ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (23)
  • John Wiley & Sons, Ltd  (23)
  • English  (23)
  • english
  • Russian
  • 2020-2024  (14)
  • 2020-2023  (9)
  • 1980-1984
  • 1
    Publication Date: 2022-03-30
    Description: With increasing resolution of numerical weather prediction (NWP) models, classical subgrid‐scale processes become increasingly resolved on the model grid. In particular, turbulence in the planetary boundary layer (PBL) is vertically already partially resolved in contemporary models. For classical local PBL schemes, resulting up‐gradient heat transports cannot be treated correctly. Thus, nonlocal turbulence schemes have been developed in the past. As the horizontal grid sizes of NWP models become smaller than a few kilometers, the large turbulence eddies in the PBL will also start to become partially resolved in the horizontal direction. A very flexible way to formulate nonlocal turbulent exchange is the transilient matrix method, which is used here to develop a new turbulence parameterization. The resulting NLT3D scheme applies transilient mixing matrices to subgrid‐scale transports in all three dimensions. We compare results of WRF real‐case simulations including our scheme, a classical local turbulence scheme (MYNN), and an existing nonlocal one‐dimensional scheme (ACM2) with observations from field campaigns over homogeneous terrain (CASES‐99) and complex terrain (CAPTEX). Over homogeneous terrain, all three schemes similarly well capture the observed surface fluxes and radiosonde profiles, whereas over complex terrain more differences become obvious. During a tracer release experiment (CAPTEX) over the Appalachian mountain region, the mixing and vertical extent of the PBL turn out to be decisive to reproduce the observed advection speed of the tracer‐marked air mass. Deeper mixing not only accelerates surface winds but also enables tracer to travel faster at higher altitudes and then mix back to the ground. As results from a version of NLT3D with only standard horizontal Smagorinsky diffusion (NLT1D) demonstrate, simulating three‐dimensional turbulence can be beneficial already at horizontal grid sizes of a few kilometers.
    Description: Decreasing grid sizes in numerical weather prediction models demand the inclusion of nonlocal effects and horizontal turbulence in turbulence parameterizations. This is the motivation for the development of the nonlocal three‐dimensional turbulence (NLT3D) scheme. Vertical nonlocal mixing accelerates the horizontal transport of near‐surface tracers by fast advection at higher altitudes (see figure), and horizontal turbulence enhances tracer dispersion. As validated by observations, both effects are beneficial to the forecast quality already at grid sizes of a few kilometers.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:551.6
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-31
    Description: Aerosol can affect clouds in various ways. Beside the microphysical impact of aerosol particles on cloud formation, the interference of aerosol with atmospheric radiation leads to changes in local heating, surface fluxes and thus mesoscale circulations, all of which may also modify clouds. Rather little is known about these so‐called semi‐direct effects in realistic settings – a reason why this study investigates the impact of absorbing aerosol particles on cloud and radiation fields over Germany. Using advanced high‐resolution simulations with grid spacings of 312 and 625 m, numerical experiments with different aerosol optical properties are contrasted using purely scattering aerosol as a control case and realistic absorbing aerosol as a perturbation. The combined effect of surface dimming and atmospheric heating induces positive temperature and negative moisture anomalies between 800 and 900 hPa, impacting low‐level cloud formation. Decreased relative humidity as well as increased atmospheric stability below clouds lead to a reduction of low‐level cloud cover, liquid water path and precipitation. It is further found that direct and semi‐direct effects of absorbing aerosol forcing have similar magnitudes and contribute equally to a reduction of net radiation at the top of the atmosphere.
    Description: Atmospheric aerosol particles can absorb solar radiation, altering the thermal structure of the atmosphere and surface fluxes. Using advanced high‐resolution simulations over Germany with grid spacings of 312 and 625 m, we find that boundary‐layer absorbing aerosol reduces low‐level cloud cover, liquid water path and precipitation. Direct and semi‐direct effects have similar magnitudes and contribute equally to a positive absorbing aerosol forcing.
    Description: German Ministry for Education and Research EU Horizon 2020 project CONSTRAIN
    Description: https://cera-www.dkrz.de/WDCC/ui/cerasearch/entry?acronym=DKRZ_LTA_1174_ds00001
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-29
    Description: An idealized, three‐dimensional, numerical simulation of tropical cyclone evolution in a quiescent environment on an f‐plane is used to explore aspects of the cyclone's life cycle in the context of the rotating‐convection paradigm. In the 20‐day simulation, the vortex undergoes a life cycle including a gestation period culminating in genesis, a rapid intensification phase, a mature phase, a transient decay and re‐intensification phase, a second mature phase and a rapid decay phase. During much of the life cycle, the flow evolution is highly asymmetric, although important aspects of it can be understood within an azimuthally averaged framework, central to which are a boundary‐layer control mechanism and a new ventilation diagnostic. The boundary‐layer control mechanism provides an explanation for the gradual expansion of the inner core of the vortex. The ventilation diagnostic characterizes the ability of deep convection within a given radius to evacuate the mass of air ascending out of the boundary layer within that radius. The transient decay and re‐intensification phase is not associated with an eyewall replacement cycle, but rather with a hitherto undescribed process in which the eyewall becomes fragmented as a rainband complex forms beyond it. This process is interpreted as an interplay between the boundary layer and ventilation. The final rapid decay of the vortex results from the ever increasing difficulty of deep convection to ventilate the air exiting the boundary layer. Any unventilated air flows radially outwards in the lower troposphere and leads to spin‐down because of the approximate conservation of mean absolute angular momentum. If found in real cyclones, such transience or final decay might be erroneously attributed to ambient vertical wind shear. The results support the hypothesis that, even in a quiescent environment, isolated tropical cyclone vortices are intrinsically transient and never reach a globally steady state.
    Description: A three‐dimensional, idealized numerical simulation of tropical cyclone evolution on an f‐plane is used to explore aspects of the cyclone's life cycle in the framework of the rotating‐convection paradigm. In the simulation, which lasts for 20 days, the vortex undergoes a life cycle that includes a gestation period cultimating in genesis, a rapid intensification period, a mature stage followed by a transient decay and re‐intensification stage, a second mature stage and a final rapid decay stage. The results support the hypothesis that, even in a quiescent environment on an f‐plane, isolated tropical cyclone vortices are intrinsically transient and never reach a globally steady state.
    Description: U.S. Office of Naval Research http://dx.doi.org/10.13039/100000006
    Description: German Research Council
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-03-29
    Description: Weather regime forecasts are a prominent use case of sub‐seasonal prediction in the midlatitudes. A systematic evaluation and understanding of year‐round sub‐seasonal regime forecast performance is still missing, however. Here we evaluate the representation of and forecast skill for seven year‐round Atlantic–European weather regimes in sub‐seasonal reforecasts from the European Centre for Medium‐Range Weather Forecasts. Forecast calibration improves regime frequency biases and forecast skill most strongly in summer, but scarcely in winter, due to considerable large‐scale flow biases in summer. The average regime skill horizon in winter is about 5 days longer than in summer and spring, and 3 days longer than in autumn. The Zonal Regime and Greenland Blocking tend to have the longest year‐round skill horizon, which is driven by their high persistence in winter. The year‐round skill is lowest for the European Blocking, which is common for all seasons but most pronounced in winter and spring. For the related, more northern Scandinavian Blocking, the skill is similarly low in winter and spring but higher in summer and autumn. We further show that the winter average regime skill horizon tends to be enhanced following a strong stratospheric polar vortex (SPV), but reduced following a weak SPV. Likewise, the year‐round average regime skill horizon tends to be enhanced following phases 4 and 7 of the Madden–Julian Oscillation (MJO) but reduced following phase 2, driven by winter but also autumn and spring. Our study thus reveals promising potential for year‐round sub‐seasonal regime predictions. Further model improvements can be achieved by reduction of the considerable large‐scale flow biases in summer, better understanding and modeling of blocking in the European region, and better exploitation of the potential predictability provided by weak SPV states and specific MJO phases in winter and the transition seasons.
    Description: The overall sub‐seasonal forecast performance (biases and skill) for predicting seven year‐round Atlantic–European weather regimes is highest in winter and lowest in summer. The year‐round skill horizon is shortest for the European Blocking and longest for the Zonal Regime and Greenland Blocking (see figure). Furthermore, the winter skill horizon tends to be enhanced following a strong stratospheric polar vortex but reduced following a weak one. Madden–Julian Oscillation phases 4 and 7 tend to increase and phase 2 to decrease the year‐round skill horizon.
    Description: Helmholtz‐Gemeinschaft http://dx.doi.org/10.13039/501100001656
    Keywords: ddc:551.6
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-04
    Description: We review the widely used concepts of “buoyancy” and “convective available potential energy” (CAPE) in relation to deep convection in tropical cyclones and discuss their limitations. A fact easily forgotten in applying these concepts is that the buoyancy force of an air parcel, as often defined, is non‐unique because it depends on the arbitrary definition of a reference density field. However, when calculating CAPE, the buoyancy of a lifted air parcel is related to the specific reference density field along a vertical column passing through that parcel. Both concepts can be generalized for a vortical flow and to slantwise ascent of a lifted air parcel in such a flow. In all cases, the air parcel is assumed to have infinitely small dimensions. In this article, we explore the consequences of generalizing buoyancy and CAPE for buoyant regions of finite size that perturb the pressure field in their immediate environment. Quantitative calculations of effective buoyancy, defined as the sum of the conventional buoyancy and the static vertical perturbation pressure gradient force induced by it, are shown for buoyant regions of finite width. For a judicious choice of reference density, the effective buoyancy per unit mass is essentially a unique force, independent of the reference density, but its distribution depends on the horizontal scale of the buoyant region. A corresponding concept of “effective CAPE” is introduced and its relevance to deep convection in tropical cyclones is discussed. The study is conceived as a first step to understanding the decreasing ability of inner‐core deep convection in tropical cyclones to ventilate the mass of air converging in the frictional boundary layer as the vortex matures and decays.
    Description: The buoyancy force of an infinitesimally small air parcel is non‐unique, depending on the arbitrary definition of a reference density field. When calculating the “convective available potential energy” (CAPE), the buoyancy of a lifted air parcel is related to the reference density field along a vertical column passing through that parcel. We generalize buoyancy and CAPE for buoyant regions of finite size that perturb the pressure field in their immediate environment and discuss the relevance to deep convection in tropical cyclones.
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    John Wiley & Sons, Ltd | Chichester, UK
    Publication Date: 2022-10-04
    Description: New cross‐validation diagnostics have been derived by further partitioning well‐established impact diagnostics. They are related to consistency relations, the most prominent of which indicates whether the first‐guess departures of a given observation type pull the model state into the direction of the verifying data (when processed with the ensemble estimated model error covariances). Alternatively, this can be regarded as cross‐validation between model error covariance estimates from the ensemble (which are used in the data assimilation system) and estimates diagnosed directly from the observations. A statistical cross‐validation tool has been developed that includes an indicator of statistical significance as well as a normalization that makes the statistical comparison largely independent from the total number of data and the closeness of their collocation. We also present a version of these diagnostics related to single‐observation experiments that exploits the same consistency relations but is easier to compute. Diagnostics computed within the Deutscher Wetterdienst's localized ensemble transform Kalman filter (LETKF) are presented for various kinds of bins. Results from well‐established in‐situ measurements are taken as a benchmark for more complex observations. Good agreement is found for radio‐occultation bending angle measurements, whereas atmospheric motion vectors are generally also beneficial but substantially less optimal than the corresponding in‐situ measurements. This is consistent with reported atmospheric motion vector height assignment problems. To illustrate its potential, a recent example is given where the method allowed identifying bias problems of a subgroup of aircraft measurements. Another diagnostic relationship compares the information content of the analysis increments with a theoretical optimum. From this, the information content of the LETKF increments is found to be considerably lower than those of the deterministic hybrid ensemble–variational system, which is consistent with the LETKF's limitation to the comparably low‐dimensional ensemble space for finding the optimal analysis.
    Description: New cross‐validation diagnostics are presented, allowing to test the consistent use of different observation types in the data assimilation system. The figure gives an example in which these new diagnostics allowed identification of the detrimental impact of a group of aircraft measurements (which as a consequence has now been blacklisted in the Deutscher Wetterdienst's operational system). More precisely, brown colors in this plot indicate regions where these aircraft measurements pulled the analysis state away from radiosonde observations.
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-06
    Description: Trade wind convection organises into a rich spectrum of spatial patterns, often in conjunction with precipitation development. Which role spatial organisation plays for precipitation and vice versa is not well understood. We analyse scenes of trade‐wind convection scanned by the C‐band radar Poldirad during the EUREC4A field campaign to investigate how trade‐wind precipitation fields are spatially organised, quantified by the cells' number, mean size, and spatial arrangement, and how this matters for precipitation characteristics. We find that the mean rain rate (i.e., the amount of precipitation in a scene) and the intensity of precipitation (mean conditional rain rate) relate differently to the spatial pattern of precipitation. Whereas the amount of precipitation increases with mean cell size or number, as it scales well with the precipitation fraction, the intensity increases predominantly with mean cell size. In dry scenes, the increase of precipitation intensity with mean cell size is stronger than in moist scenes. Dry scenes usually contain fewer cells with a higher degree of clustering than moist scenes do. High precipitation intensities hence typically occur in dry scenes with rather large, few, and strongly clustered cells, whereas high precipitation amounts typically occur in moist scenes with rather large, numerous, and weakly clustered cells. As cell size influences both the intensity and amount of precipitation, its importance is highlighted. Our analyses suggest that the cells' spatial arrangement, correlating mainly weakly with precipitation characteristics, is of second‐order importance for precipitation across all regimes, but it could be important for high precipitation intensities and to maintain precipitation amounts in dry environments.
    Description: We analyse scenes of trade‐wind convection scanned by the C‐band radar Poldirad during the EUREC4A field campaign to investigate how trade‐wind precipitation fields are spatially organised, quantified by the cells' number, mean size, and spatial arrangement, and how this matters for precipitation characteristics. We conclude that the cells' size is important for both the amount and intensity of precipitation, whereas the cells' spatial arrangement is of second‐order importance for precipitation across all regimes, but possibly important for precipitation in dry environments.
    Description: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy—EXC 2037 'CLICCS—Climate, Climatic Change, and Society'
    Description: https://doi.org/10.25326/217
    Description: https://doi.org/10.25326/79
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-06
    Description: The Madden–Julian oscillation (MJO) is the dominant component of tropical intraseasonal variability, with wide‐reaching impacts even on extratropical weather and climate patterns. However, predicting the MJO is challenging. One reason is the suboptimal state estimates obtained with standard data assimilation (DA) approaches. These are typically based on filtering methods with Gaussian approximations and do not take into account physical properties that are important specifically for the MJO. In this article, a constrained ensemble DA method is applied to study the impact of different physical constraints on the state estimation and prediction of the MJO. The quadratic programming ensemble (QPEns) algorithm utilized extends the standard stochastic ensemble Kalman filter (EnKF) with specifiable constraints on the updates of all ensemble members. This allows us to recover physically more consistent states and to respect possible associated non‐Gaussian statistics. The study is based on identical twin experiments with an adopted nonlinear model for tropical intraseasonal variability. This so‐called skeleton model succeeds in reproducing the main large‐scale features of the MJO and closely related tropical waves, while keeping adequate simplicity for fast experiments on intraseasonal time‐scales. Conservation laws and other crucial physical properties from the model are examined as constraints in the QPEns. Our results demonstrate an overall improvement in the filtering and forecast skill when the model's total energy is conserved in the initial conditions. The degree of benefit is found to be dependent on the observational setup and the strength of the model's nonlinear dynamics. It is also shown that, even in cases where the statistical error in some waves remains comparable with the stochastic EnKF during the DA stage, their prediction is improved remarkably when using the initial state resulting from the QPEns.
    Description: Unsatisfactory predictions of the MJO are partly due to DA methods that do not respect non‐Gaussian PDFs and the physical properties of the tropical atmosphere. Therefore the QPEns, an algorithm extending a stochastic EnKF with state constraints, is tested here on a simplified model for the MJO and associated tropical waves. Our series of identical twin experiments shows, in particular, that a constraint on the truth's nonlinear total energy improves forecasts statistically and can, in certain situations, even prevent filter divergence. image
    Description: Deutsche Forschungsgemeinschaft : Heisenberg Award (DFG JA1077/4‐1); Transregional Collaborative Research Center SFB / TRR 165 “Waves to Weather” http://dx.doi.org/10.13039/501100001659
    Description: Office of Naval Research (ONR) http://dx.doi.org/10.13039/100000006
    Keywords: ddc:551.6
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-06
    Description: The stochastically perturbed parametrisation tendency (SPPT) scheme is a well‐established technique in ensemble forecasting to address model uncertainty by introducing perturbations into the tendencies provided by the physics parametrisations. The magnitude of the perturbations scales with the local net parametrisation tendency, resulting in large perturbations where diabatic processes are active. Rapidly ascending air streams, such as warm conveyor belts (WCBs) and organized tropical convection, are often driven by cloud diabatic processes and are therefore prone to such perturbations. This study investigates the effects of SPPT and initial condition perturbations on rapidly ascending air streams by computing trajectories in sensitivity experiments with the European Centre for Medium‐Range Weather Forecasts (ECMWF) ensemble prediction system, which are set up to disentangle the effects of initial conditions and physics perturbations. The results demonstrate that SPPT systematically increases the frequency of rapidly ascending air streams. The effect is observed globally, but is enhanced in regions where the latent heating along the trajectories is larger. Despite the frequency changes, there are only minor modifications to the physical properties of the trajectories due to SPPT. In contrast to SPPT, initial condition perturbations do not affect WCBs and tropical convection systematically. An Eulerian perspective on vertical velocities reveals that SPPT increases the frequency of strong upward motions compared with experiments with unperturbed model physics. Consistent with the altered vertical motions, precipitation rates are also affected by the model physics perturbations. The unperturbed control member shows the same characteristics as the experiments without SPPT regarding rapidly ascending air streams. We make use of this to corroborate the findings from the sensitivity experiments by analyzing the differences between perturbed and unperturbed members in operational ensemble forecasts of ECMWF. Finally, we give an explanation of how symmetric, zero‐mean perturbations can lead to a unidirectional response when applied in a nonlinear system.
    Description: The stochastically perturbed parametrisation tendencies (SPPT) scheme is used at ECMWF to perturb the model physics and introduces state‐dependent perturbations into the parametrisation tendencies. The frequency of rapidly ascending air streams is systematically enhanced when SPPT is active. This effect is stronger when the latent heating is large (panel a), and is therefore more pronounced in the Tropics than in the Extratropics. In contrast, the impact of SPPT on the physical properties of the air streams, such as the latent heat release, is very small (panel b).
    Description: Helmholtz Young Investigator Group ‘Sub‐ Seasonal Predictability: Understanding the Role of Diabatic Outflow’
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-11-24
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉In this study, a new multilayer urban canopy parameterization for high‐resolution (∼1 km) atmospheric models using the nudging approach to represent the impacts of urban canopies on airflow is presented. In our parameterization, a nudging term is added to the momentum equations and a source term to the turbulent kinetic energy equation to account for building effects. The challenge of this parameterization lies in defining appropriate values for the nudging coefficient and the weighting function used to reflect canopy effects. Values of both are derived and the parameterization developed is implemented and tested for idealized cases in the Mesoscale Transport and Stream model (METRAS). Comparison data are taken from obstacle‐resolving microscale model results. Results show that the parameterization using the nudging approach can simulate aerodynamic effects induced within the canopy by obstacles well, in terms of reduction of wind speeds and production of additional turbulent kinetic energy. Thus, models with existing nudging can use this approach as an efficient and effective method to parameterize dynamic urban canopy effects.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉In this study, a new multilayer urban canopy parameterization for high‐resolution (∼1 km) atmospheric models using the nudging approach to represent the impacts of urban canopies on airflow is presented. Results show that the parameterization developed can simulate aerodynamic effects induced within the canopy by obstacles well, in terms of reduction of wind speeds and production of additional turbulent kinetic energy. Models with existing nudging can use this approach as an efficient and effective method to parameterize dynamic urban canopy effects. 〈boxed-text position="anchor" id="qj4524-blkfxd-0001" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:00359009:media:qj4524:qj4524-toc-0001"〉 〈/graphic〉 〈/boxed-text〉〈/p〉
    Description: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy‐EXC 2037 'CLICCS‐Climate, Climatic Change, and Society'
    Keywords: ddc:551.6 ; canopy parameterization ; evaluation ; nudging ; numerical modelling ; urban boundary layer ; urban canopy parameterization
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2023-07-28
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The Lagrangian representation of fluid flows offers a natural perspective to study many kinds of physical mechanisms. By contrast, the Eulerian representation is more convenient from a diagnostic point of view. This article attempts to combine elements of both worlds by proposing an Eulerian method that allows one to extract Lagrangian information about the atmospheric flow. The method is based on the offline advection of passive tracer fields and includes a relaxation term. The latter device allows one to run the integration in a continuous fashion without the need for reinitialization. As a result one obtains accumulated Lagrangian information, for example, about the recent parcel displacement or the recent parcel‐based diabatic heating, at each point of an Eulerian grid at any time step. The method is implemented with a pseudospectral algorithm suitable for gridded global atmospheric data and compared with the more traditional trajectory method. The method's utility is demonstrated on the basis of a few examples, which relate to cloud formation and the development of temperature anomalies. The examples highlight that the method provides a convenient diagnostic of parcel‐based changes, paving an intuitive way to explore the physical processes involved. Due to its gridpoint‐based nature, the proposed method can be applied to large data sets in a straightforward and computationally efficient manner, suggesting that the method is particularly useful for climatological analyses.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The Lagrangian representation of fluid flows offers the most natural perspective to study many kinds of physical mechanisms; by contrast, the Eulerian representation is more convenient from a diagnostic point of view. This article attempts to combine elements of both worlds by proposing an Eulerian method that allows one to extract Lagrangian information about the atmospheric flow. The method enables one to easily produce a sequence of maps showing accumulated Lagrangian changes. 〈boxed-text position="anchor" id="qj4453-blkfxd-0001" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:00359009:media:qj4453:qj4453-toc-0001"〉 〈/boxed-text〉〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:551.5 ; air‐parcel approach ; atmospheric fluid dynamics ; atmospheric transport ; Eulerian tracer technique ; Lagrangian analysis ; Lagrangian tracking ; synoptic‐scale meteorology ; trajectories
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2023-07-25
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Many operational weather services use ensembles of forecasts to generate probabilistic predictions. Computational costs generally limit the size of the ensemble to fewer than 100 members, although the large number of degrees of freedom in the forecast model would suggest that a vastly larger ensemble would be required to represent the forecast probability distribution accurately. In this study, we use a computationally efficient idealised model that replicates key properties of the dynamics and statistics of cumulus convection to identify how the sampling uncertainty of statistical quantities converges with ensemble size. Convergence is quantified by computing the width of the 95% confidence interval of the sampling distribution of random variables, using bootstrapping on the ensemble distributions at individual time and grid points. Using ensemble sizes of up to 100,000 members, it was found that for all computed distribution properties, including mean, variance, skew, kurtosis, and several quantiles, the sampling uncertainty scaled as 〈mml:math id="jats-math-1" display="inline" overflow="scroll"〉〈mml:msup〉〈mml:mrow〉〈mml:mi〉n〈/mml:mi〉〈/mml:mrow〉〈mml:mrow〉〈mml:mo form="prefix"〉−〈/mml:mo〉〈mml:mn〉1〈/mml:mn〉〈mml:mo stretchy="false"〉/〈/mml:mo〉〈mml:mn〉2〈/mml:mn〉〈/mml:mrow〉〈/mml:msup〉〈/mml:math〉 for sufficiently large ensemble size 〈mml:math id="jats-math-2" display="inline" overflow="scroll"〉〈mml:mrow〉〈mml:mi〉n〈/mml:mi〉〈/mml:mrow〉〈/mml:math〉. This behaviour is expected from the Central Limit Theorem, which further predicts that the magnitude of the uncertainty depends on the distribution shape, with a large uncertainty for statistics that depend on rare events. This prediction was also confirmed, with the additional observation that such statistics also required larger ensemble sizes before entering the asymptotic regime. By considering two methods for evaluating asymptotic behaviour in small ensembles, we show that the large‐〈mml:math id="jats-math-3" display="inline" overflow="scroll"〉〈mml:mrow〉〈mml:mi〉n〈/mml:mi〉〈/mml:mrow〉〈/mml:math〉 theory can be applied usefully for some forecast quantities even for the ensemble sizes in operational use today.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉An idealised ensemble that replicates key properties of the dynamics and statistics of cumulus convection is used to identify how sampling uncertainty of statistical quantities converges with ensemble size. A universal asymptotic scaling for this convergence was found, which was dependent on the statistic and the distribution shape, with largest uncertainty for statistics that depend on rare events. This is demonstrated in the figure below for a Gaussian distributed model variable, where the sampling uncertainty (y‐axis) for 5 quantiles (red lines) indicates that after a certain ensemble size, it begins converging asymptotically (grey lines), and the more extreme the quantile, the more members it requires for this to be the case. 〈boxed-text position="anchor" id="qj4410-blkfxd-0001" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:00359009:media:qj4410:qj4410-toc-0001"〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Klaus Tschira Stiftung http://dx.doi.org/10.13039/501100007316
    Keywords: ddc:551.6 ; asymptotic convergence ; distributions ; ensembles ; idealised model ; sampling uncertainty ; weather prediction
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2023-07-25
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Local ensemble transform Kalman filters (LETKFs) allow explicit calculation of the Kalman gain, and by this the contribution of individual observations to the analysis field. Though this is a known feature, the information on the analysis contribution of individual observations (partial analysis increment) has not been used as systematic diagnostic up to now despite providing valuable information. In this study, we demonstrate three potential applications based on partial analysis increments in the regional modelling system of Deutscher Wetterdienst and propose their use for optimising LETKF data assimilation systems, in particular with respect to satellite data assimilation and localisation. While exact calculation of partial analysis increments would require saving the large, five‐dimensional ensemble weight matrix in the analysis step, it is possible to compute an approximation from standard LETKF output. We calculate the Kalman gain based on ensemble analysis perturbations, which is an approximation in the case of localisation. However, this only introduces minor errors, as the localisation function changes very gradually among nearby grid points. On the other hand, the influence of observations always depends on the presence of other observations and settings for the observation error and for localisation. However, the influence of observations behaves approximately linearly, meaning that the assimilation of other observations primarily decreases the magnitude of the influence, but it does not change the overall structure of the partial analysis increments. This means that the calculation of partial analysis increments can be used as an efficient diagnostic to investigate the three‐dimensional influence of observations in the assimilation system. Furthermore, the diagnostic can be used to detect whether the influence of additional experimental observations is in accordance with other observations without conducting computationally expensive single‐observation experiments. Last but not least, the calculation can be used to approximate the influence an observation would have when applying different assimilation settings.〈/p〉
    Keywords: ddc:551.5 ; analysis influence ; convective‐scale ; ensemble data assimilation ; localisation ; NWP ; satellite data assimilation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2023-07-25
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉For both the meso‐ and synoptic scales, reduced mathematical models give insight into their dynamical behaviour. For the mesoscale, the weak temperature gradient approximation is one of several approaches, while for the synoptic scale the quasigeostrophic theory is well established. However, the way these two scales interact with each other is usually not included in such reduced models, thereby limiting our current perception of flow‐dependent predictability and upscale error growth. Here, we address the scale interactions explicitly by developing a two‐scale asymptotic model for the meso‐ and synoptic scales with two coupled sets of equations for the meso‐ and synoptic scales respectively. The mesoscale equations follow a weak temperature gradient balance and the synoptic‐scale equations align with quasigeostrophic theory. Importantly, the equation sets are coupled via scale‐interaction terms: eddy correlations of mesoscale variables impact the synoptic potential vorticity tendency and synoptic variables force the mesoscale vorticity (for instance due to tilting of synoptic‐scale wind shear). Furthermore, different diabatic heating rates—representing the effect of precipitation—define different flow characteristics. With weak mesoscale heating relatable to precipitation rates of 〈mml:math id="jats-math-1" display="inline" overflow="scroll"〉〈mml:mrow〉〈mml:mi〉𝒪〈/mml:mi〉〈mml:mo stretchy="false"〉(〈/mml:mo〉〈mml:mn〉6〈/mml:mn〉〈mml:mspace width="0.3em"/〉〈mml:mtext〉mm〈/mml:mtext〉〈mml:mo〉·〈/mml:mo〉〈mml:msup〉〈mml:mrow〉〈mml:mi mathvariant="normal"〉h〈/mml:mi〉〈/mml:mrow〉〈mml:mrow〉〈mml:mo form="prefix"〉−〈/mml:mo〉〈mml:mn〉1〈/mml:mn〉〈/mml:mrow〉〈/mml:msup〉〈mml:mo stretchy="false"〉)〈/mml:mo〉〈/mml:mrow〉〈/mml:math〉, the mesoscale dynamics resembles two‐dimensional incompressible vorticity dynamics and the upscale impact of the mesoscale on the synoptic scale is only of a dynamical nature. With a strong mesosocale heating relatable to precipitation rates of 〈mml:math id="jats-math-2" display="inline" overflow="scroll"〉〈mml:mrow〉〈mml:mi〉𝒪〈/mml:mi〉〈mml:mo stretchy="false"〉(〈/mml:mo〉〈mml:mn〉60〈/mml:mn〉〈mml:mspace width="0.3em"/〉〈mml:mtext〉mm〈/mml:mtext〉〈mml:mo〉·〈/mml:mo〉〈mml:msup〉〈mml:mrow〉〈mml:mi mathvariant="normal"〉h〈/mml:mi〉〈/mml:mrow〉〈mml:mrow〉〈mml:mo form="prefix"〉−〈/mml:mo〉〈mml:mn〉1〈/mml:mn〉〈/mml:mrow〉〈/mml:msup〉〈mml:mo stretchy="false"〉)〈/mml:mo〉〈/mml:mrow〉〈/mml:math〉, divergent motions and three‐dimensional effects become relevant for the mesoscale dynamics and the upscale impact also includes thermodynamical effects.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉We develop a two‐scale asymptotic model for the meso‐ and synoptic scales following a weak temperature gradient balance and quasigeostrophic theory, but with explicit scale interactions and dependent on the mesoscale diabatic heating. With weak mesoscale heating, the mesoscale dynamics resembles 2D incompressible vorticity dynamics and the upscale impact on the synoptic scale is only of a dynamical nature. With strong mesoscale heating, divergent motions and 3D effects become relevant for the mesoscale and the upscale impact also includes thermodynamical effects. 〈boxed-text position="anchor" id="qj4456-blkfxd-0001" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:00359009:media:qj4456:qj4456-toc-0001"〉
    Description: German Research Foundation (DFG)
    Keywords: ddc:551.5 ; asymptotics ; atmospheric dynamics ; mesoscale ; multiscale scale interactions ; quasigeostrophic ; synoptic scale
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-02-12
    Description: This work focuses on the potential of a network of Doppler lidars for the improvement of short‐term forecasts of low‐level wind. For the impact assessment, we developed a new methodology that is based on ensemble sensitivity analysis (ESA). In contrast to preceding network design studies using ESA, we calculate the explicit sensitivity including the inverse of the background covariance B matrix to account directly for the localization scale of the assimilation system. The new method is applied to a pre‐existing convective‐scale 1,000‐member ensemble simulation to mitigate effects of spurious correlations. We evaluate relative changes in the variance of a forecast metric, that is, the low‐level wind components averaged over the Rhein–Ruhr metropolitan area in Germany. This setup allows us to compare the relative variance change associated with the assimilation of hypothetical observations from a Doppler wind lidar with respect to the assimilation of surface‐wind observations only. Furthermore, we assess sensitivities of derived variance changes to a number of settings, namely observation errors, localization length scale, regularization factor, number of instruments in the network, and their location, as well as data availability of the lidar measurements. Our results demonstrate that a network of 20–30 Doppler lidars leads to a considerable variance reduction of the forecast metric chosen. On average, an additional network of 25 Doppler lidars can reduce the 1–3 hr forecast error by a factor of 1.6–3.3 with respect to 10‐m wind observations only. The results provide the basis for designing an operational network of Doppler lidars for the improvement of short‐term low‐level wind forecasts that could be especially valuable for the renewable energy sector.
    Description: This study presents the potential of a Doppler lidar network to improve short‐term low‐level wind forecasts. The approach used in this study does not require real observations and can provide valuable information for designing an operational network. The study is based on a convective‐scale 1,000‐member ensemble simulation over Germany. The results show that Doppler lidars lead to considerable variance reduction and should be considered for future observational networks.
    Description: Hans‐Ertel‐Centre for Weather Research funded by the German Federal Ministry for Transportation and Digital Infrastructure
    Description: https://doi.org/10.5281/zenodo.6331758
    Keywords: ddc:551.6 ; covariance ; data assimilation ; ensemble sensitivity analysis ; localization ; low‐level wind forecasts ; network of Doppler lidars ; observing system
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2024-03-06
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The usually short lifetime of convective storms and their rapid development during unstable weather conditions makes forecasting these storms challenging. It is necessary, therefore, to improve the procedures for estimating the storms' expected life cycles, including the storms' lifetime, size, and intensity development. We present an analysis of the life cycles of convective cells in Germany, focusing on the relevance of the prevailing atmospheric conditions. Using data from the radar‐based cell detection and tracking algorithm KONRAD of the German Weather Service, the life cycles of isolated convective storms are analysed for the summer half‐years from 2011 to 2016. In addition, numerous convection‐relevant atmospheric ambient variables (e.g., deep‐layer shear, convective available potential energy, lifted index), which were calculated using high‐resolution COSMO‐EU assimilation analyses (0.0625°), are combined with the life cycles. The statistical analyses of the life cycles reveal that rapid initial area growth supports wider horizontal expansion of a cell in the subsequent development and, indirectly, a longer lifetime. Specifically, the information about the initial horizontal cell area is the most important predictor for the lifetime and expected maximum cell area during the life cycle. However, its predictive skill turns out to be moderate at most, but still considerably higher than the skill of any ambient variable is. Of the latter, measures of midtropospheric mean wind and vertical wind shear are most suitable for distinguishing between convective cells with short lifetime and those with long lifetime. Higher thermal instability is associated with faster initial growth, thus favouring larger and longer living cells. A detailed objective correlation analysis between ambient variables, coupled with analyses discriminating groups of different lifetime and maximum cell area, makes it possible to gain new insights into their statistical connections. The results of this study provide guidance for predictor selection and advancements of nowcasting applications.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Based on a combination of data of the cell tracking algorithm KONRAD of the German Weather Service and COSMO‐EU model analyses for the summer half‐years from 2011 to 2016, statistical relationships between storm attributes (lifetime and maximum horizontal area), and ambient variables as well as the storms' history are quantified. The initial growth of the cell area is a better indicator of the lifetime and maximum area than ambient variables are. Of the latter, measures of the midtropospheric wind and vertical wind shear, in particular, are most suitable for distinguishing between convective cells with short and long lifetimes, whereas higher convective instability favours larger cells. 〈boxed-text position="anchor" id="qj4505-blkfxd-0001" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:00359009:media:qj4505:qj4505-toc-0001"〉 〈/graphic〉 〈/boxed-text〉〈/p〉
    Description: Bundesministerium für Digitales und Verkehr http://dx.doi.org/10.13039/100008383
    Keywords: ddc:551.6 ; convective storms ; life cycle ; multisource data ; nowcasting ; statistics ; weather prediction
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2024-02-21
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The prediction skill of sub‐seasonal forecast models is evaluated for seven year‐round weather regimes in the Atlantic–European region. Reforecasts based on models from three prediction centers are considered and verified against weather regimes obtained from ERA‐Interim reanalysis. Results show that predicting weather regimes as a proxy for the large‐scale circulation outperforms the prediction of raw geopotential height. Greenland blocking tends to have the longest year‐round skill horizon for all three models, especially in winter. On the other hand, the skill is lowest for the European blocking regime for all three models, followed by the Scandinavian blocking regime. Furthermore, all models struggle to forecast flow situations that cannot be assigned to a weather regime (so‐called no regime), in comparison with weather regimes. Related to this, variability in the occurrence of no regime, which is most frequent in the transition seasons, partly explains the predictability gap between transition seasons and winter and summer. We also show that models have difficulties in discriminating between related regimes. This can lead to misassignments in the predicted regime during flow situations in which related regimes manifest. Finally, we document the changes in skill between model versions, showing important improvements for the ECMWF and NCEP models. This study is the first multi‐model assessment of year‐round weather regimes in the Atlantic–European domain. It advances our understanding of the predictive skill for weather regimes, reveals strengths and weaknesses of each model, and thus increases our confidence in the forecasts and their usefulness for decision‐making.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉This study is the first sub‐seasonal multi‐model assessment of seven year‐round weather regimes in the Atlantic–European domain. Greenland blocking tends to have the longest year‐round skill horizon for all models, especially in winter. The skill is lowest for the European blocking regime for all models, followed by Scandinavian blocking. Variability in the occurrence of no regime partly explains the predictability gap between the transition seasons and winter and summer. 〈boxed-text position="anchor" id="qj4512-blkfxd-0001" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:00359009:media:qj4512:qj4512-toc-0001"〉 〈/graphic〉 〈/boxed-text〉〈/p〉
    Description: Helmholtz Association http://dx.doi.org/10.13039/501100001656
    Description: AXPO Solutions AGN/A
    Keywords: ddc:551.6 ; blocking ; Europe ; North Atlantic oscillation ; windows of opportunity
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2023-11-17
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉〈italic toggle="no"〉Aeolus〈/italic〉 is the first satellite mission to acquire vertical profiles of horizontal line‐of‐sight winds globally and thus fills an important gap in the Global Observing System, most notably in the Tropics. This study explores the impact of this dataset on analyses and forecasts from the European Centre for Medium‐Range Weather Forecasts (ECMWF) and Deutscher Wetterdienst (DWD), focusing specifically on the West African Monsoon (WAM) circulation during the boreal summers of 2019 and 2020. The WAM is notoriously challenging to forecast and is characterized by prominent and robust large‐scale circulation features such as the African Easterly Jet North (AEJ‐North) and Tropical Easterly Jet (TEJ). Assimilating 〈italic toggle="no"〉Aeolus〈/italic〉 generally improves the prediction of zonal winds in both forecasting systems, especially for lead times above 24 h. These improvements are related to systematic differences in the representation of the two jets, with the AEJ‐North weakened at its southern flank in the western Sahel in the ECMWF analysis, while no obvious systematic differences are seen in the DWD analysis. In addition, the TEJ core is weakened in the ECMWF analysis and strengthened on its southern edge in the DWD analysis. The regions where the influence of 〈italic toggle="no"〉Aeolus〈/italic〉 on the analysis is greatest correspond to the Intertropical Convergence Zone (ITCZ) region for ECMWF and generally the upper troposphere for DWD. In addition, we show the presence of an altitude‐ and orbit‐dependent bias in the Rayleigh‐clear channel, which causes the zonal winds to speed up and slow down diurnally. Applying a temperature‐dependent bias correction to this channel contributes to a more accurate representation of the diurnal cycle and improved prediction of the WAM winds. These improvements are encouraging for future investigations of the influence of 〈italic toggle="no"〉Aeolus〈/italic〉 data on African Easterly Waves and associated Mesoscale Convective Systems.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Forecasting in tropical Africa is hampered by large model errors and low availability of conventional observations. The assimilation of 〈italic〉Aeolus〈/italic〉 wind data into the operational ECMWF system leads to a consistent root‐mean‐square error (RMSE) reduction of the order of 2% in +48 h zonal wind forecasts over the region during boreal summer 2019, including the African and Tropical Easterly Jets (AEJ, TEJ) and subtropical jets (STJ). 〈boxed-text position="anchor" id="qj4442-blkfxd-0001" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:00359009:media:qj4442:qj4442-toc-0001"〉 〈/graphic〉 〈/boxed-text〉〈/p〉
    Description: https://aeolus-ds.eo.esa.int/oads/access/collection
    Keywords: ddc:551.6 ; aeolus satellite ; doppler wind lidar ; data assimilation ; numerical weather prediction impact ; African easterly jet ; tropical easterly jet ; observing system experiments
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2024-01-15
    Description: The formation of low stratus cloud over idealized hills is investigated using numerical model simulations. The main driver for the cloud formation is radiative cooling due to outgoing longwave radiation. Despite a purely horizontal flow, the advection terms in the prognostic equations for heat and moisture produce vertical mixing across the upper cloud edge, leading to a loss of cloud water content. This behavior is depicted via a budget analysis. More precisely, this spurious mixing is caused by the diffusive error of the advection scheme in regions where the sloping surfaces of the terrain‐following vertical coordinate intersect the cloud top. This study shows that the intensity of the (spurious) numerical diffusion depends strongly on the horizontal resolution, the order of the advection schemes, and the choice of scalar advection scheme. A large‐eddy simulation with 4‐m horizontal resolution serves as a reference. For horizontal resolutions of a few hundred meters and simulations carried out with a model setup as used in numerical weather prediction, a strong reduction of the simulated liquid‐water path is observed. In order to keep the (spurious) numerical diffusion at coarser resolutions small, at least a fifth‐order advection scheme should be used. In the present case, a weighted essentially nonoscillatory scalar advection scheme turns out to increase the numerical diffusion along a sharp cloud edge compared with an upwind scheme. Furthermore, the choice of vertical coordinate has a strong impact on the simulated liquid‐water path over orography. With a modified definition of the sigma coordinate, it is possible to produce cloud water where the classical sigma coordinate does not allow any cloud formation.
    Description: Diffusive errors of the advection scheme reduce the cloud water content of low stratus over idealized hills. This is due to the terrain‐following vertical coordinate and depends strongly on the horizontal resolution. Orographic features should be represented by at least 𝒪(10) grid points and a fifth‐order advection scheme (or higher) should be used. A weighted essentially nonoscillatory scalar advection scheme increases numerical diffusion along a sharp cloud edge compared with an upwind scheme. Modifying the definition of the sigma coordinate leads to a strong gain in the simulated liquid‐water path.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Hans Ertel Centre for Weather Research
    Keywords: ddc:551.5 ; advection ; fog ; low stratus ; resolution ; rolling terrain ; vertical coordinate
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2024-03-12
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Flow‐dependent errors in tropical analyses and short‐range forecasts are analysed using global observing‐system simulation experiments assimilating only temperature, only winds, and both data types using the ensemble Kalman filter (EnKF) Data Assimilation Research Testbed (DART) and a perfect model framework. The idealised, homogeneous observation network provides profiles of wind and temperature data from the nature run for January 2018 using the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) forced by the observed sea‐surface temperature. The results show that the assimilation of abundant wind observations in a perfect model makes the temperature data in the Tropics largely uninformative. Furthermore, the assimilation of wind data reduces the background errors in specific humidity twice as much as the assimilation of temperature observations. In all experiments, the largest analysis uncertainties and the largest short‐term forecast errors are found in regions of strong vertical and longitudinal gradients in the background wind, especially in the upper troposphere and lower stratosphere over the Indian Ocean and Maritime Continent. The horizontal error correlation scales are on average short throughout the troposphere, just several hundred km. The correlation scales of the wind variables in precipitating regions are half of those in nonprecipitating regions. In precipitating regions, the correlations are elongated vertically, especially for the wind variables. Strong positive cross‐correlations between temperature and specific humidity in the precipitating regions are explained using the Clausius–Clapeyron equation.〈/p〉
    Description: China Scholarship Council http://dx.doi.org/10.13039/501100004543
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:551.6 ; ensemble Kalman filter data assimilation ; forecast‐error correlations ; mass and wind observations ; temperature–moisture cross‐correlations ; Tropics
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2024-03-25
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The Arctic near‐surface air temperature increases most strongly during the cold season, and ocean heat storage has often been cited as a crucial component in linking the ice‐albedo radiative feedback, which is active in summer, and near‐surface air temperature increase in winter, when the lapse rate feedback contributes to Arctic warming. Here, we first estimate how much local heat storage and ocean heat transport contribute to net surface energy fluxes on a seasonal scale in CMIP6 models. We then compare contributions in a base state under weak anthropogenic forcing to a near‐present‐day state in which significant Arctic amplification is simulated. Our analysis indicates that, in a few regions, ocean heat transport plays a larger role for cold‐season net surface energy fluxes compared with local heat storage. Analyzing differences between past and near‐present‐day conditions suggests that the lapse rate feedback, which mainly acts during the cold season in warm water inflow regions, may be more strongly influenced than previously thought by increased ocean heat transport from lower latitudes.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Arctic Ocean net upward surface energy fluxes in the cold season were decomposed into contributions from local heat storage (yellow, see schematic) and ocean heat transport (red). Our analysis of CMIP6 model output suggests that, in a few inflow regions, ocean heat transport contributes more to cold‐season net surface energy fluxes compared with local heat storage. In parts of these inflow regions, the relative contribution of ocean heat transport increased with time. 〈boxed-text position="anchor" id="qj4496-blkfxd-0001" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:00359009:media:qj4496:qj4496-toc-0001"〉 〈/graphic〉 〈/boxed-text〉〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://esgf-node.llnl.gov/projects/cmip6/
    Description: https://nsidc.org/data/g10010
    Keywords: ddc:551.46 ; Arctic amplification ; CMIP6 ; heat storage and transport
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2024-04-03
    Description: The novel Aeolus satellite, which carries the first Doppler wind lidar providing profiles of horizontal line‐of‐sight (HLOS) winds, addresses a significant gap in direct wind observations in the global observing system. The gap is particularly critical in the tropical upper troposphere and lower stratosphere (UTLS). This article validates the Aeolus Rayleigh–clear wind product and short‐range forecasts of the European Centre for Medium‐Range Weather Forecasts (ECMWF) with highly accurate winds from the Loon super pressure balloon network at altitudes between 16 and 20 km. Data from 229 individual balloon flights are analysed, applying a collocation criterion of 2 hr and 200 km. The comparison of Aeolus and Loon data shows systematic and random errors of -0.31 and 6.37 m·s〈sup〉-1〈/sup〉, respectively, for the Aeolus Rayleigh–clear winds. The horizontal representativeness error of Aeolus HLOS winds (nearly the zonal wind component) in the UTLS ranges from 0.6–1.1 m·s〈sup〉-1〈/sup〉 depending on the altitude. The comparison of Aeolus and Loon datasets against ECMWF model forecasts suggests that the model systematically underestimates the HLOS winds in the tropical UTLS by about 1 m·s〈sup〉-1〈/sup〉. While Aeolus winds are currently considered as point winds by the ECMWF data assimilation system, the results of the present study demonstrate the need for a more realistic HLOS wind observation operator for assimilating Aeolus winds.
    Keywords: ddc:551.6 ; Aeolus ; data assimilation ; ECMWF forecasts ; HLOS winds ; Loon ; super pressure balloon observations ; systematic and random errors
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2024-05-30
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The Intertropical Convergence Zone (ITCZ) is a central component of the atmospheric general circulation, but remarkably little is known about the dynamical and thermodynamical structure of the convergence zone itself. This is true even for the structure of the low‐level convergence that gives the ITCZ its name. Following on from the major international field campaigns in the 1960s and 1970s, we performed extensive atmospheric profiling of the Atlantic ITCZ during a ship‐based measurement campaign aboard the research vessel 〈italic toggle="no"〉SONNE〈/italic〉 in summer 2021. Combining data collected during our north–south crossing of the ITCZ with reanalysis data shows the ITCZ to be a meridionally extended region of intense precipitation, with enhanced surface convergence at its edges rather than in the center. Based on the location of these edges, we construct a composite view of the structure of the Atlantic ITCZ. The ITCZ, far from being simply a region of enhanced deep convection, has a rich inner life, that is, a rich dynamical and thermodynamic structure that changes throughout the course of the year, and has a northern edge that differs systematically from the southern edge.〈/p〉
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Horizon 2020 Framework Programme CONSTRAIN http://dx.doi.org/10.13039/100010661
    Description: https://doi.org/10.5281/ZENODO.7051674
    Description: https://doi.org/10.24381/cds.adbb2d47
    Keywords: ddc:551.5 ; ITCZ ; Atlantic ; convergence ; observations ; reanalysis
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...