ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • GFZ German Research Centre for Geosciences  (114)
  • Englisch  (114)
  • Deutsch
  • Polnisch
  • 2020-2023  (30)
  • 2015-2019  (84)
  • 1975-1979
  • 101
    Publikationsdatum: 2022-08-10
    Beschreibung: This Technical Report presents data from a solaroptical spectral investigation in the area of the Rammelsberg non-ferrous metal mine in the Harz Mountains near the city of Goslar. The investigation refers to the local communion stone quarry (“Kommunionssteinbruch”) above the former mining area. As this is a nature conservation zone, all measurements were carried out in-situ without any physical sampling action. The field measurements were carried out in June 2019 in cooperation with Bergbau Goslar GmbH and the German Research Centre for Geosciences (GFZ). The data were collected within the research project ReMon (Remote Monitoring of Tailings Using Satellites and Drones, https://www.gfzpotsdam. de/en/section/remote-sensing-and-geoinformatics/projects/remon/) which aims at developing a prototypical monitoring system for mine tailings by using different sensors scaling from satellite- to drone-based. The data were analysed in the unpublished B.Sc. thesis of Constantin Hildebrand (Hildebrand, 2019). Sixteen different surface materials were determined and examined on-site. Point and imaging hyperspectral data were acquired (with the spectroradiometer PSR+ 3500 operating in the range of 350 - 2500 nm and with the Cubert FireflEYEUHD-185 hyperspectral camera with a range of 450 - 950 nm, respectively), both data sets are presented as spectral libraries. Chemical analyses of the samples were performed by using Laser-Induced Breakdown Spectroscopy (LIBS). LIBS data were collected using a handheld LIBS analyzer, the SciAps Z-300. In this report the different in-situ measurements are presented for each of the sixteen samples. Detailed information about the analysed material, the area of spectral sampling and geochemical analyses are explained in this report and can also be found in the additional Excel® sheet provided with the data.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/report
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 102
    facet.materialart.
    Unbekannt
    GFZ German Research Centre for Geosciences
    In:  Stratigraphische Tabelle von Deutschland
    Publikationsdatum: 2022-08-10
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/other
    Format: application/pdf
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 103
    facet.materialart.
    Unbekannt
    GFZ German Research Centre for Geosciences
    Publikationsdatum: 2022-09-30
    Beschreibung: ???
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 104
    facet.materialart.
    Unbekannt
    GFZ German Research Centre for Geosciences
    Publikationsdatum: 2022-11-01
    Beschreibung: This document is a collection of the REFLECT factsheets produced for promoting the project results.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/report
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 105
    facet.materialart.
    Unbekannt
    GFZ German Research Centre for Geosciences
    In:  Scientific Technical Report STR
    Publikationsdatum: 2022-09-22
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 106
    Publikationsdatum: 2022-05-29
    Beschreibung: This deliverable summarizes the activities related to the development of predictive models to simulate the impact of fluid flow hydrodynamics and chemical composition uncertainties on the production behavior of geothermal assets. Specifically, in this report, the mineral precipitation behavior of the geothermal fluid was studied as both uncertainties in the fluid composition and the interaction between the fluid flow hydrodynamics and mineral precipitation can impact the deposition of the scaling. A workflow was developed to couple a multiphase flow solver to thermodynamics libraries and models which are used to simulate the precipitation amount and kinetics of different geothermal minerals. This coupled workflow will enable a better estimation of the location and amount of precipitated minerals in different location of a geothermal system. A detailed roughness model was developed to simulate the impact of mineral deposition to the fluid flow. In addition, an uncertainty quantification workflow was combined with the modelling framework to estimate the uncertainty bounds of the scaling and precipitation resulted from uncertainties in the fluid composition characterization and operational settings. The modelling and uncertainty quantification workflow was demonstrated on a barite precipitation case study in a heat exchanger. Initially, the impact of geo-chemical uncertainties (in fluid composition) on the mineral precipitation was assessed. Afterwards, the coupled fluid flow and precipitation model with the developed roughness model was tested. Finally, the coupled uncertainty quantification workflow with the coupled model was simulated to assess the impact of fluid composition uncertainties on mineral deposition. As an outcome of the simulation, the impact of uncertainties in the mineral deposition on reduction in the production rate and heat transfer (within the heat exchanger) was calculated. The developed framework is flexible and generic which can be applied to various production and operational challenges in geothermal assets. In the future, the workflow can be used to optimize the design and operation of geothermal assets considering various sources of uncertainties which is not only fluid composition but also operational conditions (link to D4.5 REFLECT), robust modelling of other geo-chemical and flow assurance challenges in geothermal sites or even developing geo-chemical risk maps for different sites within EU (link to WP3 REFLECT).
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/report
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 107
    facet.materialart.
    Unbekannt
    GFZ German Research Centre for Geosciences
    Publikationsdatum: 2022-06-20
    Beschreibung: This brochure is designed for scientists and engineers of upcoming drilling projects and explains the key steps and important challenges in planning and executing continental scientific drilling.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/book
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 108
    facet.materialart.
    Unbekannt
    GFZ German Research Centre for Geosciences
    In:  WSM Technical Report
    Publikationsdatum: 2021-04-10
    Beschreibung: In geosciences the discretization of complex 3D model volumes into finite elements can be a time-consuming task and often needs experience with a professional software. Es-pecially outcropping or out-pinching geological units, i.e. geological layers that are rep-resented in the model volume, pose serious challenges. Changes in the geometry of a model may occur well into a project at a point, when re-meshing is not an option any-more or would involve a significant amount of additional time to invest. In order to speed up and automate the process of discretization, Apple PY (Automatic Portioning Preventing Lengthy manual Element assignment for PYthon) separates the process of mesh-generation and unit assignment. It requires an existing uniform mesh together with separate information on the depths of the interfaces between geological units (herein called horizons). These two pieces of information are combined and used to assign the individual elements to different units. The uniform mesh is created with a standard meshing software and contains no or only very few and simple structures. The mesh has to be available as an Abaqus input file. The information on the horizons depths and lateral variations in the depths is provided in a text file. Apple PY compares the ele-ment location and depth with that of the horizons in order to assign each element to a corresponding geological unit below or above a certain horizon.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/report
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 109
    facet.materialart.
    Unbekannt
    GFZ German Research Centre for Geosciences
    In:  WSM Technical Report
    Publikationsdatum: 2021-04-10
    Beschreibung: The distribution of data records for the maximum horizontal stress orientation SHmax in the Earth’s crust is sparse and very unequally. To analyse the stress pattern and its wavelength and to predict the mean SHmax orientation on regular grids, statistical interpolation as conducted e.g. by Coblentz and Richardson (1995), Müller et al. (2003), Heidbach and Höhne (2008), Heidbach et al. (2010) or Reiter et al. (2014) is necessary. Based on their work we wrote the Matlab® script Stress2Grid that provides several features to analyse the mean SHmax pattern. The script facilitates and speeds up this analysis and extends the functionality compared to the publications mentioned before. This script is the update of Stress2Grid v1.0 (Ziegler and Heidbach, 2017). It provides two different concepts to calculate the mean SHmax orientation on regular grids. The first is using a fixed search radius around the grid points and computes the mean SHmax orientation if sufficient data records are within the search radius. The larger the search radius the larger is the filtered wavelength of the stress pattern. The second approach is using variable search radii and determines the search radius for which the standard deviation of the mean SHmax orientation is below a given threshold. This approach delivers mean SHmax orientations with a user-defined degree of reliability. It resolves local stress perturbations and is not available in areas with conflicting information that result in a large standard deviation. Furthermore, the script can also estimate the deviation between plate motion direction and the mean SHmax orientation.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/report
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 110
    facet.materialart.
    Unbekannt
    GFZ German Research Centre for Geosciences
    In:  Scientific Technical Report STR
    Publikationsdatum: 2021-03-28
    Beschreibung: The MT repository contains geophysical data sets collected in field experiments from all over the world. The acronym MT stands for magnetotelluric, a geophysical method used to probe the Earth's deep interior for its electrical conductivity distribution through electromagnetic (EM) induction. MT is based on EM fields generated by natural processes in the Earth's atmosphere and magnetosphere. But the repository also contains data from Controlled Source Electromagnetic (CSEM) projects, for which man-made EM sources are used. The principle form of data in the repository are time-series of EM field components acquired with heterogeneous sets of sensors, recording instruments, and sampling rates. It is the main purpose of this archive or repository to provide the links between the data and their physical meaning by means of metadata. To achieve this, the repository is organized as a combination of data files and associated meta-data in a well defined folder (directory) structure, with the data files being sorted into subfolders. Meta-data are provided as XML (Extensible Markup Language) formatted file.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/report
    Format: application/pdf
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 111
    facet.materialart.
    Unbekannt
    GFZ German Research Centre for Geosciences
    In:  WSM Technical Report
    Publikationsdatum: 2021-04-10
    Beschreibung: Hyperspectral airborne campaigns have been carried out in the frame of the data exploitation and application development program of the German Environmental Mapping and Analysis Program (EnMAP) to support method and application development in the prelaunch phase of the EnMAP satellite mission. A metadata portal (EnMAP Campaign Portal) has been set up providing general information about the campaigns, recorded airborne hyperspectral data sets, other data associated to the respective campaigns like field and laboratory measurements and a number of field guides for in-situ data acquisition. Furthermore, it informs about the availability of simulated EnMAP and Sentinel-2 data for the respective campaign region. The data listed in the EnMAP Campaign Portal is freely available under a Creative Commons License as DOI-referenced data publications.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/report
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 112
    Publikationsdatum: 2020-02-12
    Beschreibung: This publication is a result of the 14th TRACE conference (Tree Rings in Archaeology, Climatology and Ecology) organized by the Department Physical, Chemical and Natural Systems of the University Pablo de Olavide (UPO) and the Association for Tree-ring Research (ATR), in collaboration with Pyrenean Institute of Ecology-Spanish National Research Council (IPE-CSIC), University of Barcelona (UB), Forest and Wood Technology Research Centre (CETEMAS) and University of Valladolid (UVa). The TRACE 2015 conference was held on May 20-23, 2015 for the first time in the Iberian Peninsula, in Sevilla, Spain.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/report
    Format: application/pdf
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 113
    facet.materialart.
    Unbekannt
    GFZ German Research Centre for Geosciences
    In:  Scientific Technical Report STR
    Publikationsdatum: 2020-02-12
    Beschreibung: Earthquake focal mechanism solutions (FMS) form the basic data input for many applications, e.g. stress tensor inversion or ground-motion prediction equation estimation. In these applications the FMS data is usually binned spatially or in predetermined ranges of rake and dip based on expert elicitation. However, due to the significant increase of FMS data in the past decade an objective data-driven cluster analysis is now possible. Here we present the method ACE (Angular Classification with Expectation-Maximization) that identities clusters of FMS without a priori information. The identified clusters can be used for the classification of the Style-of- Faulting and as weights for FMS data binning in the aforementioned applications. As an application example we use ACE to identify FMS clusters according to their Style-of- Faulting that are related to certain earthquake types (e.g. subduction interface) in northern Chile, the Nazca Plate and in Kyushu (Japan). We use the resulting clusters and weights as a priori information for a stress tensor inversion for these regions and show that uncertainties of the stress tensor estimates are reduced significantly.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/report
    Format: application/pdf
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 114
    facet.materialart.
    Unbekannt
    GFZ German Research Centre for Geosciences
    In:  WSM Technical Report
    Publikationsdatum: 2023-01-31
    Beschreibung: In geosciences 3D geomechanical-numerical models are used to estimate the in-situ stress state. In such a model each geological unit is populated with the rock properties Young’s module, Poisson ratio, and density. Usually, each unit is assigned a single set of homogeneous properties. However, variable rock properties are observed and expected within the same geological unit. Even in small volumes large variabilities may. The Python script HIPSTER (Homogeneous to Inhomogeneous rock Properties for Stress TEnsor Research) provides an algorithm to include inhomogeneities in geomechanical-numerical models that use the solver Abaqus®. The user specifies the mean values for the rock properties Young's module, Poisson ratio and density, and their variability for each geological unit. The variability of the material properties is individually defined for each of the three rock properties in each geological layer. For each unit HIPSTER generates a normal or uniform distribution for each rock property. From these distributions for each single element HIPSTER draws individual rock properties and writes them to a separate material file. This file defines different material properties for each element. The file is included in the geomechanical-numerical analysis solver deck and the numerical model is solved as usual. The HIPSTER script files and example files are provided for download at http://github.com/MorZieg/hipster. Table 0-1 Structure of the GitHub repository gives an overview of the repository and files including a short explanation.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/report
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...