural movies are also available as a supplement to this volume on the Mineralogical Society of America web site at RiMG041 Programs. Part II reviews the temperature- and pressure-variation of structures in major mineral groups. Chapter 5 presents crystal chemical systematics of high-pressure silicate structures with six-coordinated silicon. Subsequent chapters highlight temperature- and pressure variations of dense oxides (Chapter 6), orthosilicates (Chapter 7), pyroxenes and other chain silicates (Chapter 8), framework and other rigid-mode structures (Chapter 9), and carbonates (Chapter 10). Finally, the variation of hydrous phases and hydrogen bonding are reviewed in Chapter 11, while molecular solids are summarized in Chapter 12. Part III presents experimental techniques for high-temperature and high-pressure studies of single crystals (Chapters 13 and 14, respectively) and polycrystalline samples (Chapter 15). Special considerations relating to diffractometry on samples at non-ambient conditions are treated in Chapter 16. Tables in these chapters list sources for relevant hardware, including commercially available furnaces and diamond-anvil cells. Crystallographic software packages, including diffractometer operating systems, have been placed on the Mineralogical Society web site for this volume. This volume is not exhaustive and opportunities exist for additional publications that review and summarize research on other mineral groups. A significant literature on the high-temperature and high-pressure structural variation of sulfides, for example, is not covered here. Also missing from this compilation are references to a variety of studies of halides, layered oxide superconductors, metal alloys, and a number of unusual silicate structures.
    Type of Medium: Monograph available for loan
    Pages: viii, 596 S.
    ISBN: 0-939950-53-7 , 978-0-939950-53-9
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 41
    Classification:
    Mineralogy
    Language: English
    Note: Contents of Part I. p. vii - viii Part I: Characterization and Interpretation of Structural Variations with Temperature and Pressure Chapter 1. Principles of Comparative Crystal Chemistry by Robert M. Hazen, Robert T. Downs, and Charles T. Prewitt, p. 1 - 34 Chapter 2. Equations of State by Ross J. Angel, p. 35 - 60 Chapter 3. Analysis of Harmonic Displacement Factors by Robert T. Downs, p. 61 - 88 Chapter 4. Animation of Crystal Structure Variations with Pressure, Temperature and Composition by Robert T. Downs and P.J. Heese, p. 89 - 118 Part II: Variation of Structures with Temperature and Pressure Contents of Part II. p. 119 - 122 Chapter 5. Systematics of High-Pressure Silicate Structures by Larry W. Finger and Robert M. Hazen, p. 123 - 156 Chapter 6. Comparative Crystal Chemistry of Dense Oxide Minerals by Joseph R. Smyth, Steven D. Jacobsen, and Robert M. Hazen, p. 157 - 186 Chapter 7. Comparative Crystal Chemistry of Orthosilicate Minerals by Joseph R. Smyth, Steven D. Jacobsen, and Robert M. Hazen, p. 187 - 210 Chapter 8. Chain and Layer Silicates at High Temperatures and Pressures by Hexiong Yang and Charles T. Prewitt, p. 211 - 256 Chapter 9. Framework Structures by Nancy L. Ross, p. 257 - 288 Chapter 10. Structural Variations in Carbonates by Simon A.T. Redfern, p. 289 - 308 Chapter 11. Hydrous Phases and Hydrogen Bonding at High Pressure by Charles T. Prewitt and John B. Parise, p. 309 - 334 Chapter 12. Molecular Crystals by Russell J. Hemley and Przemyslaw Dera, p. 335 - 420 Part III: Experimental Techniques Contents of Part III. p. 421 - 424 Chapter 13. High-Temperature Devices and Environmental Cells for X-ray and Neutron Diffraction Experiments by Ronald C. Peterson and Hexiong Yang, p. 425 - 444 Chapter 14. High-Pressure Single-Crystal Techniques by Ronald Miletich, David R. Allan, and Werner F. Kuhs, p. 445 - 520 Chapter 15. High-Pressure and High-Temperature Powder Diffraction by Yingwei Fei and Yanbin Wang, p. 521 - 558 Chapter 16. High-Temperature­High-Pressure Diffractometry by Ross J. Angel, Robert T. Downs, and Larry W. Finger, p. 559 - 596
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Call number: 6/M 00.0455
    In: International Association of Geodesy symposia
    Type of Medium: Monograph available for loan
    Pages: XXII, 261 S.
    ISBN: 3540670793
    Series Statement: International Association of Geodesy symposia 120
    Classification:
    Geodetic Measurement Systems
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Call number: AWI G2-16-90008
    Description / Table of Contents: In many geological epochs, glacial sediments are widespread. This type of sedimentation results from the interaction between atmosphere, cryosphere, hydrosphere and biosphere under temperatures ranging from 0 to -80. Two types of glacial sediments exists: those from sea-ice and those from icebergs. Both types can be subdivided into various subfacies. Most widespread in the Northern Hemisphere is the Siberian subfacies, characterized by silt and clay and often misinterpreted as sediments of temperate zones. This reference book for researchers working on this kind of sediments provides a complete overview of the various glacial deposits in the ocean. (AUT)
    Type of Medium: Monograph available for loan
    Pages: XI, 563 S , Ill., graph. Darst., Kt
    ISBN: 3540679650 (Pp)
    Uniform Title: Ledovaja sedimentacija v Mirovom okeane
    Language: English
    Note: Russ. Ausgabe als AWI G2-02-0113 verfügbar
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 02.0025
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: This volume was prepared in conjunction with a short course, "Nanoparticles in the Environment and Technology," convened on the campus of the University of California, Davis, CA on December 8 and 9, 2001. Over the years, volumes in this series have taken a variety of forms. Many have focused on mature fields of investigation to draw together a comprehensive body of work and provide a definitive, up to date reference. A few, however, have sought to provide enough coverage of an emerging or re-emerging field to allow the reader to identify important and exciting gaps in current knowledge and opportunities for new research. This volume falls into the later category. Our primary goal in convening the short course and assembling this text is to invigorate future research. Early Reviews in Mineralogy dealt with specific groups of minerals, one (or two) volumes at a time. In contrast, this volume deals explicitly with the topic of crystal size in many different systems. Until recently, the special and complicated nature of the very smallest particles rendered them nearly impossible to study by conventional methods. Even today, the challenges associated with evaluating the size-dependence of a mineral's bulk and surface structures, properties, and reactivity are significant. However, ongoing improvements in sophisticated characterization, theory, and data analysis make particles previously described (often inaccurately) as "amorphous" (or even more mysteriously as "X-ray amorphous") amenable to quantitative evaluation. Thermochemical, crystal chemical, and computational chemical approaches must be combined to understand particles with diameters of 1 to 100 nanometers. Determination of the variation of structure, properties, and reaction kinetics with crystal size requires careful synthesis of size- and perhaps morphology-specific samples. These problems demand integration of mineralogical and geochemical approaches. Thus, it is appropriate that the current issue belongs to the era of Reviews in Mineralogy and Geochemistry. Nanoparticles and the Environment targets naturally occurring, finely particulate minerals, many of which form at low temperature. Thus, many of the compounds of interest are those of the "clay fraction". Of course, there have been decades of critical work on the structures, microstructures, and reactivity of finely crystalline or amorphous minerals, especially oxides, oxyhydroxides, hydroxides, and clays. We will not summarize what is known in general about these (for this, the reader is referred to earlier Reviews in Mineralogy volumes). Rather, our goal is to focus on the features of these materials that stem directly or indirectly from their size. The term "nanoparticles" is much more than a re-labeling designed to align "clay" (sized) minerals with nanotechnology and its goals. The term signifies that the substance has physical dimensions that are small enough to ensure that the structure and/or properties and/or reactivity are measurably particle size dependent, yet the particle is large enough to warrant its distinction from aqueous ions, complexes, or clusters. The chemistry, physics, and geology of particles at this intermediate scale are unique, fascinating, and important. Of particular interest are those properties that emerge only after a cluster of atoms has grown beyond some specific size, and disappear once the particle passes out of the "nanoparticle" size regime. There are some compelling examples of size-dependent phenomena. It is well known that the melting temperature of nanocrystals (defined as crystals having properties intermediate between molecular and crystalline) decreases dramatically as the radius of the cluster decreases. Absorption and luminescence spectra for small crystals are determined by the quantum-size effect. Decreasing nanocrystal size correlates with increased total energy of band edge optical transitions. As a consequence, the color of some nanocrystals correlates strongly with their particle size. Current world-wide interest in "nanotechnology" and "nanomaterials" offers a unique opportunity for the Earth sciences. Both the level of visibility and the explosion of synthesis and characterization techniques in physics, chemistry, and materials science provide mineralogy and geochemistry with new opportunities. It is important for us to show that the "nano" field consists of more than micromachines and electronic devices, and that nanoscale phenomena permeate and often control natural processes. Why all the fuss about nanoparticles now? As increasing attention in engineering is focused on making smaller and smaller machines, questions about the fundamental processes that govern nanoparticle form, stability, and reactivity emerge. The geoscience community is well equipped to tackle the basic science concepts associated with these questions. However, we have our own reasons to study size-dependent phenomena. Size-dependent structure and properties of Earth materials impact the geological processes they participate in. This topic has not been fully explored to date. Chapters in this volume contain descriptions of the inorganic and biological processes by which nanoparticles form, information about the distribution of nanoparticles in the atmosphere, aqueous environments, and soils, discussion of the impact of size on nanoparticle structure, thermodynamics, and reaction kinetics, consideration of the nature of the smallest nanoparticles and molecular clusters, pathways for crystal growth and colloid formation, analysis of the size-dependence of phase stability and magnetic properties, and descriptions of methods for the study of nanoparticles. These questions are explored through both theoretical and experimental approaches. Nanoparticles participate in every crystallization reaction and they constitute a major source of surface area in environments where virtually every important reaction takes place on a surface. They are components of enzymes and key biomolecules and their presence may record the early existence of life. How can we not be fascinated by these remarkable, and special, forms of matter?
    Type of Medium: Monograph available for loan
    Pages: XIV, 349 S.
    ISBN: 0-939950-56-1 , 978-0-939950-56-0
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 44
    Language: English
    Note: Chapter 1. Nanoparticles in the environment by Jillian F. Banfield and Hengzhong Zhang, p. 1 - 58 Chapter 2. Nanocrystals as model systems for pressure-induced structural phase transitions by Keren Jacobs and A. Paul Alivisatos, p. 59 - 72 Chapter 3. Thermochemistry of nanomaterials by Alexandra Navrotsky, p. 73 - 104 Chapter 4. Structure, aggregation and characterization of nanoparticles by Glenn A Waychunas, p. 105 - 166 Chapter 5. Aqueous aluminum polynuclear complexes and nanoclusters: A review by William H. Casey, Brian L. Phillips, and Gerhard Furrer, p. 167 - 190 Chapter 6. Computational approaches to nanomineralogy by James R. Rustad, Witold Dzwinel, and David A. Yuen, p. 191 - 216 Chapter 7. Magnetism of Earth, planetary and environmental nanomaterials by Denis G. Rancourt, p. 217 - 292 Chapter 8. Atmospheric nanoparticles by Cort Anastasio and S. T. Martin, p. 293 - 349
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Monograph available for loan
    Monograph available for loan
    Berlin [u.a.] : Springer
    Call number: M 02.0111
    Type of Medium: Monograph available for loan
    Pages: XV, 514 S.
    ISBN: 3540659870
    Classification:
    A. 3.6.
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Monograph available for loan
    Monograph available for loan
    Berlin [u.a.] : Springer
    Call number: M 01.0480
    Type of Medium: Monograph available for loan
    Pages: XIX, 748 S.
    ISBN: 3540678417
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Call number: 19/N 02.0115
    In: Interdisciplinary applied mathematics
    Type of Medium: Monograph available for loan
    Pages: xxix, 510 S.
    ISBN: 0387950613
    Series Statement: Interdisciplinary applied mathematics 13
    Classification:
    C.1.9.
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Monograph available for loan
    Monograph available for loan
    Berlin [u.a.] : Springer
    Call number: N 02.0114 ; AWI A6-01-0204
    Type of Medium: Monograph available for loan
    Pages: 593 S. + 1 CD-ROM
    ISBN: 3540674209
    Classification:
    D. 4.
    Language: English
    Location: Upper compact magazine
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Call number: 13/M 02.0566 ; AWI G9-02-0178
    In: Ecological studies
    Type of Medium: Monograph available for loan
    Pages: XIX, 427 S.
    ISBN: 3540422684
    Series Statement: Ecological studies 154
    Classification:
    Ecology
    Language: English
    Location: Reading room
    Location: Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Call number: 4/M 02.0641
    In: Lecture notes in earth sciences
    Type of Medium: Monograph available for loan
    Pages: XIV, 268 S.
    ISBN: 3540437185
    Series Statement: Lecture notes in earth sciences 98
    Classification:
    Seismology
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: M 02.0026 / Regal 11
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: Mineralogy and Geology of Natural Zeolites was published in 1977. Dr. Fred Mumpton, a leader of the natural zeolite community for more than three decades, edited the original volume. Since the time of the original MSA zeolite short course in November 1977, there have been major developments concerning almost all aspects of natural zeolites. There has been an explosion in our knowledge of the crystal chemistry and structures of natural zeolites (Chapters 1 and 2), due in part to the now-common Rietveld method that allows treatment of powder diffraction data. Studies on the geochemistry of natural zeolites have also greatly increased, partly as a result of the interests related to the disposal of radioactive wastes, and Chapters 3, 4, 5, 13, and 14 detail the latest results in this important area. Until the latter part of the 20th century, zeolites were often looked upon as a geological curiosity, but they are now known to be widespread throughout the world in sedimentary and igneous deposits and in soils (Chapters 6-12). Likewise, borrowing from new knowledge gained from studies of synthetic zeolites and properties of natural zeolites, the application of natural zeolites has greatly expanded since the first zeolite volume. Chapter 15 details the use of natural zeolites for removal of ammonium ions, heavy metals, radioactive cations, and organic molecules from natural waters, wastewaters, and soils. Similarly, Chapter 16 describes the use of natural zeolites as building blocks and cements in the building industry, Chapter 17 outlines their use in solar energy storage, heating, and cooling applications, and Chapter 18 describes their use in a variety of agricultural applications, including as soil conditioners, slow-release fertilizers, soil-less substrates, carriers for insecticides and pesticides, and remediation agents in contaminated soils. Most of the material in this volume is entirely new, and Natural Zeolites: Occurrence, Properties, Applications presents a fresh and expanded look at many of the subjects contained in Volume 4. It is our hope that this new, expanded volume will rekindle interest in this fascinating and technologically important group of minerals, in part through the 'Suggestions for Further Research' section in each chapter.
    Type of Medium: Monograph available for loan
    Pages: XIV, 654 S.
    ISBN: 0-939950-57-X , 978-0-939950-57-7
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 45
    Classification:
    Mineralogy
    Language: English
    Note: MINERALOGY Chapter 1. Crystal Structures of Natural Zeolites by Thomas Armbruster and Mickey E. Gunter, p. 1 - 68 Chapter 2. The Crystal Chemistry of Zeolites by E Passaglia and Richard A. Sheppard, p. 69 - 116 Chapter 3. Geochemical Stability of Natural Zeolites by Steve J. Chipera and John A. Apps, p. 117 - 162 Chapter 4. Isotope Geochemistry of Zeolites by Haraldur R. Karlsson, p. 163 - 206 Chapter 5. Clinoptilolite-Heulandite Nomenclature by David L. Bish and Jeremy M. Boak, p. 207 - 216 OCCURRENCE Chapter 6. Occurrence of Zeolites in Sedimentary Rocks: An Overview by Richard L. Hay and Richard A. Sheppard, p. 217 - 234 Chapter 7. Zeolites in Closed Hydrologic Systems by A Langella, Piergiulio Cappelletti, and Roberto de'Gennaro, p. 235 - 260 Chapter 8. Formation of Zeolites in Open Hydrologic Systems by Richard A. Sheppard and Richard L. Hay, p. 261 - 276 Chapter 9. Zeolites in Burial Diagenesis and Low-grade Metamorphic Rocks by Minora Utada, p. 277 - 304 Chapter 10. Zeolites in Hydrothermally Altered Rocks by Minora Utada, p. 305 - 322 Chapter 11. Zeolites in Soil Environments by Douglas W. Ming and Janis L. Boettinger, p. 323 - 346 Chapter 12. Zeolites in Petroleum and Natural Gas Reservoirs by Azuma Iijima, p. 347 - 402 PHYSICOCHEMICAL PROPERTIES Chapter 13. Thermal Behavior of Natural Zeolites by David L. Bish and J. William Carey, p. 403 - 452 Chapter 14. Cation-Exchange Properties of Natural Zeolites by Roberto T. Pabalan and F. Paul Bertetti, p. 453 - 518 APPLICATIONS Chapter 15. Applications of Natural Zeolites in Water and Wastewater Treatment by Dénes Kalló, p. 519 - 550 Chapter 16. Use of Zeolitic Tuff in the Building Industry by Carmine Colella, Maurizio de'Gennaro, and Rosario Aiello, p. 551 - 588 Chapter 17. Natural Zeolites in Solar Energy - Heating, Cooling, and Energy Storage by Dimiter I. Tchernev, p. 589 - 618 Chapter 18. Use of Natural Zeolites in Agronomy, Horticulture, and Environmental Soil Remediation by Douglas W. Ming and Earl R. Allen, p. 619 - 654
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Call number: 20/N 02.0116 ; PIK N 452-00-0362
    In: Springer series in synergetics
    Type of Medium: Monograph available for loan
    Pages: XVII, 434 S.
    ISBN: 3540674624
    Series Statement: Springer series in synergetics
    Classification:
    C. 3.
    Language: English
    Location: Reading room
    Location: A 18 - must be ordered
    Branch Library: GFZ Library
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Call number: 12/N 02.0113 ; PIK N 075-03-0318
    Type of Medium: Monograph available for loan
    Pages: xxvi, 651 S.
    ISBN: 3540422390
    Classification:
    D. 4.
    Language: English
    Location: Reading room
    Location: A 18 - must be ordered
    Branch Library: GFZ Library
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Call number: 8/M 02.0587 ; M 09.0416 ; M 13.0207
    Type of Medium: Monograph available for loan
    Pages: XVII, 834 S.
    ISBN: 3540679626
    Classification:
    B.6.
    Language: English
    Location: Reading room
    Location: Upper compact magazine
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Monograph available for loan
    Monograph available for loan
    Berlin [u.a.] : Springer
    Associated volumes
    Call number: M 01.0478/1
    In: Progress in transmission electron microscopy
    Type of Medium: Monograph available for loan
    Pages: XVI, 365 S.
    ISBN: 3540676805
    Series Statement: 28
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Monograph available for loan
    Monograph available for loan
    Berlin [u.a.] : Springer
    Call number: M 02.0554
    Type of Medium: Monograph available for loan
    Pages: XXII, 263 S.
    ISBN: 3540674845
    Classification:
    E.8.
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Monograph available for loan
    Monograph available for loan
    Berlin [u.a.] : Springer
    Call number: 16/M 01.0381
    Type of Medium: Monograph available for loan
    Pages: XIX, 803 S. + Short Reader (60 S.) + 1 Beil.
    ISBN: 3540414436
    Uniform Title: Méchanique des milieux continus
    Classification:
    C.3.6.
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Monograph available for loan
    Monograph available for loan
    Berlin [u.a.] : Springer
    Call number: 10/N 01.0413 ; AWI G2-19-51789
    Type of Medium: Monograph available for loan
    Pages: XX, 455 Seiten , Illustrationen
    ISBN: 354066453X
    Classification:
    Geochemistry
    Language: English
    Note: Table of Contents: 1 The Solid Phase of Marine Sediments / DIETER K. FÜTTERER 1.1 Introduction 1.2 Sources and Components of Marine Sediments 1.2.1 Lithogenous Sediments 1.2.2 Biogenous Sediments 1.2.3 Hydrogenous Sediments 1.3 Classification of Marine Sediments 1.3.1 Terrigenous Sediments 1.3.2 Deep-Sea Sediments 1.4 Global Patterns of Sediment Distribution 1.4.1 Distribution Patterns of Shelf Sediments 1.4.2 Distribution Patterns of Deep-Sea Sediments 1.4.3 Distribution Patterns of Glay Minerals 1.4.4 Sedimentation Rates 2 Geophysical Perspectives in Marine Sediments 2.1 Physical Properties of Marine Sediments / MONIKA BREITZKE 2.1.1 Introduction 2.1.2 Porosity and Wet Bulk Density 2.1.2.1 Analysis by Weight and Volume 2.1.2.2 Gamma Ray Attenuation 2.1.2.3 Electrical Resistivity (Galvanic Method) 2.1.2.4 Electrical Resistivity (Inductive Method) 2.1.3 Permeability 2.1.4 Acoustic and Elastic Properties 2.1.4.1 Biot-Stoll Model 2.1.4.2 Full Waveform Ultrasonic Gore Logging 2.1.5 Sediment Classification 2.1.5.1 Full Waveform Gore Logs as Acoustic Images 2.1.5.2 P-and S-Wave Velocity, Attenuation, Elastic Moduli and Permeability 2.1.6 Sediment Echosounding 2.1.6.1 Synthetic Seismograms 2.1.6.2 Narrow-Beam Parasound Echosounder Recordings 2.2 Sedimentary Magnetism / ULRICH BLEIL 2.2.1 Introduction 2.2.2 Biogenie Magnetic Minerals in Marine Sediments 2.2.3 Reduction Diagenesis of Magnetic Minerals in Marine Environments 3 Quantification of Early Diagenesis: Dissolved Constituents in Marine Pore Water / HORST D. SCHULZ 3.1 Introduction: How to Read Pore Water Concentration Profiles 3.2 Calculation of Diffusive Fluxes and Diagenetic Reaction Rates 3.2.1 Steady State and Non-Steady State Situations 3.2.2 The Steady State Situation and Fick's First Law of Diffusion 3.2.3 Quantitative Evaluation of Steady State Concentration Profiles 3.2.4 The Non-Steady State Situation and Fick's Second Law of Diffusion 3.2.5 The Primary Redox-Reactions: Degradation of Organic Matter 3.3 Sampling of Pore Water for Ex-Situ Measurements 3.3.1 Obtaining Sampies of Sediment for the Analysis of Pore Water 3.3.2 Pore Water Extraction from the Sediment 3.3.3 Storage, Transport and Preservation of Pore Water 3.4 Analyzing Constituents in Pore Water, Typical Profiles 3.5 In-Situ Measurements 3.6 Influence of Bioturbation, Bioirrigation, and Advection 4 Organic Matter: The Driving Force for Early Diagenesis / JÜRGEN RULLKÖTTER 4.1 The Organic Carbon Cycle 4.2 Organic Matter Accumulation in Sediments 4.2.1 Productivity Versus Preservation 4.2.2 Primary Production of Organic Matter and Export to the Ocean Bottom 4.2.3 Transport of Organic Matter through the Water Column 4.2.4 The Influence of Sedimentation Rate on Organic Matter Burial 4.2.5 Allochthonous Organic Matter in Marine Sediments 4.3 Early Diagenesis 4.3.1 The Organic Carbon Content of Marine Sediments 4.3.2 Chemical Composition of Biomass 4.3.3 The Principle of Selective Preservation 4.3.4 The Formation of Fossil Organic Matter and its Bulk Composition 4.3.5 Early Diagenesis at the Molecular Level 4.3.6 Biological Markers (Molecular Fossils) 4.4 Organic Geochemical Proxies 4.4.1 Total Organic Carbon and Sulfur 4.4.2 Marine Versus Terrigenous Organic Matter 4.4.3 Molecular Paleo-Seawater Temperature and Climate Indicators 4.5 Analytical Techniques 4.5.1 Sam pie Requirements 4.5.2 Elemental and Bulk Isotope Analysis 4.5.3 Rock-Eval Pyrolysis and Pyrolysis Gas Chromatography 4.5.4 Organic Petrography 4.5.5 Bitumen Analysis 4.6 The Future of Marine Geochemistry of Organic Matter 5 Bacteria and Marine Biogeochemistry / Bo BARKER JORGENSEN 5.1 Role of Microorganisms 5.1.1 From Geochemistry to Microbiology - and back 5.1.2 Approaches in Marine Biogeochemistry 5.2 Life and Environments at Small Scale 5.2.1 Hydrodynamics of Low Reynolds Numbers 5.2.2 Diffusion at Small Scale 5.2.3 Diffusive Boundary Layers 5.3 Regulation and Limits of Microbial Processes 5.3.1 Substrate Uptake by Microorganisms 5.3.2 Temperature as a Regulating Factor 5.3.3 Other Regulating Factors 5.4 Energy Metabolism of Prokaryotes 5.4.1 Free Energy 5.4.2 Reduction-Oxidation Processes 5.4.3 Relations to Oxygen 5.4.4 Definitions of Energy Metabolism 5.4.5 Energy Metabolism of Microorganisms 5.4.6 Chemolithotrophs 5.4.7 Respiration and Fermentation 5.5 Pathways of Organic Matter Degradation 5.5.1 Depolymerization of Macromolecules 5.5.2 Aerobic and Anaerobic Mineralization 5.5.3 Depth Zonation of Oxidants 5.6 Methods in Biogeochemistry 5.6.1 Incubation Experiments 5.6.2 Radioactive Tracers 5.6.3 Example: Sulfate Reduction 5.6.4 Specific Inhibitors 5.6.5 Other Methods 6 Early Diagenesis at the Benthic Boundary Layer: Oxygen and Nitrate in Marine Sediments / CHRISTIAN HENSEN AND MATTHIAS ZABEL 6.1 Introduction 6.2 Oxygen and Nitrate Distribution in Seawater 6.3 The Role of Oxygen and Nitrate in Marine Sediments 6.3.1 Respiration and Redox Processes 6.3.1.1 Nitrification and Denitrification 6.3.1.2 Coupling of Oxygen and Nitrate to other Redox Pathways 6.3.2 Determination of Consumption Rates and Senthic Fluxes 6.3.2.1 Fluxes and Concentration Profiles Determined by In-Situ Devices 6.3.2.2 Ex-Situ Pore Water Data from Deep-Sea Sediments 6.3.2.3 Determination of Denitrification Rates 6.3.3 Oxic Respiration, Nitrification and Denitrification in Different Marine Environments 6.3.3.1 Quantification of Rates and Fluxes 6.3.3.2 Variation in Different Marine Environments: Case Studies 6.4 Summary 7 The Reactivity of Iron / RALF R. HAESE 7.1 Introduction 7.2 Pathways of Iron Input to Marine Sediments 7.2.1 Fluvial Input 7.2.2 Aeolian Input 7.3 Iron as a Limiting Nutrient for Primary Productivity 7.4 The Early Diagenesis of Iron in Sediments 7.4.1 Dissimilatary Iran Reductian 7.4.2 Solid Phase Ferric Iron and its Bioavailability 7.4.2.1 Properties of Iron Oxides 7.4.2.2 Bioavailability of Iron Oxides 7.4.2.3 Bioavailability of Sheet Silicate Sound Ferric lron 7.4.3 Iron and Manganese Redax Cycles 7.4.4 Iron Reactivity towards S, O2, Mn, NO3, P, HCO3, and Si-AI 7.4.4.1 lron Reduction by HS and Ligands 7.4.4.2 Iron Oxidation by O2, NO3, and Mn4+ 7.4.4.3 Iron-Sound Phosphorus 7.4.4.4 The Formation of Siderite 7.4.4.5 The Formation of lron Searing Aluminosilicates 7.4.5 Discussion: The Importance of Fe-and Mn-Reactivity in Various Enyironments 7.5 The Assay for Ferric and Ferrous Iron 8 Sulfate Reduction in Marine Sediments / SABINE KASTEN AND BO BARKER JØRGENSEN 8.1 Introduction 8.2 Sulfate Reduction and the Degradation of Organic Matter 8.3 Biotic and Abiotic Processes Coupled to Sulfate Reduction 8.3.1 Pyrite Formation 8.3.2 Effects of Sulfate Reduction on Sedimentary Solid Phases 8.4 Determination of Sulfate Reduction Rates 9 Marine Carbonates: Their Formation and Destruction / RALPH R. SCHNEIDER, HORST D. SCHULZ AND CHRISTIAN HENSEN 9.1 Introduction 9.2 Marine Environments of Carbonate Production and Accumulation 9.2.1 Shallow-Water Carbonates 9.2.2 Pelagic Calcareous Sediments 9.3 The Calcite-Carbonate-Equilibrium in Marine Aquatic Systems 9.3.1 Primary Reactions of the Calcite-Carbonate-Equilibrium with Atmospheric Contact in Infinitely Diluted Solutions 9.3.2 Primary Reactions of the Calcite-Carbonate-Equilibrium without Atmospheric Contact 9.3.3 Secondary Reactions of the Calcite-Carbonate-Equilibrium in Seawater 9.3.4 Examples for Calculation of the Calcite-Carbonate-Equilibrium in Ocean Waters 9.4 Carbonate Reservoir Sizes and Fluxes between Particulate and Dissolved Reservoirs 9.4.1 Production Versus Dissolution of Pelagic Carbonates 9.4.2 Inorganic and Organic Carbon Release trom Deep-Sea Sediments 10 Influences of Geochemical Processes on Stable Isotope Distribution in Marine Sediments / TORSTEN SICKERT 10.1 Introduction 10.2 Fundamentals 10.2.1 Principles of Isotopic Fractionation 10.2.2 Analytical Procedures 10.3 Geochemicallnfluences on 18O/16O Ratios 10.3.1 δ18O of Seawater 10.3.2 δ18O in Marine Carbonates 10.4 Geochemical Influences on 13C/12C Ratios 10.4.1
    Location: Reading room
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 03.0179
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: This volume highlights some of the frontiers in the study of plastic deformation of minerals and rocks. The research into the plastic properties of minerals and rocks had a major peak in late 1960s to early 1970s, largely stimulated by research in the laboratory of D. T. Griggs and his students and associates. It is the same time when the theory of plate tectonics was established and provided a first quantitative theoretical framework for understanding geological processes. The theory of plate tectonics stimulated the study of deformation properties of Earth materials, both in the brittle and the ductile regimes. Many of the foundations of plastic deformation of minerals and rocks were established during this period. Also, new experimental techniques were developed, including deformation apparatus for high-pressure and high-temperature conditions, electron micros-copy study of defects in minerals, and the X-ray technique of deformation fabric analysis. The field benefited greatly from materials science concepts of deformation that were introduced, including the models of point defects and their interaction with dislocations. A summary of progress is given by the volume Flow and Fracture of Rocks: The Griggs Volume, published in 1972 by the American Geophysical Union. Since then, the scope of Earth sciences has greatly expanded. Geodynamics became concerned with the Earth's deep interior where seismologists discovered heterogeneities and anisotropy at all scales that were previously thought to be typical of the crust and the upper mantle. Investigations of the solar system documented new mineral phases and rocks far beyond the Earth. Both domains have received a lot of attention from mineralogists (e.g., summarized in MSA's Reviews in Mineralogy, Volume 36, Planetary Materials and Volume 37, Ultra-High Pressure Mineralogy). Most attention was directed towards crystal chemistry and phase relations, yet an understanding of the deformation behavior is essential for interpreting the dynamic geological processes from geological and geophysical observations. This was largely the reason for a rebirth of the study of rock plasticity, leading to new approaches that include experiments at extreme conditions and modeling of deformation behavior based on physical principles. A wide spectrum of communities emerged that need to use information about mineral plasticity, including mineralogy, petrology, structural geology, seismology, geodynamics and engineering. This was the motivation to organize a workshop, in December 2002 in Emeryville, California, to bridge the very diverse disciplines and facilitate communication. This volume written for this workshop should help one to become familiar with a notoriously difficult subject, and the various contributions represent some of the important progress that has been achieved. The spectrum is broad. High-resolution tomographic images of Earth's interior obtained from seismology need to be interpreted on the bases of materials properties to understand their geodynamic significance. Key issues include the influence of deformation on seismic signatures, such as attenuation and anisotropy, and a new generation of experimental and theoretical studies on rock plasticity has contributed to a better understanding. Extensive space exploration has revealed a variety of tectonic styles on planets and their satellites, underlining the uniqueness of the Earth. To understand why plate tectonics is unique to Earth, one needs to understand the physical mechanisms of localization of deformation at various scales and under different physical conditions. Also here important theoretical and experimental studies have been conducted. In both fields, studies on anisotropy and shear localization, large-strain deformation experiments and quantitative modeling are critical, and these have become available only recently. Complicated interplay among chemical reactions (including partial melting) is a key to understand the evolution of Earth. This book contains two chapters on the developments of new techniques of experimental studies: one is large-strain shear deformation (Chapter 1 by Mackwell and Paterson) and another is deformation experiments under ultrahigh pressures (Chapter 2 by Durham et al.). Both technical developments are the results of years of efforts that are opening up new avenues of research along which rich new results are expected to be obtained. Details of physical and chemical processes of deformation in the crust and the upper mantle are much better understood through the combination of well controlled laboratory experiments with observations on "real" rocks deformed in Earth. Chapter 3 by Tullis and Chapter 4 by Hirth address the issues of deformation of crustal rocks and the upper mantle, respectively. In Chapter 5 Kohlstedt reviews the interplay of partial melting and deformation, an important subject in understanding the chemical evolution of Earth. Cordier presents in Chapter 6 an overview of the new results of ultrahigh pressure deformation of deep mantle minerals and discusses microscopic mechanisms controlling the variation of deformation mechanisms with minerals in the deep mantle. Green and Marone review in Chapter 7 the stability of deformation under deep mantle conditions with special reference to phase transformations and their relationship to the origin of intermediate depth and deep-focus earthquakes. In Chapter 8 Schulson provides a detailed description of fracture mechanisms of ice, including the critical brittle-ductile transition that is relevant not only for glaciology, planetology and engineering, but for structural geology as well. In Chapter 9 Cooper provides a review of experimental and theoretical studies on seismic wave attenuation, which is a critical element in interpreting distribution of seismic wave velocities and attenuation. Chapter 10 by Wenk reviews the relationship between crystal preferred orientation and macroscopic anisotropy, illustrating it with case studies. In Chapter 11 Dawson presents recent progress in poly-crystal plasticity to model the development of anisotropic fabrics both at the microscopic and macroscopic scale. Such studies form the basis for geodynamic interpretation of seismic anisotropy. Finally, in Chapter 12 Montagner and Guillot present a thorough review of seismic anisotropy of the upper mantle covering the vast regions of geodynamic interests, using a global surface wave data set. In Chapter 13 Bercovici and Karato summarize the theoretical aspects of shear localization. All chapters contain extensive reference lists to guide readers to the more specialized literature. Obviously this book does not cover all the areas related to plastic deformation of minerals and rocks. Important topics that are not fully covered in this book include mechanisms of semi-brittle deformation and the interplay between microstructure evolution and deformation at different levels, such as dislocation substructures and grain-size evolution ("self-organization"). However, we hope that this volume provides a good introduction for graduate students in Earth science or materials science as well as the researchers in these areas to enter this multidisciplinary field.
    Type of Medium: Monograph available for loan
    Pages: xii, 420 S..
    ISBN: 0-939950-63-4 , 978-0-939950-63-8
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 51
    Classification:
    Geochemistry
    Language: English
    Note: Chapter 1. New Developments in Deformation Studies: High-Strain Deformation by Stephen J. Mackwell and Mervyn S. Paterson, p. 1 - 20 Chapter 2. New Developments in Deformation Experiments at High Pressure by William B. Durham, Donald J. Weidner, Shun-ichiro Karato, and Yanbin Wang, p. 21 - 50 Chapter 3. Deformation of Granitic Rocks: Experimental Studies and Natural Examples by Jan Tullis, p. 51 - 96 Chapter 4. Laboratory Constraints on the Rheology of the Upper Mantle by Greg Hirth, p. 97 - 120 Chapter 5. Partial Melting and Deformation by David L. Kohlstedt, p. 121 - 136 Chapter 6. Dislocations and Slip Systems of Mantle Minerals by Patrick Cordier, p. 137 - 180 Chapter 7. Instability of Deformation by Harry W. Green II and Chris Marone, p. 181 - 200 Chapter 8. Brittle Failure of Ice by Erland M. Schulson, p. 201 - 525 Chapter 9. Seismic Wave Attenuation: Energy Dissipation in Viscoelastic Crystalline Solids by Reid F. Cooper, p. 253 - 290 Chapter 10. Texture and Anisotropy by Hans-Rudolf Wenk, p. 291 - 330 Chapter 11. Modeling Deformation of Polycrystalline Rocks by Paul R. Dawson, p. 331 - 352 Chapter 12. Seismic Anisotropy and Global Geodynamics by Jean-Paul Montagner and Laurent Guillot, p. 353 - 386 Chapter 13. Theoretical Analysis of Shear Localization in the Lithosphere by David Bercovici and Shun-ichiro Karato, p. 387 - 420
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Call number: AWI A2-03-0008 ; PIK N 071-02-0285
    Type of Medium: Monograph available for loan
    Pages: XX, 453 S.
    ISBN: 3540413243
    Language: English
    Location: A 18 - must be ordered
    Branch Library: AWI Library
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Monograph available for loan
    Monograph available for loan
    Berlin [u.a.] : Springer
    Call number: 13/M 02.0599
    Type of Medium: Monograph available for loan
    Pages: IX, 495 S.
    ISBN: 3540439218
    Classification:
    Oceanology
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Series available for loan
    Series available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 03.0180
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: Exactly 100 years before the publication of this volume, the first paper which calculated the half-life for the newly discovered radioactive substance U-X (now called 234Th), was published. Now, in this volume, the editors Bernard Bourdon, Gideon Henderson, Craig Lundstrom and Simon Turner have integrated a group of contributors who update our knowledge of U-series geochemistry, offer an opportunity for non-specialists to understand its basic principles, and give us a view of the future of this active field of research. In this volume, for the first time, all the methods for determining the uranium and thorium decay chain nuclides in Earth materials are discussed. It was prepared in advance of a two-day short course (April 3-4, 2003) on U-series geochemistry, jointly sponsored by GS and MSA and presented in Paris, France prior to the joint EGS/AGU/EUG meeting in Nice. The discovery of the 238U decay chain, of course, started with the seminal work of Marie Curie in identifying and separating 226Ra. Through the work of the Curies and others, all the members of the 238U decay chain were identified. An important milestone for geochronometrists was the discovery of 230Th (called Ionium) by Bertram Boltwood, the Yale scientist who also made the first age determinations on minerals using the U-Pb dating method (Boltwood in 1906 established the antiquity of rocks and even identified a mineral from Sri Lanka-then Ceylon as having an age of 2.1 billion years!) The application of the 238U decay chain to the dating of deep sea sediments was by Piggott and Urry in 1942 using the "Ionium" method of dating. Actually they measured 222Ra (itself through 222Rn) assuming secular equilibrium had been established between 230Th and 226Ra. Although 230Th was measured in deep sea sediments by Picciotto and Gilvain in 1954 using photographic emulsions, it was not until alpha spectrometry was developed in the late 1950's that 20Th was routinely measured in marine deposits. Alpha spectrometry and gamma spectrometry became the work horses for the study of the uranium and thorium decay chains in a variety of Earth materials. These ranged from 222Rn and its daughters in the atmosphere, to the uranium decay chain nuclides in the oceanic water column, and volcanic rocks and many other systems in which either chronometry or element partitioning, were explored. Much of what we learned about the 238U, 235U and 232Th decay chain nuclides as chronometers and process indicators we owe to these seminal studies based on the measurement of radioactivity. The discovery that mass spectrometry would soon usurp many of the tasks performed by radioactive counting was in itself serendipitous. It came about because a fundamental issue in cosmochemistry was at stake. Although variation in 235U/238U had been reported for meteorites the results were easily discredited as due to analytical difficulties. One set of results, however, was published by a credible laboratory long involved in quality measurements of high mass isotopes such as the lead isotopes. The purported discovery of 235U/238U variations in meteorites, if true, would have consequences in defining the early history of the formation of the elements and the development of inhomogeneity of uranium isotopes in the accumulation of the protoplanetary materials of the Solar System. Clearly the result was too important to escape the scrutiny of falsification implicit in the way we do science. The Lunatic Asylum at Caltech under the leadership of Jerry Wasserburg took on that task. Jerry Wasserburg and Jim Chen clearly established the constancy and Earth-likeness of 235U/238U in the samplable universe. In the hands of another member of the Lunatic Asylum, Larry Edwards, the methodology was transformed into a tool for the study of the 238U decay chain in marine systems. Thus the mass spectrometric techniques developed provided an approach to measuring the U and Th isotopes in geological materials as well as cosmic materials with the same refinement and accommodation for small sample size. Soon after this discovery the harnessing of the technique to the measurement of all the U isotopes and all the Th isotopes with great precision immediately opened up the entire field of uranium and thorium decay chain studies. This area of study was formerly the poaching ground for radioactive measurements alone but now became part of the wonderful world of mass spectrometric measurements. (The same transformation took place for radiocarbon from the various radioactive counting schemes to 'accelerator mass spectrometry.) No Earth material was protected from this assault. The refinement of dating corals, analyzing volcanic rocks for partitioning and chronometer studies and extensions far and wide into ground waters and ocean bottom dwelling organisms has been the consequence of this innovation. Although Ra isotopes, 210Pb and 210Po remain an active pursuit of those doing radioactive measurements, many of these nuclides have also become subject to the mass spectrometric approach. In this volume, for the first time, all the methods for determining the uranium and thorium decay chain nuclides in Earth materials are discussed. The range of problems solvable with this approach is remarkable-a fitting, tribute to the Curies and the early workers who discovered them for us to use.
    Type of Medium: Series available for loan
    Pages: xx, 656 S.
    ISBN: 0-939950-64-2 , 978-0-939950-64-5
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 52
    Classification:
    Geochemistry
    Language: English
    Note: Chapter 1. Introduction to U-series Geochemistry by Bernard Bourdon, Simon Turner, Gideon M. Henderson and Craig C. Lundstrom, p. 1 - 22 Chapter 2. Techniques for Measuring Uranium-series Nuclides: 1992-2002 by Steven J. Goldstein and Claudine H. Stirling, p. 23 - 58 Chapter 3. Mineral-Melt Partitioning of Uranium, Thorium and Their Daughters by Jonathan Blundy and Bernard Wood, p. 59 - 124 Chapter 4. Timescales of Magma Chamber Processes and Dating of Young Volcanic Rocks by Michel Condomines, Pierre-Jean Gauthier, and Olgeir Sigmarsson, p. 125 - 174 Chapter 5. Uranium-series Disequilibria in Mid-ocean Ridge Basalts: Observations and Models of Basalt Genesis by Craig C. Lundstrom, p. 175 - 214 Chapter 6. U-series Constraints on Intraplate Basaltic Magmatism by Bernard Bourdon and Kenneth W. W. Sims, p. 215 - 254 Chapter 7. Insights into Magma Genesis at Convergent Margins from U-series Isotopes by Simon Turner, Bernard Bourdon and Jim Gill, p. 255 - 316 Chapter 8. The Behavior of U- and Th-series Nuclides in Groundwater by Donald Porcelli and Peter W. Swarzenski, p. 317 - 362 Chapter 9. Uranium-series Dating of Marine and Lacustrine Carbonates by R. L. Edwards, C. D. Gallup, and H. Cheng, p. 363 - 406 Chapter 10. Uranium-series Chronology and Environmental Applications of Speleothems by David A. Richards and Jeffrey A. Dorale, p. 407 - 460 Chapter 11. Short-lived U/Th Series Radionuclides in the Ocean: Tracers for Scavenging Rates, Export Fluxes and Particle Dynamics by J. K. Cochran and P. Masquè, p. 461 - 492 Chapter 12. The U-series Toolbox for Paleoceanography by Gideon M. Henderson and Robert F. Anderson, p. 493 - 532 Chapter 13. U-Th-Ra Fractionation During Weathering and River Transport by F. Chabaux, J. Riotte and O. Dequincey, p. 533 - 576 Chapter 14. The Behavior of U- and Th-series Nuclides in the Estuarine Environment by Peter W. Swarzenski, Donald Porcelli, Per S. Andersson and Joseph M. Smoakv, p. 577 - 606 Chapter 15. U-series Dating and Human Evolution by A. W. G. Pike and P. B. Pettitt, p. 607 - 630 Chapter 16. Mathematical-Statistical Treatment of Data and Errors for 230Th/U Geochronology by K. R. Ludwig, p. 631 - 656
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 02.0438
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: The editors and contributing authors of this volume participated in a short course on micas in Rome late in the year 2000. It was organised by Prof. Annibale Mottana and several colleagues (details in the Preface below) and underwritten by the Italian National Academy, Accademia Nationale dei Lincei (ANL). The Academy subsequently joined with the Mineralogical Society of America (MSA) in publishing this volume. MSA is grateful for their generous involvement. Micas are among the most common minerals in the Earth crust: 4.5% by volume. They are widespread in most if not all metamorphic rocks (abundance: 11 %), and common also in sediments and sedimentary and igneous rocks. Characteristically, micas form in the uppermost greenschist facies and remain stable to the lower crust, including anatectic rocks (the only exception: granulite facies racks). Moreover, some micas are stable in sediments and diagenetic rocks and crystallize in many types of lavas. In contrast, they are also present in association with minerals originating from the very deepest parts of the mantle-they are the most common minerals accompanying diamond in kimberlites. The number of research papers dedicated to micas is enormous, but knowledge of them is limited and not as extensive as that of other rock-forming minerals, for reasons mostly relating to their complex layer texture that makes obtaining crystals suitable for careful studies with modern methods time-consuming, painstaking work. Micas were reviewed extensively in 1984 (Reviews in Mineralogy 13, S.W. Bailey, editor). At that time, the "Micas" volume covered most if not all aspects of mica knowledge, thus producing a long shelf-life for this book. Yet, or perhaps because of that excellent review, mica research was vigorously renewed, and a vast array of new data has been gathered over the past 15 years. These data now need to be organized and reviewed. Furthermore, a Committee nominated by the International Mineralogical Association in the late 1970s concluded its long-lasting work (Rieder et al. 1998) by suggesting a new classification scheme which has stimulated new chemical and structural research on micas. To make a very long story short: the extraordinarily large, but intrinsically vague, mica nomenclature developed during the past two centuries has been reduced from 〉300 to just 37 species names and 6 series (see page xiii, preceding Chapter 1); the new nomenclature shows wide gaps that require data involving new chemical and structural work; the suggestion of using adjectival modifiers for those varieties that deviate away from end-member compositions requires the need for new and accurate measurements, particularly for certain light elements and volatiles; the use of polytype suffixes based on the modified Gard symbolism created better ways of determining precise stacking sequences. This resulted in new polytypes being discovered. Indeed, all this has happened over the past few years in an almost tumultuous way. It was on the basis of these developments that four scientists (B. Zanettin, A. Mottana, F.P. Sassi and C. Cipriani) applied to Accademia Nazionale dei Lincei-the Italian National Academy-for a meeting on micas. An international meeting was convened in Rome on November 2-3, 2000 with the title Advances on Micas (Problems, Methods, Applications in Geodynamics). The topics of this meeting were the crystalchemical, petrological, and historical aspects of the micas. The organizers were both Academy members (C. Cipriani, A. Mottana, F.P. Sassi, W. Schreyer, lB. Thompson Jr., and B. Zanettin) and Italian scientists well-known for their studies on layer silicates (Professors M.F. Brigatti and G. Ferraris). Financial support in additional to that by the Academy was provided by C.N.R. (the Italian National Research Council), M.U.R.S.T. (the Italian Ministry for University, Scientific Research and Technology) and the University of Rome III. Approximately 200 scientists attended the meeting, most of them Italians, but with a sizeable international participation. Thirteen invited plenary lectures and six oral presentations were given, and fourteen posters were displayed. The amount of information presented was large, although the organizers made it very clear that the meeting was to be limited to only a few of the major topics of mica studies. Other topics are promised for a later meeting. Oral and poster presentations on novel aspects of mica research are being printed in the European Journal of Mineralogy, as a part of an individual thematic issue: indeed thirteen papers have appeared in the November 2001 issue. The plenary lectures, which consisted mostly of reviews, are presented in expanded detail in this volume. This book is the first a co-operative project between Accademia Nazionale dei Lincei and Mineralogical Society of America. Hopefully, future projects will involve reviews of the remaining aspects of mica research, and other aspects of mineralogy and geochemistry. The entire meeting was made successful through a co-operative effort. The editing of this book was achieved by a co-operative effort of two Italian Academy members from one side, and by two American scientists from the other side, one of them (JBT) being also a member of Lincei Academy. The entire editing process benefited from the goodwill of many referees, both from those attending the Rome meeting and from several who did not. In all cases the reviewers were distinguished experts of the international community of mica scholars. Their work, as well as our editing work, were aided greatly by RiMG Series Editor, Professor Paul Ribbe, who continuously supported the effort with all his professional experience and friendly advice. We, the co-editors, thank them all very warmly, but take upon ourselves all remaining shortcomings: we are aware that some shortcomings may be present in spite of all our efforts to avoid them. Moreover, we are aware that there are puzzling aspects of micas that are unresolved. Please consider all these as possible avenues for future research!
    Type of Medium: Monograph available for loan
    Pages: xiii, 499 S.
    ISBN: 0-939950-58-8 , 978-0-939950-58-4
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 46
    Classification:
    Geochemistry
    Language: English
    Note: Crystal Chemistry Chapter 1. Mica crystal chemistry and the influence of pressure, temperature, and solid solution on atomistic models by Maria Franca Brigatti and Stephen Guggenheim, p. 1 - 98 Chapter 2. Behavior of micas at high pressure and high temperature by Pier Francesco Zanazzi and Alessandro Pavese, p. 99 - 116 Chapter 3. Structural features of micas by Giovanni Ferraris and Gabriella Ivaldi, p. 117 - 154 Chapter 4. Crystallographic basis of polytypism and twinning in micas by Massimo Nespolo and Slavomil Durovic, p. 155 - 280 Chapter 5. Investigation of micas using advanced transmission electron microscopy by Toshihiro Kogure, p. 281 - 312 Chapter 6. Optical and Mössbauer spectroscopy of iron in micas by M. Darby Dyar, p. 313 - 350 Chapter 7. Infrared spectroscopy of micas by Anton Beran, p. 351 - 370 Chapter 8. X-ray absorption spectroscopy of the micas by Annibale Mottana, Augusto Marcelli, Giannantonio Cibin, and M. Darby Dyar, p. 371 - 412 Metamorphic Petrology Chapter 9. Constraints on studies of metamorphic K-Na white micas by Charles V. Guidotti and Francesco P. Sassi, p. 413 - 448 Chapter 10. Modal spaces for pelitic schists by James B. Thompson, Jr., p. 449 - 462 Chapter 11. Phyllosilicates in very low-grade metamorphism: Transformation to micas by Péter Árkai, p. 463 - 478 Historical Perspective Chapter 12. Micas: Historical perspective by Curzio Cipriani, p. 479 - 499
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Call number: 16/M 03.0376
    In: Advanced texts in physics
    Type of Medium: Monograph available for loan
    Pages: XVII, 397 S.
    ISBN: 3540432361
    Series Statement: Advanced texts in physics
    Uniform Title: Physique de transitions de phases
    Classification:
    Physics
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 03.0010
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: Several years ago, John Rakovan and John Hughes (colleagues at Miami of Ohio), and later Matt Kohn (at South Carolina), separately proposed short courses on phosphate minerals to the Council of the Mineralogical Society of America (MSA). Council suggested that they join forces. Thus this volume, Phosphates: Geochemical, Geobiological, and Materials Importance, was organized. It was prepared in advance of a short course of the same title, sponsored by MSA and presented at Golden, Colorado, October 25-27. We are pleased to present this volume entitled Phosphates: Geochemical, Geobiological and Materials Importance. Phosphate minerals are an integral component of geological and biological systems. They are found in virtually all rocks, are the major structural component of vertebrates, and when dissolved are critical for biological activity. This volume represents the work of many authors whose research illustrates how the unique chemical and physical behavior of phosphate minerals permits a wide range of applications that encompasses phosphate mineralogy, petrology, biomineralization, geochronology, and materials science. While diverse, these fields are all linked structurally, crystal-chemically and geochemically. As geoscientists turn their attention to the intersection of the biological, geological, and material science realms, there is no group of compounds more germane than the phosphates. The chapters of this book are grouped into five topics: Mineralogy and Crystal Chemistry, Petrology, Biomineralization, Geochronology, and Materials Applications. In the first section, three chapters are devoted to mineralogical aspects of apatite, a phase with both inorganic and organic origins, the most abundant phosphate mineral on earth, and the main mineral phase in the human body. Monazite and xenotime are highlighted in a fourth chapter, which includes their potential use as solid-state radioactive waste repositories. The Mineralogy and Crystal Chemistry section concludes with a detailed examination of the crystal chemistry of 244 other naturally-occurring phosphate phases and a listing of an additional 126 minerals. In the Petrology section, three chapters detail the igneous, metamorphic, and sedimentary aspects of phosphate minerals. A fourth chapter provides a close look at analyzing phosphates for major, minor, and trace elements using the electron microprobe. A final chapter treats the global geochemical cycling of phosphate, a topic of intense, current geochemical interest. The Biomineralization section begins with a summary of the current state of research on bone, dentin and enamel phosphates, a topic that crosses disciplines that include mineralogical, medical, and dental research. The following two chapters treat the stable isotope and trace element compositions of modern and fossil biogenic phosphates, with applications to paleontology, paleoclimatology, and paleoecology. The Geochronology section focuses principally on apatite and monazite for U-ThPb, (U- Th)/He, and fission-track age determinations; it covers both classical geochronologic techniques as well as recent developments. The final section-Materials Applications-highlights how phosphate phases play key roles in fields such as optics, luminescence, medical engineering and prosthetics, and engineering of radionuclide repositories. These chapters provide a glimpse of the use of natural phases in engineering and biomedical applications and illustrate fruitful areas of future research in geochemical, geobiological and materials science. We hope all chapters in this volume encourage researchers to expand their work on all aspects of natural and synthetic phosphate compounds.
    Type of Medium: Monograph available for loan
    Pages: xv, 742 S.
    ISBN: 0-939950-60-X , 978-0-939950-60-7
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 48
    Classification:
    Geochemistry
    Language: English
    Note: Chapter 1. The Crystal Structure of Apatite, Ca5(PO4)3(F,OH,Cl) by John M. Hughes and John Rakovan, p. 1 - 12 Chapter 2. Compositions of the Apatite-Group Minerals: Substitution Mechanisms and Controlling Factors by Yuanming Pana and Michael E. Fleet, p. 13 - 50 Chapter 3. Growth and Surface Properties of Apatite by John Rakovan, p. 51 - 86 Chapter 4. Synthesis, Structure and Properties of Monazite, Pretulite, and Xenotime by Lynn A. Boatner, p. 87 - 122 Chapter 5. The Crystal Chemistry of the Phosphate Minerals by Danielle M.C. Huminicki and Frank C. Hawthorne, p. 123 - 254 Chapter 6. Apatite in Igneous Systems by Philip M. Piccoli and Philip A. Candela, p. 255 - 292 Chapter 7. Apatite, Monazite, and Xenotine in Metamorphic Rocks by Frank S. Spear and Joseph M. Pyle, p. 293 - 336 Chapter 8. Electron Microprobe Analysis of REE in Apatite, Monazite and Xenotime: Protocols and Pitfalls by Joseph M. Pyle, Frank S. Spear, and David A. Wark, p. 337 - 362 Chapter 9. Sedimentary Phosphorites - An Example: Phosphoria Formation, Southeastern Idaho, U.S.A by Andrew C. Knudsen and Mickey E. Gunter, p. 363 - 390 Chapter 10. The Global Phosphorus Cycle by Gabriel M. Filippelli, p. 391 - 426 Chapter 11. Calcium Phosphate Biominerals by James C. Elliott, p. 427 - 454 Chapter 12. Stable Isotope Composition of Biological Apatite by Matthew J. Kohn and Thure E. Cerling, p. 455 - 488 Chapter 13. Trace Elements in Recent and Fossil Bone Apatite by Clive N. Trueman and Noreen Tuross, p. 489 - 522 Chapter 14. U-TH-Pb Dating of Phosphate Minerals by T. Mark Harrison, Elizabeth J. Catlos, and Jean-Marc Montel, p. 523 - 558 Chapter 15. (U-Th)/He Dating of Phosphates: Apatite, Monazite, and Xenotime by Kenneth A. Farley and Daniel F. Stockli, p. 559 - 578 Chapter 16. Fission Track Dating of Phosphate Minerals and the Thermochronology of Apatite by Andrew J.W. Gleadow, David X. Belton, Barry P. Kohn, and Roderick W. Brown, p. 579 - 630 Chapter 17. Biomedical Application of Apatites by Karlis A. Gross and Christopher C. Berndt, p. 631 - 672 Chapter 18. Phosphates as Nuclear Waste Forms by Rodney C. Ewing and LuMin Wang, p. 673 - 700 Chapter 19. Apatite Luminescence by Glenn A. Waychuna, p. 701 - 742
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 04.0008
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: In the two decades since J. Alexander Speer's Zircon chapter in Orthosilicates (Reviews in Mineralogy, Vol. 5), much has been learned about the internal textures, trace-element and isotope geochemistry (both radiogenic and stable) and chemical and mechanical stability of zircon. The application of this knowledge and the use of zircon in geologic studies have become widespread. Today, the study of zircon exists as the pseudo-discipline of "zirconology" that involves materials scientists and geoscientists from across a range of sub-disciplines including stable and radiogenic isotopes, sedimentology, petrology, trace elements and experimental mineralogy. Zirconology has become an important field of research, so much so that coverage of the mineral zircon in a review volume that included zircon as one of many accessory minerals would not meet the needs or interests of the zirconology community in terms of depth or breadth of coverage. The sixteen chapters in this volume cover the most important aspects of zircon-related research over the past twenty-years and highlight possible future research avenues. Finch and Hanchar (Chapter 1) review the structure of zircon and other mineral (and synthetic) phases with the zircon structure. In most rock types where zircon occurs it is a significant host of the rare-earth elements, Th and U. The abundances of these elements and the form of chondrite-normalized rare-earth element patterns may provide significant information on the processes that generate igneous and metamorphic rocks. The minor and trace element compositions of igneous, metamorphic and hydrothermal zircons are reviewed by Hoskin and Schaltegger in Chapter 2. The investigation of melt inclusions in zircon is an exciting line of new research. Trapped melt inclusions can provide direct information of the trace element and isotopic composition of the melt from which the crystal formed as a function of time throughout the growth of the crystal. Thomas et a!. (Chapter 3) review the study of melt inclusions in zircon. Hanchar and Watson (Chapter 4) review experimental and natural studies of zircon saturation and the use of zircon saturation thermometry for natural rocks. Cation diffusion and oxygen diffusion in zircon is discussed by Cherniak and Watson (Chapter 5). Diffusion studies are essential for providing constraints on the quality of trace element and isotope data and for providing estimates of temperature exposure in geological environments. Zircon remains the most widely utilized accessory mineral for U- Th-Pb isotope geochronology. Significant instrumental and analytical developments over the past thirty years mean that zircon has an essential role in early Achaean studies, magma genesis, and astrobiology. Four chapters are devoted to different aspects of zircon geochronology. The first of these four, Chapter 6 by Davis et a!., reviews the historical development of zircon geochronology from the mid-1950s to the present; the following three chapters focus on particular techniques for zircon geochronology, namely ID-TIMS (Parrish and Noble, Chapter 7), SIMS (Ireland and Williams, Chapter 8) and ICP-MS (Kosier and Sylvester, Chapter 9). The application of zircon chronology in constraining sediment provenance.and the calibration ofthe geologic time-scale are reviewed by Fedo et al. (Chapter 10) and Bowring and Schmitz (Chapter 11), respectively. Other isotopic systematics are reviewed for zircon by Kinny and Maas (Chapter 12), who discuss the application of Nd-Sm and Lu-Hf isotopes in zircon to petrogenetic studies, and by Valley (Chapter 13), who discusses the importance of oxygen isotopic studies in traditional and emerging fields of geologic study. As a host of U and Th, zircon is subject to radiation damage. Radiation damage is likely responsible for isotopic disturbance and promotes mechanical instability. There is increasing interest in both the effect of radiation damage on the zircon crystal structure and mechanisms of damage and recrystallization, as well as the structure of the damaged phase. These studies contribute to an overall understanding of how zircon may behave as a waste-form for safe disposal of radioactive waste and are discussed by Ewing et a!. (Chapter 14). The spectroscopy of zircon, both crystalline and metamict is reviewed by Nadsala et a!. (Chapter 15). The final chapter, by Corfu et al. (Chapter 16), is an atlas of internal textures of zircon. The imaging of internal textures in zircon is essential for directing the acquisition of geochemical data and to the integrity of conclusions reached once data has been collected and interpreted. This chapter, for the first time, brings into one place textural images that represent common and not so common textures reported in the literature, along with brief interpretations of their significance. There is presently no comparable atlas. It is intended that this chapter will become a reference point for future workers to compare and contrast their own images against. The chapters in this volume of Reviews in Mineralogy and Geochemistry were prepared for presentation at a Short Course, sponsored by the Mineralogical Society of America (MSA) in Freiburg, Germany, April 3-4, 2003. This preceded a joint meeting of the European Union of Geology, the American Geophysical Union and the European Geophysical Society held in Nice, France, April 6-11, 2003.
    Type of Medium: Monograph available for loan
    Pages: XVII, 500 S.
    ISBN: 0-939950-65-0 , 978-0-939950-65-2
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 53
    Classification:
    Mineralogy
    Language: English
    Note: Chapter 1. Structure and chemistry of zircon and zircon-group minerals by Robert J. Finch and John M. Hanchar, p. 1 - 26 Chapter 2. The composition of zircon and igneous and metamorphic petrogenesis by Paul W. O. Hoskin and Urs Schaltegger, p. 27 - 62 Chapter 3. Melt inclusions in zircon by J. B. Thomas, Robert J. Bodnar, Nobumichi Shimizu, and Craig A. Chesner, p. 63 - 88 Chapter 4. Zircon saturation thermometry by John M. Hanchar and E. Bruce Watson, p. 89 - 112 Chapter 5. Diffusion in zircon by Daniele J. Cherniak and E. Bruce Watson, p. 113 - 144 Chapter 6. Historical development of zircon geochronology by Donald W. Davis, Ian S. Williams, and Thomas E. Krogh, p. 145 - 182 Chapter 7. Zircon U-Th-Pb geochronology by isotope dilution—thermal ionization mass spectrometry (ID-TIMS) by Randall R. Parrish and Stephen R. Noble, p. 183 - 214 Chapter 8. Considerations in zircon geochronology by SIMS by Trevor R. Ireland and Ian S. Williams, p. 215 - 242 Chapter 9. Present trends and the future of zircon in geochronology: laser ablation ICPMS by Jan Kosler and Paul J. Sylvester, p. 243 - 276 Chapter 10. Detrital zircon analysis of the sedimentary record by Christopher M. Fedo, Keith N. Sircombe, and Robert H. Rainbird, p. 277 - 304 Chapter 11. High-precision U-Pb zircon geochronology and the stratigraphic record by Samuel A. Bowring and Mark D. Schmitz, p. 305 - 326 Chapter 12. Lu-Hf and Sm-Nd isotope systems in zircon by Peter D. Kinny and Roland Maas, p. 327 - 342 Chapter 13. Oxygen isotopes in zircon by John W. Valley, p. 343 - 386 Chapter 14. Radiation effects in zircon by Rodney C. Ewing, Alkiviathes Meldrum, LuMin Wang, William J. Weber, and L. René Corrales, p. 387 - 426 Chapter 15. Spectroscopic methods applied to zircon by Lutz Nasdala, Ming Zhang, Ulf Kempe, Gérard Panczer, Michael Gaft, Michael Andrut, and Michael Plotze, p. 427 - 468 Chapter 16. Atlas of zircon textures by Fernando Corfu, John M. Hanchar, Paul W.O. Hoskin, and Peter Kinny, p. 469 - 500
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 03.0059
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: This book has been several years in the making, under the experienced and careful oversight of Ed Grew (University of Maine), who edited (with Larry Anovitz) a similar, even larger volume in 1996: Boron: Mineralogy, Petrology, and Geochemistry (RiMG Vol. 33, reprinted with updates and corrections, 2002). Many of the same reasons for inviting investigators to contribute to a volume on B apply equally to a volume on Be. Like B, Be poses analytical difficulties, and it has been neglected in many studies. However, with recent improvements in analytical technology, interest in Be and its cosmogenic isotopes has increased greatly. Chapter 1 (Grew) is an overview of Be studies in the earth sciences backed by an extensive reference list, and an annotated list of the 110 mineral species reported to contain essential Be as of 2002, together with commentary on their status. A systematic classification of Be minerals based on their crystal structure is presented in Chapter 9 (Hawthorne and Huminicki), while analysis of these minerals by the secondary ion mass spectroscopy is the subject of Chapter 8 (Hervig). Chapter 13 (Franz and Morteani) reviews experimental studies of systems involving Be. Chapter 2 (Shearer) reviews the behavior of Be in the Solar System, with an emphasis on meteorites, the Moon and Mars, and the implications of this behavior for the evolution of the solar system. Chapter 3 (Ryan) is an overview of the terrestrial geochemistry of Be, and Chapter 7 (Vesely, Norton, Skrivan, Majer, Kr·m, Navr·til, and Kaste) discusses the contamination of the environment by this anthropogenic toxin. The cosmogenic isotopes Be-7 and Be-10 have found increasing applications in the Earth sciences. Chapter 4 (Bierman, Caffee, Davis, Marsella, Pavich, Colgan and Mickelson) reports use of the longer lived Be-10 to assess erosion rates and other surficial processes, while Chapter 5 (Morris, Gosse, Brachfeld and Tera) considers how this isotope can yield independent temporal records of geomagnetic field variations for comparison with records obtained by measuring natural remnant magnetization, be a chemical tracer for processes in convergent margins, and can date events in Cenozoic tectonics. Chapter 6 (Kaste, Norton and Hess) reviews applications of the shorter lived isotope Be-7 in environmental studies. Beryllium is a lithophile element concentrated in the residual phases of magmatic systems. Residual phases include acidic plutonic and volcanic rocks, whose geochemistry and evolution are covered, respectively, in Chapters 11 (London and Evensen) and 14 (Barton and Young), while granitic pegmatites, which are well-known for their remarkable, if localized, Be enrichments and a wide variety of Be mineral assemblages, are reviewed in Chapter 10 (Cerny). Not all Be concentrations have obvious magmatic affinities; for example, one class of emerald deposits results from Be being introduced by heated brines (Chapters 13; 14). Pelitic rocks are an important reservoir of Be in the Earth's crust and their metamorphism plays a critical role in recycling of Be in subduction zones (Chapter 3), eventually, anatectic processes complete the cycle, providing a source of Be for granitic rocks (Chapters 11 and 12).
    Type of Medium: Monograph available for loan
    Pages: XII, 691 S.
    ISBN: 0-939950-62-6 , 978-0-939950-62-1
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 50
    Classification:
    Geochemistry
    Language: English
    Note: Chapter 1. Mineralogy, Petrology and Geochemistry of Beryllium: An Introduction and List of Beryllium Minerals by Edward S. Grew, p. 1 - 76 Chapter 2. Behavior of Beryllium During Solar System and Planetary Evolution: Evidence from Planetary Materials by Charles K. Shearer, p. 77 - 120 Chapter 3. Trace-Element Systematics of Beryllium in Terrestrial Materials by Jeffrey G. Ryan, p. 121 - 146 Chapter 4. Rates and Timing of Earth Surface Processes From In Situ-Produced Cosmogenic Be-10 by Paul R. Bierman, Marc W. Caffee, P. Thompson Davis, Kim Marsella, Milan Pavich, Patrick Colgan, and David Mickelson, p. 147 - 206 Chapter 5. Cosmogenic Be-10 and the Solid Earth: Studies in Geomagnetism, Subduction Zone Processes, and Active Tectonics by Julie D. Morris, John Gosse, Stefanie Brachfeld, and Fouad Tera, p. 207 - 270 Chapter 6. Environmental Chemistry of Beryllium-7 by James M. Kaste, Stephen A. Norton, and Charles T. Hess, p. 271 - 290 Chapter 7. Environmental Chemistry of Beryllium by J. Vesely, S. A. Norton, P. Skrivan, V. Majer, P. Kram, T. Navr·til, and J. M. Kaste, p. 291 - 318 Chapter 8. Beryllium Analyses by Secondary Ion Mass Spectrometry by Richard L. Hervig, p. 319 - 332 Chapter 9. The Crystal Chemistry of Beryllium by Frank C. Hawthorne and Danielle M. C. Huminicki, p. 333 - 404 Chapter 10. Mineralogy of Beryllium in Granitic Pegmatites by Petr Cerny, p. 405 - 444 Chapter 11. Beryllium in Silicic Magmas and the Origin of Beryl-Bearing Pegmatites by David London and Joseph M. Evensen, p. 445 - 486 Chapter 12. Beryllium in Metamorphic Environments (Emphasis on Aluminous Compositions) by Edward S. Grew, p. 487 - 550 Chapter 13. Be-Minerals: Synthesis, Stability, and Occurrence in Metamorphic Rocks by Gerhard Franz and Giulio Morteani, p. 551 - 590 Chapter 14. Non-pegmatitic Deposits of Beryllium: Mineralogy, Geology, Phase Equilibria and Origin by Mark D. Barton and Steven Young, p. 591 - 691
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 04.0009
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: Since the dawn of life on earth, organisms have played roles in mineral formation in processes broadly known as biomineralization. This biologically-mediated organization of aqueous ions into amorphous and crystalline materials results in materials that are as simple as adventitious precipitates or as complex as exquisitely fabricated structures that meet specialized functionalities. The purpose of this volume of Reviews in Mineralogy and Geochemistry is to provide students and professionals in the earth sciences with a review that focuses upon the various processes by which organisms direct the formation of minerals. Our framework of examining biominerals from the viewpoints of major mineralization strategies distinguishes this volume from most previous reviews. The review begins by introducing the reader to over-arching principles that are needed to investigate biomineralization phenomena and shows the current state of knowledge regarding the major approaches to mineralization that organisms have developed over the course of Earth history. By exploring the complexities that underlie the "synthesis" of biogenic materials, and therefore the basis for how compositions and structures of biominerals are mediated (or not), we believe this volume will be instrumental in propelling studies of biomineralization to a new level of research questions that are grounded in an understanding of the underlying biological phenomena.
    Type of Medium: Monograph available for loan
    Pages: xiii, 381 S.
    ISBN: 0-939950-66-9 , 978-0-939950-66-9
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 54
    Classification:
    Mineralogy
    Language: English
    Note: Chapter 1. An Overview of Biomineralization Processes and the Problem of the Vital Effect by Steve Weiner and Patricia M. Dove, p. 1 - 30 Chapter 2. Principles of Molecular Biology and Biomacromolecular Chemistry by John S. Evans, p. 31 - 56 Chapter 3. Principles of Crystal Nucleation and Growth by James J. De Yoreo and Peter G. Vekilov, p. 57 - 94 Chapter 4. Biologically Induced Mineralization by Bacteria by Richard B. Frankel and Dennis A. Bazylinskn, p. 95 - 114 Chapter 5. The Source of Ions for Biomineralization in Foraminifera and Their Implications for Paleoceanographic Proxies by Jonathan Erez, p. 115 - 150 Chapter 6. Geochemical Perspectives on Coral Mineralization by Anne L. Cohen and Ted A. McConnaughey, p. 151 - 188 Chapter 7. Biomineralization Within Vesicles: The Calcite of Coccoliths by Jeremy R. Young and Karen Henriksen, p. 189 - 216 Chapter 8. Biologically Controlled Mineralization in Prokaryotes by Dennis A. Bazylinski and Richard B. Frankel, p. 217 - 248 Chapter 9. Mineralization in Organic Matrix Frameworks by Arthur Veis, p. 249 - 290 Chapter 10. Silicification: The Processes by Which Organisms Capture and Mineralize Silica by Carole C. Perry, p. 291 - 328 Chapter 11. Biomineralization and Evolutionary History by Andrew H Knoll, p. 329 - 356 Chapter 12. Biomineralization and Global Biogeochemical Cycles by Philippe Van Cappellen, p. 357 -381
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Call number: 11/M 03.0009
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: This volume was produced in response to the need for a comprehensive introduction to the continually evolving state of the art of synchrotron radiation applications in low-temperature geochemistry and environmental science. It owes much to the hard work and imagination of the devoted cadre of sleep-deprived individuals who blazed a trail that many others are beginning to follow. Synchrotron radiation methods have opened new scientific vistas in the earth and environmental sciences, and progress in this direction will undoubtedly continue. The organization of this volume is as follows. Chapter 1 (Brown and Sturchio) gives a fairly comprehensive overview of synchrotron radiation applications in low temperature geochemistry and environmental science. The presentation is organized by synchrotron methods and scientific issues. It also has an extensive reference list that should prove valuable as a starting point for further research. Chapter 2 (Sham and Rivers) describes the ways that synchrotron radiation is generated, including a history of synchrotrons and a discussion of aspects of synchrotron radiation that are important to the experimentalist. The remaining chapters of the volume are organized into two groups. Chapters 3 through 6 describe specific synchrotron methods that are most useful for single-crystal surface and mineral-fluid interface studies. Chapters 7 through 9 describe methods that can be used more generally for investigating complex polyphase fine-grained or amorphous materials, including soils, rocks, and organic matter. Chapter 2 (Shearer) reviews the behavior of Be in the Solar System, with an emphasis on meteorites, the Moon and Mars, and the implications of this behavior for the evolution of the solar system. Chapter 3 (Ryan) is an overview of the terrestrial geochemistry of Be, and Chapter 7 (Vesely, Norton, Skrivan, Majer, Kr·m, Navr·til, and Kaste) discusses the contamination of the environment by this anthropogenic toxin. Chapter 3 (Fenter) presents the elementary theory of synchrotron X-ray reflectivity along with examples of recent applications, with emphasis on in situ studies of mineral-fluid interfaces. Chapter 4 (Bedzyk and Cheng) summarizes the theory of X-ray standing waves (XSW), the various methods for using XSW in surface and interfaces studies, and gives a brief review of recent applications in geochemistry and mineralogy. Chapter 5 (Waychunas) covers the theory and applications of grazing-incidence X-ray absorption and emission spectroscopy, with recent examples of studies at mineral surfaces. Chapter 6 (Hirschmugl) describes the theory and applications of synchrotron infrared microspectroscopy. Chapter 7 (Manceau, Marcus, and Tamura) gives background and examples of the combined application of synchrotron X-ray microfluorescence, microdiffraction, and microabsorption spectroscopy in characterizing the distribution and speciation of metals in soils and sediments. Chapter 8 (Sutton, Newville, Rivers, Lanzirotti, Eng, and Bertsch) demonstrates a wide variety of applications of synchrotron X-ray microspectroscopy and microtomography in characterizing earth and environmental materials and processes. Finally, Chapter 9 (Myneni) presents a review of the principles and applications of soft X-ray microspectroscopic studies of natural organic materials. All of these chapters review the state of the art of synchrotron radiation applications in low temperature geochemistry and environmental science, and offer speculations on future developments. The reader of this volume will acquire an appreciation of the theory and applications of synchrotron radiation in low temperature geochemistry and environmental science, as well as the significant advances that have been made in this area in the past two decades (especially since the advent of the third-generation synchrotron sources). We hope that this volume will inspire new users to "see the light" and pursue their research using the potent tool of synchrotron radiation.
    Type of Medium: Monograph available for loan
    Pages: XXII, 579 S.
    ISBN: 0-939950-61-8 , 978-0-939950-61-4
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 49
    Classification:
    Geochemistry
    Language: English
    Note: Chapter 1. An Overview of Synchrotron Radiation Applications to Low Temperature Geochemistry and Environmental Science by Gordon E. Brown, Jr. and Neil C. Sturchio, p. 1 - 116 Chapter 2. A Brief Overview of Synchrotron Radiation by T. K. Sham and Mark L. Rivers, p. 117 - 148 Chapter 3. X-ray Reflectivity as a Probe of Mineral-Fluid Interfaces: A User Guide by Paul A. Fenter, p. 149 - 220 Chapter 4. X-ray Standing Wave Studies of Minerals and Mineral Surfaces: Principles and Applications by Michael J. Bedzyk and Likwan Cheng, p. 221 - 266 Chapter 5. Grazing-incidence X-ray Absorption and Emission Spectroscopy by Glenn A. Waychunas, p. 267 - 316 Chapter 6. Applications of Storage Ring Infrared Spectromicroscopy and Reflection-Absorption Spectroscopy to Geochemistry and Environmental Science by Carol J. Hirschmugl, p. 317 - 340 Chapter 7. Quantitative Speciation of Heavy Metals in Soils and Sediments by Synchrotron X-ray Techniques by Alain Manceau, Matthew A. Marcus, and Nobumichi Tamura, p. 341 - 428 Chapter 8. Microfluorescence and MicrotomographyAnalyses of Heterogeneous Earth and Environmental Materials by Stephen R. Sutton, Paul M. Bertsch, Matthew Newville, Mark Rivers, Antonio Lanzirotti and Peter Eng, p. 429 - 484 Chapter 9. Soft X-ray Spectroscopy and Spectromicroscopy Studies of Organic Molecules in the Environment by Satish C. B. Myneni, p. 485 - 579
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Unknown
    Berlin [u.a.] : Springer
    Description / Table of Contents: The book reviews the geological, mineralogical, geochemical and petrological characteristics of indium-bearing ore deposits. Furthermore it develops a general metallogenic concept for indium in identifying the essential enrichment processes and their economic significance. It represents the first comprehensive study on the metallogeny of indium and covers economic aspects including production and use. Careful geological and mineralogical descriptions are given for representative examples of different deposit types with most significant characteristics being summarized at the end of each chapter.
    Pages: Online-Ressource (XII, 257 Seiten)
    ISBN: 3540431357
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Unknown
    Berlin [u.a.] : Springer
    Description / Table of Contents: Volcanic eruptions are the clear and dramatic expression of dynamic processes going on in planet Earth. The author, one of the most profound specialists in the field of volcanology, explains in a concise and easy to understand manner the basics and most recent findings in the field of volcanology. Based on plate tectonics and illustrated with more than 300 color figures, the book offers insights into the generation of magmas and the occurrence and origin of volcanoes. The analysis and description of volcanic structures is followed by process-oriented chapters discussing the role of magmatic gases, as well as explosive mechanisms and sedimentation of volcanic material. The final chapters deal with the forecast of eruptions and their influence on climate. Students and scientists from a broad range of fields will find this book an interesting and attractive source of information.From the reviews:"The science of volcanology has made tremendous progress over the past 40 years, primarily because of technological advances and because each tragic eruption has led researchers to recognize the processes behind such serious hazards. Yet scientists are still learning a great deal because of photographs that either capture those processes in action or show us the critical factors left behind in the rock record.Volcanism by Hans-Ulrich Schmincke has photos of the best quality I have ever seen in a text on the subject. I found myself wishing that I had had the photo of Nicaragua's Masaya volcano, which was the subject of my dissertation, but it was Schmincke who was able to include it in his book. In addition, the schematic figures in their wide range of styles are clear, colorful, and simplified to emphasize the most important factors while including all significant features. The book's paper is of such high quality that at times I felt I had turned two pages rather than one.I have really enjoyed reading and rereading Schmincke's book. It fills a great gap in texts available for teaching any basic course in volcanology. No other book I know of has the depth and breadth of Volcanism. I was disappointed that the text did not arrive on my desk until last August, when it was too late for me to choose it for my course in volcanology. I am also disappointed about another fact--the book's binding is already becoming tattered because of my intense use of it! Schmincke is a volcanologist who, in 1967, first published papers on sedimentary rocks of volcanic origin, the direction traveled by lava flows millions of years ago, and the structures preserved in explosive ignimbrites, or pumice-flow deposits, that reveal important details of their formation. Since then, his studies in Germany's Laacher See, the Canary Islands, the Troodos Ophiolite of Cyprus, and many other regions have forged great fundamental advances. Such contributions have been recognized with his receipt of several international awards and clearly give him a strong base for writing the book.However, as a scientist who has focused on the challenges of monitoring the very diverse activities of volcanoes, I think that the text's overriding emphasis on the rock record has its cost. The group of scientists who are struggling with their goals to reduce or mitigate the hazards of the eruptions of tomorrow need to learn more about the options of technology, instrumentation, and methodology that are currently available. More than 500 million people live near the more than 1500 known active volcanoes and are constantly facing serious threats of eruptions. An extremely energetic earthquake caused the horrific tsunamis of 2004. However, the tsunamis of 1792, 1815, and 1883, which were caused by the eruptions of Japan's Unzen volcano and Indonesia's Tambora and Krakatau volcanoes, each took a similar toll. ( Stanley N. Williams, PHYSICS TODAY, April 2005)
    Pages: Online-Ressource (X, 324 Seiten)
    ISBN: 3540436502
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institute for Climate, Environment and Energy | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2016-04-28
    Keywords: ddc:320
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institute for Climate, Environment and Energy | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2016-04-28
    Keywords: ddc:320
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-04-18
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2018-04-18
    Keywords: ddc:320
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institute for Climate, Environment and Energy | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2016-04-28
    Keywords: ddc:320
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institute for Climate, Environment and Energy | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2016-04-28
    Keywords: ddc:330
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institute for Climate, Environment and Energy | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2016-04-28
    Keywords: ddc:320
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2018-03-26
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institute for Climate, Environment and Energy | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2018-04-30
    Keywords: ddc:330
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institute for Climate, Environment and Energy | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2018-04-30
    Keywords: ddc:330
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institute for Climate, Environment and Energy | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2021-04-20
    Keywords: ddc:320
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2016-04-28
    Keywords: ddc:320
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institute for Climate, Environment and Energy | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2016-04-28
    Keywords: ddc:320
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2016-04-28
    Keywords: ddc:330
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institute for Climate, Environment and Energy | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2021-04-20
    Keywords: ddc:320
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: workingpaper , doc-type:workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institute for Climate, Environment and Energy | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2018-04-30
    Keywords: ddc:330
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institute for Climate, Environment and Energy | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2016-04-28
    Keywords: ddc:330
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institute for Climate, Environment and Energy | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2022-02-18
    Description: In this second brochure, WISIONS aims to focus on the significance of a combined approach to water and energy and to present a number of projects from around the globe that have been successfully implemented, with the intention of further promoting the particular approaches used by these projects. Using a key number of internationally accepted criteria, the main consideration for selection of the projects was energy and resource efficiency, but social aspects such as the inclusion of local population were also of relevance. The assessment of the projects also included the consideration of regional factors acknowledging different needs and potentials.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institute for Climate, Environment and Energy | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2022-02-18
    Description: The brochure focuses on the significance of the construction sector and aim to collect world-wide innovative project approaches that have already been implemented to promote the concepts. Using a key number of internationally accepted criteria, the main considerations have been the energy efficiency and in a broad sense also the resource efficiency of the projects.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institute for Climate, Environment and Energy | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2022-11-10
    Description: This manual sets out to be an instruction guide for the implementation of analyses according to the MIPS concept. MIPS stands for Material Input Per Service unit, a measure developed at the Wuppertal Institute, which serves as an indicator of precautionary environmental protection. However, this publication is not a comprehensive description of the methods used, but should rather be seen as supplementing existing publications, in particular, the MAIA Handbook. This practical guide contains additional information, which cannot be part of a methodological description, but which is indispensable for the practical work. This manual is directed at enterprises and persons, who wish to carry out MIPS or a material analysis in relation to products or services. It gives a general impression of what MIPS is, and how MIPS is calculated.
    Keywords: ddc:330
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...