ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ddc:550  (50)
  • ddc:551.5  (43)
  • English  (93)
  • Czech
  • German
  • Polish
  • 2020-2023  (93)
  • 1975-1979
Collection
Keywords
Language
  • English  (93)
  • Czech
  • German
  • Polish
  • German  (46)
Years
Year
  • 1
    Publication Date: 2022-04-04
    Description: Observations in polar regions show that sea ice deformations are often narrow linear features. These long bands of deformations are referred to as Linear Kinematic Features (LKFs). Viscous‐plastic sea ice models have the capability to simulate LKFs and more generally sea ice deformations. Moreover, viscous‐plastic models simulate a larger number and more refined LKFs as the spatial resolution is increased. Besides grid spacing, other aspects of a numerical implementation, such as the placement of velocities and the associated degrees of freedom, may impact the formation of simulated LKFs. To explore these effects this study compares numerical solutions of sea ice models with different velocity staggering in a benchmark problem. Discretizations based on A‐,B‐, and C‐grid systems on quadrilateral meshes have similar resolution properties as an approximation with an A‐grid staggering on triangular grids (with the same total number of vertices). CD‐grid approximations with a given grid spacing have properties, specifically the number and length of simulated LKFs, that are qualitatively similar to approximations on conventional Arakawa A‐grid, B‐grid, and C‐grid approaches with half the grid spacing or less, making the CD‐discretization more efficient with respect to grid resolution. One reason for this behavior is the fact that the CD‐grid approach has a higher number of degrees of freedom to discretize the velocity field. The higher effective resolution of the CD‐discretization makes it an attractive alternative to conventional discretizations.
    Description: Plain Language Summary: Sea ice in the Arctic and Antarctic Oceans plays an important role in the exchange of heat and freshwater between the atmosphere and the ocean and hence in the climate in general. Satellite observations of polar regions show that the ice drift sometimes produces long features that are either cracks (leads) and zones of thicker sea ice (pressure ridges). This phenomenon is called deformation. It is mathematically described by the non‐uniform way in which the ice moves. For numerical models of sea ice motion it is difficult to represent this deformation accurately. Details of the numerics may affect the way these models simulate leads and ridges, their number and length. Specifically, we find by comparing different numerical models, that the way the model variables are ordered on a computational grid to solve the mathematical equations of sea ice motion has an effect of how many deformation features can be represented on a grid with a given spacing between grid points. A new discretization (ordering of model variables) turns out to resolve more details of the approximated field than traditional methods.
    Description: Key Points: The placement of the sea ice velocity has a mayor influence on the number of simulated linear kinematic features (LKFs). The CD‐grid resolves twice as many LKFs compared to A, B, C‐grids. A, B, C‐grids on quadrilateral meshes resolve a similar number of LKFs as A‐grids on triangular meshes (with the same total number of nodes).
    Keywords: ddc:550 ; ddc:551.343
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-04-01
    Description: Despite the implication of aerosols for the radiation budget, there are persistent differences in data for the aerosol optical depth (τ) for 1998–2019. This study presents a comprehensive evaluation of the large‐scale spatio‐temporal patterns of mid‐visible τ from modern data sets. In total, we assessed 94 different global data sets from eight satellite retrievals, four aerosol‐climate model ensembles, one operational ensemble product, two reanalyses, one climatology and one merged satellite product. We include the new satellite data SLSTR and aerosol‐climate simulations from the Coupled Model Intercomparison Project Phase 6 (CMIP6) and the Aerosol Comparisons between Observations and Models Phase 3 (AeroCom‐III). Our intercomparison highlights model differences and observational uncertainty. Spatial mean τ for 60°N – 60°S ranges from 0.124 to 0.164 for individual satellites, with a mean of 0.14. Averaged τ from aerosol‐climate model ensembles fall within this satellite range, but individual models do not. Our assessment suggests no systematic improvement compared to CMIP5 and AeroCom‐I. Although some regional biases have been reduced, τ from both CMIP6 and AeroCom‐III are for instance substantially larger along extra‐tropical storm tracks compared to the satellite products. The considerable uncertainty in observed τ implies that a model evaluation based on a single satellite product might draw biased conclusions. This underlines the need for continued efforts to improve both model and satellite estimates of τ, for example, through measurement campaigns in areas of particularly uncertain satellite estimates identified in this study, to facilitate a better understanding of aerosol effects in the Earth system.
    Description: Plain Language Summary: Aerosols are known to affect atmospheric processes. For instance, particles emitted during dust storms, biomass burning and anthropogenic activities affect air quality and influence the climate through effects on solar radiation and clouds. Although many studies address such aerosol effects, there is a persistent difference in current estimates of the amount of aerosols in the atmosphere across observations and complex climate models. This study documents the data differences for aerosol amounts, including new estimates from climate‐model simulations and satellite products. We quantify considerable differences across aerosol amount estimates as well as regional and seasonal variations of extended and new data. Further, this study addresses the question to what extent complex climate models have improved over the past decades in light of observational uncertainty.
    Description: Key Points: Present‐day patterns in aerosol optical depth differ substantially between 94 modern global data sets. The range in spatial means from individual satellites is −11% to +17% of the multi‐satellite mean. Spatial means from climate model intercomparison projects fall within the satellite range but strong regional differences are identified.
    Description: Hans‐Ertel‐Center for Weather Research
    Description: Collaborative Research Centre 1211
    Description: Max‐Planck‐Institute for Meteorology
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-04-01
    Description: We present a Lagrangian framework for identifying mechanisms that control the isotopic composition of mid‐tropospheric water vapor in the Sahel region during the West African Monsoon 2016. In this region mixing between contrasting air masses, strong convective activity, as well as surface and rain evaporation lead to high variability in the distribution of stable water isotopologues. Using backward trajectories based on high‐resolution isotope‐enabled model data, we obtain information not only about the source regions of Sahelian air masses, but also about the evolution of H2O and its isotopologue HDO (expressed as δD) along the pathways of individual air parcels. We sort the full trajectory ensemble into groups with similar transport pathways and hydro‐meteorological properties, such as precipitation and relative humidity, and investigate the evolution of the corresponding paired {H2O, δD} distributions. The use of idealized process curves in the {H2O, δD} phase space allows us to attribute isotopic changes to contributions from (a) air mass mixing, (b) Rayleigh condensation during convection, and (c) microphysical processes depleting the vapor beyond the Rayleigh prediction, i.e., partial rain evaporation in unsaturated and isotopic equilibration in saturated conditions. Different combinations of these processes along the trajectory ensembles are found to determine the final isotopic composition in the Sahelian troposphere during the monsoon. The presented Lagrangian framework is a powerful tool for interpreting tropospheric water vapor distributions. In the future, it will be applied to satellite observations of {H2O, δD} over Africa and other regions in order to better quantify characteristics of the hydrological cycle.
    Description: Key Points: New Lagrangian framework to attribute variability in {H2O, δD} distributions to air mass mixing and phase changes of water. Application to West African Monsoon season 2016 shows characteristic mixing and precipitation effects along trajectories. New framework can be used for the interpretation of satellite and in‐situ observations, and for model validation in future work.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: Swiss National Science Foundation
    Description: European Space Agency
    Description: Bundesministerium für Bildung und Forschung (BMBF) http://dx.doi.org/10.13039/501100002347
    Description: Ministerium für Wissenschaft, Forschung und Kunst Baden‐Württemberg (MWK) http://dx.doi.org/10.13039/501100003542
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-04-01
    Description: Porosity is one of the key properties of fluvial sediments. It is defined as the ratio of pore volume to total volume. In river science, porosity is often assumed to be spatially constant, which might be a gross simplification of reality. Ignoring the spatial variations in porosity can cause errors in morphological, ecological, hydrological, hydrogeological and sedimentological applications. Although detailed information about spatial porosity variations can be obtained from porosity measurements at field sites, such information has never been collected where these variations might be important. In this study, field porosity measurements were carried out to quantify the magnitude of the spatial porosity variation for four different sedimentological environments of a braided river: a confluence, a tributary delta, a braid bar and a secondary channel. A nuclear density gauge was used for the measurement of porosity. The nuclear density gauge proved to be a time‐saving and labour‐saving technique that produces accurate porosity values with a root mean square error of 0.03. The four sedimentological environments showed significant differences in porosity, with mean porosity being lower for confluence and bar than for delta and secondary channel. Semi‐variogram analysis showed the absence of any spatial correlation in porosity for distances beyond 4 m. This shows that distance cannot be used as a parameter for porosity extrapolation in a fluvial system unless the extrapolation distance is less than 4 m. At least eight measurements of porosity are required to obtain a reliable estimate of mean porosity in a sedimentary environment, i.e. with uncertainty 〈0.03. Although grain size characteristics were found to have a significant impact on porosity, the relationships between these parameters and porosity were not very strong in this study. The unique porosity dataset, presented in this article, provides a valuable source of information for researchers and river managers.
    Description: Deutsche Forschungsgemeinschaft
    Keywords: ddc:550
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-03-30
    Description: In this study, the variability of the spectral dispersion of droplet size distributions (DSDs) in convective clouds is investigated. Analyses are based on aircraft measurements of growing cumuli near the Amazon basin, and on numerical simulations of an idealized ice‐free cumulus. In cleaner clouds, the relative dispersion ϵ, defined as the ratio of the standard deviation to the mean value of the droplet diameter, is negatively correlated with the ratio of the cloud water content (qc) to the adiabatic liquid water content (qa), while no strong correlation between ϵ and qc/qa is seen in polluted clouds. Bin microphysics numerical simulations suggest that these contrasting behaviors are associated with the effect of collision‐coalescence in cleaner clouds, and secondary droplet activation in polluted clouds, in addition to the turbulent mixing of parcels that experienced different paths within the cloud. Collision‐coalescence simultaneously broadens the DSDs and decreases qc, explaining the inverse relationship between ϵ and qc/qa in cleaner clouds. Secondary droplet activation broadens the DSDs but has little direct impact on qc. The combination of a rather modest DSD broadening due to weak collision‐coalescence with enhanced droplet activation in both diluted and highly undiluted cloud regions may contribute to maintain a relatively uniform ϵ within polluted clouds. These findings can be useful for parameterizing the shape parameter (μ) of gamma DSDs in bulk microphysics cloud‐resolving models. It is shown that emulating the observed μ−qc/qa relationship improves the estimation of the collision‐coalescence rate in bulk microphysics simulations compared to the bin simulations.
    Description: Key Points: Droplet size distribution patterns observed in warm cumuli reflect the roles of collision‐coalescence, secondary activation, and mixing. The intra‐cloud distribution of droplet spectral dispersion varies with aerosol loading. Emulating the observed shape‐parameter improves bulk estimations of collision‐coalescence in models.
    Description: Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) http://dx.doi.org/10.13039/501100001807
    Description: Max Planck Society (MPG)
    Description: U.S. Department of Energy (DOE) http://dx.doi.org/10.13039/100000015
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: HALO
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-03-31
    Description: Aerosol can affect clouds in various ways. Beside the microphysical impact of aerosol particles on cloud formation, the interference of aerosol with atmospheric radiation leads to changes in local heating, surface fluxes and thus mesoscale circulations, all of which may also modify clouds. Rather little is known about these so‐called semi‐direct effects in realistic settings – a reason why this study investigates the impact of absorbing aerosol particles on cloud and radiation fields over Germany. Using advanced high‐resolution simulations with grid spacings of 312 and 625 m, numerical experiments with different aerosol optical properties are contrasted using purely scattering aerosol as a control case and realistic absorbing aerosol as a perturbation. The combined effect of surface dimming and atmospheric heating induces positive temperature and negative moisture anomalies between 800 and 900 hPa, impacting low‐level cloud formation. Decreased relative humidity as well as increased atmospheric stability below clouds lead to a reduction of low‐level cloud cover, liquid water path and precipitation. It is further found that direct and semi‐direct effects of absorbing aerosol forcing have similar magnitudes and contribute equally to a reduction of net radiation at the top of the atmosphere.
    Description: Atmospheric aerosol particles can absorb solar radiation, altering the thermal structure of the atmosphere and surface fluxes. Using advanced high‐resolution simulations over Germany with grid spacings of 312 and 625 m, we find that boundary‐layer absorbing aerosol reduces low‐level cloud cover, liquid water path and precipitation. Direct and semi‐direct effects have similar magnitudes and contribute equally to a positive absorbing aerosol forcing.
    Description: German Ministry for Education and Research EU Horizon 2020 project CONSTRAIN
    Description: https://cera-www.dkrz.de/WDCC/ui/cerasearch/entry?acronym=DKRZ_LTA_1174_ds00001
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-03-31
    Description: Mixed sand‐ and gravel‐bed rivers record erosion, transport, and fining signals in their bedload size distributions. Thus, grain‐size data are imperative for studying these processes. However, collecting hundreds to thousands of pebble measurements in steep and dynamic high‐mountain river settings remains challenging. Using the recently published digital grain‐sizing algorithm PebbleCounts, we were able to survey seven large (≥ 1,000 m2) channel cross‐sections and measure thousands to tens‐of‐thousands of grains per survey along a 100‐km stretch of the trunk stream of the Toro Basin in Northwest Argentina. The study region traverses a steep topographic and environmental gradient on the eastern margin of the Central Andean Plateau. Careful counting and validation allows us to identify measurement errors and constrain percentile uncertainties using large sample sizes. In the coarse ≥2.5 cm fraction of bedload, only the uppermost size percentiles (≥95th) vary significantly downstream, whereas the 50th and 84th percentiles show less variability. We note a relation between increases in these upper percentiles and along‐channel junctions with large, steep tributaries. This signal is strongly influenced by lithology and geologic structures, and mixed with local hillslope input. In steep catchments like the Toro Basin, we suggest nonlinear relationships between geomorphic metrics and grain size, whereby the steepest parts of the landscape exert primary control on the upper grain‐size percentiles. Thus, average or median metrics that do not apply weights or thresholds to steeper topography may be less predictive of grain‐size distributions in such settings.
    Description: Plain Language Summary: Rock fragments on hillsides are transported to rivers, eventually becoming pebbles, sand, and mud as they are carried downstream by flowing water. The initial size of the pebbles, the way the size changes downstream, and the overprinting of the sizes with new pebbles from other hills and tributaries all form a complex process that can be difficult to disentangle. Yet studying the size of the pebbles at a given stream location or in a sedimentary deposit can provide insights into the conditions of their transport in terms of local upstream patterns of erosion, tectonics, and climate. We show that just looking at the size of the large pebbles on a riverbed can be used to infer the sources of material, but, since there are fewer large pebbles, they require more measurements to quantify. This necessitates new methods for pebble measurement using modern image‐processing tools.
    Description: Key Points: Complex grain‐size distributions in dynamic mountain rivers can be computed via thousands of measurements from PebbleCounts. Many measurements allow robust estimation of higher percentiles and we observe the most significant changes in the ≥95th percentile. Downstream grain‐size variation is nonlinearly related to variations in topographic steepness and lithology.
    Description: Deutsches Zentrum für Luft‐ und Raumfahrt (DLR) http://dx.doi.org/10.13039/501100002946
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: Bundesministerium für Bildung und Forschung (BMBF) http://dx.doi.org/10.13039/501100002347
    Description: Brandenburger Staatsministerium für Wissenschaft, Forschung und Kultur (MWFK) http://dx.doi.org/10.13039/501100004581
    Description: https://zenodo.org/record/5089789
    Keywords: ddc:551.3 ; ddc:550
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-03-31
    Description: The local ensemble transform Kalman filter (LETKF) suggested by Hunt et al., 2007 is a very popular method for ensemble data assimilation. It is the operational method for convective‐scale data assimilation at Deutscher Wetterdienst (DWD). At DWD, based on the LETKF, three‐dimensional volume radar observations are assimilated operationally for the operational ICON‐D2. However, one major challenge for the LETKF is the situation where observations show precipitation (reflectivity) whereas all ensemble members do not show such reflectivity at a given point in space. In this case, there is no sensitivity of the LETKF with respect to the observations, and the analysis increment based on the observed reflectivity is zero. The goal of this work is to develop a targeted covariance inflation (TCI) for the assimilation of 3D‐volume radar data based on the LETKF, adding artificial sensitivity and making the LETKF react properly to the radar observations. The basic idea of the TCI is to employ an additive covariance inflation as entrance point for the LETKF. Here, we construct perturbations to the simulated observation which are used by the core LETKF assimilation step. The perturbations are constructed such that they exhibit a correlation between humidity and reflectivity. This leads to a change in humidity in such a way that precipitation is more likely to occur. We describe and demonstrate the theoretical basis of the method. We then present a case study where targeted covariance inflation leads to a clear improvement of the LETKF and precipitation forecast. All examples are based on the German radar network and the ICON‐D2 model over Central Europe.
    Description: The goal of this work is to develop a targeted covariance inflation (TCI) for the assimilation of 3D‐volume radar data based on the local ensemble transform Kalman filter (LETKF), adding artificial sensitivity and making the LETKF react properly to the radar observations. Perturbations to the simulated observations are constructed such that they exhibit an empirically derived correlation between humidity and reflectivity. This leads to a change in humidity in such a way that precipitation is more likely to occur.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-03-31
    Description: The tropical temperature in the free troposphere deviates from a theoretical moist‐adiabat. The overall deviations are attributed to the entrainment of dry surrounding air. The deviations gradually approach zero in the upper troposphere, which we explain with a buoyancy‐sorting mechanism: the height to which individual convective parcels rise depends on parcel buoyancy, which is closely tied to the impact of entrainment during ascent. In higher altitudes, the temperature is increasingly controlled by the convective parcels that are warmer and more buoyant because of weaker entrainment effects. We represent such temperature deviations from moist‐adiabats in a clear‐sky one‐dimensional radiative‐convective equilibrium model. Compared with a moist‐adiabatic adjustment, having the entrainment‐induced temperature deviations lead to higher clear‐sky climate sensitivity. As the impact of entrainment depends on the saturation deficit, which increases with warming, our model predicts even more amplified surface warming from entrainment in a warmer climate.
    Description: Plain Language Summary: The tropical temperature structure is determined by regions with deep convection, which is believed to be moist‐adiabatic. However, both models and observations show that the temperature deviates from moist‐adiabats. This is because convective parcels often mix with dry environmental air during ascent, pushing the temperature away from the moist‐adiabatic structure. More importantly, the tropical temperature is not dominated by one or a few strongest convective plumes, but rather controlled by the combined effect of many convective plumes of different strengths and depths. Therefore, the tropical temperature structure reflects the composition of convection happening at different values of boundary‐layer energy and mixing processes of variable efficiency with the environment. Using an idealized model, we find that representing such a deviation in the temperature structure increases the surface warming, because the resulting temperature lapse rate (LR) is more similar to a constant LR, showing less temperature increases higher than a moist‐adiabatic LR. This effect is likely amplified in a warmer climate due to this mixing process becoming more efficient in pushing the temperature further away from moist‐adiabats.
    Description: Key Points: The tropical temperature profile in the free troposphere deviates from that following a moist‐adiabatic lapse rate (LR). The deviations from the moist‐adiabatic LR can be explained by entrainment with a buoyancy‐sorting mechanism. The temperature deviations from moist‐adiabats increase climate sensitivity.
    Description: https://doi.org/10.5281/zenodo.1313687
    Description: https://cds.climate.copernicus.eu/cdsapp#%21/dataset/reanalysis-era5-pressure-levels-monthly-means?tab=overview
    Description: https://esgf-data.dkrz.de/projects/cmip6-dkrz/
    Description: http://hdl.handle.net/21.11116/0000-0008-FDA6-0
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-03-25
    Description: We revisit the linear boundary-layer approximation that expresses a generalized Ekman balance and use it to clarify a range of interpretations in the previous literature on the tropical cyclone boundary layer. Some of these interpretations relate to the reasons for inflow in the boundary layer and others relate to the presumed effects of inertial stability on boundary-layer dynamics. Inertial stability has been invoked, for example, to explain aspects of boundary-layer behaviour, including the frontogenetic nature of the boundary layer and its relationship to vortex spin-up. Our analysis exposes the fallacy of invoking inertial stability as a resistance to radial inflow in the boundary layer. The analysis shows also that the nonlinear acceleration terms become comparable to the linear Coriolis acceleration terms in relatively narrow vortices that are inertially stable above the boundary layer. Estimates of the nonlinear accelerations using the linear solutions are expected to underestimate the actual contribution in a nonlinear boundary-layer model, cautioning against neglecting the nonlinear terms in diagnostic or prognostic models.
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-03-25
    Description: Over the last 20 years, a large number of instruments have provided plasma density measurements in Earth's topside ionosphere. To utilize all of the collected observations for empirical modeling, it is necessary to ensure that they do not exhibit systematic differences and are adjusted to the same reference frame. In this study, we compare satellite plasma density observations from Gravity Recovery and Climate Experiment (GRACE), Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC), CHAllenging Minisatellite Payload (CHAMP), Swarm, and Communications/Navigation Outage Forecasting System (C/NOFS) missions. Electron densities retrieved from GRACE K‐Band Ranging (KBR) system, previously shown to be in excellent agreement with incoherent scatter radar (ISR) measurements, are used as a reference. We find that COSMIC radio occultation (RO) densities are highly consistent with GRACE‐KBR observations showing a mean relative difference of 〈2%, and therefore no calibration factors between them are necessary. We utilize the outstanding three‐dimensional coverage of the topside ionosphere by the COSMIC mission to perform conjunction analysis with in situ density observations from CHAMP, C/NOFS, and Swarm missions. CHAMP measurements are lower than COSMIC by ∼11%. Swarm densities are generally lower at daytime and higher at nighttime compared to COSMIC. C/NOFS ion densities agree well with COSMIC, with a relative bias of ∼7%. The resulting cross‐calibration factors, derived from the probability distribution functions, help to eliminate the systematic leveling differences between the data sets, and allow using these data jointly in a large number of ionospheric applications.
    Description: Key Points: A systematic comparison of the plasma density data from CHAMP, C/NOFS, GRACE, COSMIC, and Swarm missions is performed. Electron densities retrieved from COSMIC‐RO agree well with GRACE‐KBR observations showing a relative difference of less than 2%. Intercalibration factors, allowing to eliminate the systematic offsets between the considered data sets, are presented.
    Description: Helmholtz Pilot Projects Information & Data Science II, MAchine learning based Plasma density model project
    Description: National Center for Atmospheric Research http://dx.doi.org/10.13039/100005323
    Description: Air Force Office of Scientific Research http://dx.doi.org/10.13039/100000181
    Description: National Science Foundation http://dx.doi.org/10.13039/100000001
    Keywords: ddc:538.76 ; ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-03-25
    Description: Titan's paleoclimate after the onset of the putative last major methane outgassing event 700 Myr ago is simulated by a global climate model. If the atmosphere was methane‐depleted prior to outgassing, outgassed methane initially causes warming due to increased greenhouse effect. Further outgassing leads to methane snowfall, which in turn cools the troposphere and surface by an ice‐albedo feedback and thereby initiates a lengthy ice age. Formation of ice sheets begins in the polar region, but with increasing methane inventory the entire globe is eventually covered by surface methane frost as thick as 100 m, with local accumulation on elevated terrains. Among various time‐dependent input parameters the methane inventory by far exerts the greatest control over the climate evolution. As Titan's climate transitions from a dry state via a partially ice‐covered state to a globally ice‐covered state, the circulation and precipitation pattern change profoundly and the tropospheric temperature further decreases. Globally ice‐covered snowball Titan is characterized by weak meridional circulation, weak seasonality and widespread snowfall. Frost ablation begins after the end of outgassing due to photochemical destruction of atmospheric methane. It is conceivable that Titan's polar seas resulted from melting of the polar caps within the past 10 Myr and subsequent drainage to the polar basins. Surface methane frost could only melt when the frost retreated to the polar region, which led to global warming by lowering of the surface albedo at low latitudes and increased greenhouse effect.
    Description: Plain Language Summary: Saturn's moon Titan may have experienced long periods of cold climate in the past when the nitrogen atmosphere contained no methane unlike the present atmosphere. We simulated how Titan's climate may have changed when large amounts of methane were outgassed into such a cold atmosphere as indicated by models of Titan's evolution. The atmosphere can hold a certain amount of methane but the vast majority of outgassed methane condenses out as snow and is deposited on the surface. Bright methane snow on the surface keeps the surface cold and thereby prevents efficient greenhouse warming. Initially, surface methane frost is confined to high latitudes, but eventually the entire globe will be ice‐covered under the assumed total amount of outgassed methane. The seasonal and global pattern of atmospheric circulation and snowfall strongly depend on the degree of frost coverage. The surface frost sublimes away long after outgassing has ceased because methane is destroyed in the atmosphere by photochemistry. Eventually, the polar caps melt, leaving behind the observed polar seas.
    Description: Key Points: Massive methane outgassing into Titan's atmosphere should have caused global ice sheets if the atmosphere was previously depleted in methane. Climate of methane snowball Titan is characterized by weak circulation, low temperature, weak seasonality and widespread snowfall. Melting polar caps in geologically recent past may have resulted in polar seas.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:523 ; ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-03-25
    Description: An analysis of the life cycle of shallow marine cumulus clouds is presented based on geostationary observations by the Spinning Enhanced Visible and InfraRed Imager aboard Meteosat Second Generation (MSG‐SEVIRI). Trajectories of about 250,000 individual shallow marine cumulus clouds have been derived by applying Particle Image Velocimetry to the Satellite Application Facility on Climate Monitoring CLoud property dAtAset using SEVIRI for a region in the trade wind zone centered around the Canary Islands in August 2015. The temporal evolution of the physical properties of these clouds allows to characterize cloud development and to infer the distribution of cloud life time and cloud extent. In the derived data set, the life time distribution follows a double power law with most clouds existing on a time scale of tens of minutes. The cloud physical properties, available during daytime, are analyzed along the cloud tracks. Relative time series of cloud extent, cloud water path, cloud droplet effective radius at cloud top, cloud optical thickness, and cloud droplet number concentration for clouds in two temporal ranges reveal conditions that can be attributed to long‐lasting clouds. Clouds of a certain horizontal extent and cloud top height as well as cloud droplet radius show longer life times if they are optically more dense, i.e., have a higher droplet number concentration. Furthermore, the investigation of the content of liquid cloud water regarding cloud life time and cloud extent shows that small short‐living clouds significantly contribute to cloud radiative effects.
    Description: Plain Language Summary: A comprehensive analysis of the life cycle of shallow marine cumulus clouds is presented based on measurements of a specialized instrument, called SEVIRI, aboard Meteosat's Second Generation geostationary meteorological satellite. A new method is applied to derive the physic‐property temporal evolution of approximately 250,000 individual clouds in a region around the Canary Islands during August 2015. Several constraints are applied to infer the relationship between cloud life time and various cloud parameters. The study reveals that cloud life time is related to the optical thickness when constrained by horizontal extent, cloud top height, and droplet radius. The analysis further shows that small short‐living clouds significantly contribute to cloud radiative effects.
    Description: Key Points: The life cycle of shallow marine cumulus clouds is inferred using a passive space‐based geostationary instrument. Life cycle is quantified by top temperature/height, cloud extent, cloud water path, optical thickness, and droplet radius/number concentration. Cumulus clouds of a certain horizontal extent, cloud top height as well as droplet radius live longer if they are optically denser.
    Description: DAAD, German Academic Exchange Service
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-03-25
    Description: A major problem in the precise orbit determination (POD) of satellites at altitudes below 1,000 km is the modeling of the aerodynamic drag which mainly depends on the thermospheric density and causes the largest non‐gravitational acceleration. Typically, empirical thermosphere models are used to calculate density values at satellite positions but current thermosphere models cannot provide the required accuracy. Thus, unaccounted variations in the thermospheric density may lead to significantly incorrect satellite positions. For the first time, we bring together thermospheric density corrections for the NRLMSISE‐00 model in terms of scale factors with a temporal resolution of 12 hr derived from satellite laser ranging (SLR) and accelerometer measurements. Whereas, the latter are in situ information given along the satellite orbit, SLR results have to be interpreted as mean values along the orbit within the underlying time interval. From their comparison, we notice a rather similar behavior with correlations of up to 80% and more depending on altitude. During high solar activity, scale factors vary around 30% at low solar activity and up to 70% at high solar activity from the value one. In addition, we found the scaled thermospheric density decreasing stronger as the modeled density of NRLMSISE‐00. To check the reliability of the SLR‐derived scale factors, we compare the POD result of two different software packages, namely DOGS‐OC from DGFI‐TUM and GROOPS from IGG Bonn. Furthermore, a validation of our estimated scale factors with respect to an external data set proofs the high quality of the obtained results.
    Description: Plain Language Summary: Variations in the density of the thermosphere must be taken into account when modeling and predicting the motion of satellites in the near‐Earth environment. Typically, thermospheric densities at the position of satellites are provided by models, but their accuracy is limited. Due to the sensitivity of satellites orbiting the Earth in the altitude range of the thermosphere, they can be used to derive information about the thermospheric density. In this study, we compare for the first time thermospheric density corrections in terms of scale factors for the NRLMSISE‐00 model with a temporal resolution of 12 hr derived from two geodetic measurement techniques, namely satellite laser ranging (SLR) and accelerometry. Our results demonstrate that both measurement techniques can be used to derive comparable scale factors of the thermospheric density, which vary around the desired value one. This indicates to which extent the NRLMSISE‐00 model differs from the observed thermospheric density. On average, during high solar activity, the model underestimates the thermospheric density and can be scaled up using the estimated scale factors. We additionally discuss our estimated scale factors with respect to an external data set. Furthermore, we validate the approach of deriving scale factors from SLR measurements by using two independent software packages.
    Description: Key Points: For the first time, we compare scale factors of the thermospheric density derived from satellite laser ranging (SLR) and accelerometer measurements. The estimated scale factors vary by up to 30% at low solar activity and up to 70% at high solar activity from the desired value 1. Correlations of 0.7–0.8 are obtained between the estimated scale factors from SLR and accelerometer measurements depending on the height.
    Description: German Research Foundation (DFG)
    Description: Technical University of Munich (TUM)
    Keywords: ddc:551.5 ; ddc:526.1
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-03-24
    Description: The lunar polar regions offer permanently shadowed regions (PSRs) representing the only regions which are cold enough for water ice to accumulate on the surface. The Lunar Exploration Neutron Detector (LEND) aboard the Lunar Reconnaissance Orbiter (LRO) has mapped the polar regions for their hydrogen abundance which possibly resides there in the form of water ice. Neutron suppression regions (NSRs) are regions of excessive hydrogen concentrations and were previously identified using LEND data. At each pole, we applied thermal modeling to three NSRs and one unclassified region to evaluate the correlation between hydrogen concentrations and temperatures. Our thermal model delivers temperature estimates for the surface and for 29 layers in the sub‐surface down to 2 m depth. We compared our temperature maps at each layer to LEND neutron suppression maps to reveal the range of depths at which both maps correlate best. As anticipated, we find the three south polar NSRs which are coincident with PSRs in agreement with respective (near)‐surface temperatures that support the accumulation of water ice. Water ice is suspected to be present in the upper ≈19 cm layer of regolith. The three north polar NSRs however lie in non‐PSR areas and are counter‐intuitive as such that most surfaces reach temperatures that are too high for water ice to exist. However, we find that temperatures are cold enough in the shallow sub‐surface and suggest water ice to be present at depths down to ≈35–65 cm. Additionally we find ideal conditions for ice pumping into the sub‐surface at the north polar NSRs. The reported depths are observable by LEND and can, at least in part, explain the existence and shape of the observed hydrogen signal. Although we can substantiate the anticipated correlation between hydrogen abundance and temperature the converse argument cannot be made.
    Description: Plain Language Summary: The lunar poles have quite unique illumination conditions. For instance, the Sun never shines on some crater floors. As a consequence, the floors of those craters are very cold and dark. Here, water ice can accumulate on the surface and can be preserved for long periods of time. One of the instruments mounted on the Moon‐orbiting satellite Lunar Reconnaissance Orbiter is capable of detecting areas where hydrogen is located, which is assumed to be present in the form of water ice. For instance, the instrument detected several areas at the lunar poles where a lot more water ice is found than at other locations. For these special locations, we calculated the temperatures at the surface and near sub‐surface to see whether they are indeed cold enough for water to freeze. At some of these locations, surface temperatures turn out to be too warm. However, we found that at these warm surfaces where no water ice can exist it can be transported into the sub‐surface and survive there. This mechanism is referred to as ice pumping. In summary, we could show that temperatures at all these special locations are usually cold enough for water ice, either right at the surface or within the first meter of soil.
    Description: Key Points: Some neutron suppression regions (NSRs) form from surface ice deposits while others may form through ice pumping in the sub‐surface. NSRs identified by Lunar Exploration Neutron Detector correlate well with low surface temperatures in permanently shadowed regions (PSRs) and are in agreement with sub‐surface temperatures in non‐PSR.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:523 ; ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-03-24
    Description: The correct representation of global‐scale electron density is crucial for monitoring and exploring the space weather. This study investigates whether the ground‐based Global Navigation Satellite System (GNSS) tomography can be used to reflect the global spatial and temporal responses of the ionosphere under storm conditions. A global tomography of the ionosphere electron density is constructed based on data from over 2,700 GNSS stations. In comparison to previous techniques, advances are made in spatial and temporal resolution, and in the assessment of results. To demonstrate the capabilities of the approach, the developed method is applied to the March 17, 2015 geomagnetic storm. The tomographic reconstructions show good agreement with electron density observations from worldwide ionosondes, Millstone Hill incoherent scatter radar and in‐situ measurements from satellite missions. Also, the results show that the tomographic technique is capable of reproducing plasma variabilities during geomagnetically disturbed periods including features such as equatorial ionization anomaly enhancements and depletion. Validation results of this brief study period show that the accuracy of our tomography is better than the Neustrelitz Electron Density Model, which is the model used as background, and physics‐based thermosphere‐ionosphere‐electrodynamics general circulation model. The results show that our tomography approach allows us to specify the global electron density from ground to ∼900 km accurately. Given the demonstrated quality, this global electron density reconstruction has potential for improving applications such as assessment of the effects of the electron density on radio signals, GNSS positioning, computation of ray tracing for radio‐signal transmission, and space weather monitoring.
    Description: Plain Language Summary: Computerized tomography allows the 3D imaging of several objects based on radio frequency signal measurements. Given the measurements and geometry of the current GPS (Global Positioning System) satellite constellation, there is an opportunity to apply tomography techniques and extract 3D snapshots of the Earth's atmosphere. This work presents an advanced global‐scale tomography that can represent the electron density in the Earth's upper atmosphere in a relatively high spatial and temporal resolution in the region of ∼100–1,000 km above the Earth's surface; referred to as the ionosphere. The work also validates the tomography results with multiple ionospheric observations from satellites and ground‐based radar instruments and compares with empirical and physical models. It is usually a challenge for models to reproduce the ionospheric system dynamics accurately during active space weather conditions, such as geomagnetic storms. This work, using the severe geomagnetic storm on March 17, 2015 as a case‐study, shows that the tomography is well poised for this task. The developed method could be extended to benefit several applications, such as space weather monitoring, GPS positioning and navigation, as well as to improve our understanding of the morphology and dynamics of the ionosphere.
    Description: Key Points: Presents an advanced global‐scale tomography of ionospheric electron density. Demonstrates the capability of the tomography model to reproduce the system dynamics during a severe geomagnetic storm. Validates the tomography results with multiple ground‐ and space‐based data and compares with empirical and physical models.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: Helmholtz‐Fonds (Helmholtz‐Fonds e.V.) http://dx.doi.org/10.13039/501100013655
    Keywords: ddc:551.5 ; ddc:538.7
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-03-24
    Description: Analysis of Mars Atmosphere and Volatile Evolution (MAVEN)/Supra‐Thermal And Thermal Ion Composition observations in the Martian upper atmosphere, bounded at higher altitudes by the shocked solar wind, shows that the draping of interplanetary magnetic field penetrates down to low altitudes (∼200−250 km) and governs dynamics of the ionosphere. The upper ionospheric plasma is driven into motion flowing around Mars similar to the shocked solar wind in the adjacent magnetosheath. Such a fluid‐like motion is accompanied by ion acceleration caused by the bending of the magnetic field, leading to ion extraction and finally to ion pickup. Extraction of ions and their acceleration produces a recoil effect of the bulk ionosphere in the opposite direction. This provides a strong asymmetry in ion dynamics in two different hemispheres, accompanied by wrapping of the magnetic field lines around Mars and respective reconnection.
    Description: Plain Language Summary: Although the Martian magnetosphere is hybrid and contains components of the induced and intrinsic magnetosphere, is possible to display these components by using the specific coordinate systems. Here we study the properties of the induced magnetosphere using the data obtained by MAVEN spacecraft. The interplanetary magnetic field penetrates deep into the Martian ionosphere draping around Mars and drive to the motion dense ionospheric plasma. Draping features and the induced plasma motions occur different in two hemispheres determined by the direction of the motional electric field in the solar wind. Ion acceleration and extraction is accompanied by a recoil effect that leads to a shift and asymmetry of the ionosphere.
    Description: Key Points: Draping of the interplanetary magnetic field around Mars penetrates deep to the ionosphere enveloping the planet and driving the ionosphere to the bulk motion. Draping and motion of the ionospheric plasma is characterized by asymmetry by the direction of the motional electric field in solar wind. Ion acceleration and extraction from the ionosphere is accompanied by a shift of the bulk ionosphere in the opposite direction.
    Description: National Aeronautics and Space Administration http://dx.doi.org/10.13039/100000104
    Description: DFG http://dx.doi.org/10.13039/501100001659
    Description: Russian Science Foundation http://dx.doi.org/10.13039/501100006769
    Keywords: ddc:523 ; ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-03-24
    Description: The influence of the initial vertical moisture profile on precipitating shallow cumulus cloud organization in terms of the column‐averaged moisture variance is investigated using large‐eddy simulations. Five idealized simulations based on the Rain in Cumulus over the Ocean field experiment with different initial moisture profiles are investigated. All cases simulate precipitating shallow cumulus convection in a marine sub‐tropical region under large‐scale subsidence. The results show that the moisture variance is mainly generated through the interaction of the moisture flux and the moisture gradient in the gradient production term at the top of the boundary layer. The development is characterized by three regimes: initial, transition, and quasi‐steady regime. During the initial regime, the moisture gradient is built up by moisture accumulation until precipitating convection starts. Within the transition regime, precipitation enables mesoscale cloud organization with enhanced convective activity and moisture fluxes. The moisture variance increases from the moist to the dry initial moisture profiles. In a following quasi‐steady regime, the moisture variance is approximately preserved. Thereby, the initial moisture gradient between the average sub‐cloud layer and the free atmosphere is found to be an important factor for the generation of the quasi‐steady column‐averaged moisture variance. The result suggests that a resolved‐scale variable like the moisture gradient can be used to estimate the quasi‐steady state conditions resulting from cloud organization. This finding may serve as a starting point for the parametrization of the subgrid scale cloud organization caused by precipitating shallow convection.
    Description: Key Points: Mesoscale organization of precipitating shallow cumulus changes the bulk properties of the atmospheric boundary layer (e.g., cloud cover). The increase of moisture variance during cloud organization is sensitive to the initial vertical moisture profiles. The average gradient between the average sub‐cloud layer and the free atmosphere is a good predictor of the moisture variance.
    Description: Hans Ertel Centre for Weather Research
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-03-28
    Description: Limited‐area convection‐permitting climate models (CPMs) with horizontal grid‐spacing less than 4 km and not relying on deep convection parameterisations (CPs) are being used more and more frequently. CPMs represent small‐scale features such as deep convection more realistically than coarser regional climate models (RCMs) with deep CPs. Because of computational costs, CPMs tend to use smaller horizontal domains than RCMs. As all limited‐area models (LAMs), CPMs suffer issues with lateral boundary conditions (LBCs) and nesting. We investigated these issues using idealized Big‐Brother (BB) experiments with the LAM COSMO‐CLM. Grid‐spacing of the reference BB simulation was 2.4 km. Deep convection was triggered by idealized hills with driving data from simulations with different spatial resolutions, with/without deep CP, and with different nesting frequencies and LBC formulations. All our nested idealized 2.4‐km Little‐Brother (LB) experiments performed worse than a coarser CPM simulation (4.9 km) which used a four times larger computational domain and yet spent only half the computational cost. A boundary zone of 〉100 grid‐points of the LBs could not be interpreted meteorologically because of spin‐up of convection and boundary inconsistencies. Hosts with grid‐spacing in the so‐called gray zone of convection (ca. 4–20 km) were not advantageous to the LB performance. The LB's performance was insensitive to the applied LBC formulation and updating (if ≤ 3‐hourly). Therefore, our idealized experiments suggested to opt for a larger domain instead of a higher resolution even if coarser than usual (∼5 $\sim 5$ km) as a compromise between the harmful boundary problems, computational cost and improved representation of processes by CPMs.
    Description: Plain Language Summary: Recently, very high resolution (grid‐spacing 〈 4 km) so‐called convection‐permitting climate models (CPMs) were developed, which represent deep convection explicitly. CPMs, however, are computationally very expensive. They need information about the state of the atmosphere at their lateral boundaries from coarser models. This paper investigates the setting of the lateral boundary formulation. We used idealized experiments with grid‐spacing of ≈ 2.4 km, where deep convection was triggered by small hills. We found that a CPM boundary zone 〉 100 grid points cannot be interpreted reliably. The boundary data should be given to the CPM every 3 hr or more often. Small‐domain CPM simulations all performed worse than a reference simulation on a larger domain with the same resolution or with an even two times lower resolution. We tested different resolutions of the driving data for the CPMs and found that driving data from a model in the “gray zone” of convection (about 4–20 km) is not advantageous for the CPM performance. We concluded that it often might be better to opt for a larger domain with an unusually coarse CPM resolution (ca. 5 km) than for a much smaller domain with grid‐spacing 〈 4 km.
    Description: Key Points: The nesting challenge of convection‐permitting climate modeling (CPM) is investigated with idealized simulation experiments. Nesting the CPM into host simulations with grid‐spacing in the gray zone of convection is not better than into coarser simulations. Large boundary areas with poor simulation quality suggest using large domains even with grid‐spacing coarser than usually accepted for CPM.
    Description: European Union's H2020 Research and Innovation Programme http://dx.doi.org/10.13039/100010661
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-03-28
    Description: The wind shear theory is widely accepted as an explanation for the formation of a sporadic E (Es) layer, but the direct comparison of Es with the local wind shear has been limited due to the lack of neutral wind measurements. This study examines the role of the vertical wind shear for Es, using signal‐to‐noise ratio profiles from COSMIC‐2 radio occultation measurements and concurrent measurements of neutral wind profiles from the Ionospheric Connection Explorer. It is observed that the Es occurrence rate and average S4 index are correlated with the negative vertical shear of the eastward wind, providing observational support for the wind shear theory. Es can be observed even when the vertical wind shear is positive, which is interpreted as metallic ion layers generated at an earlier time.
    Description: Plain Language Summary: Sporadic E (Es) is anomalous radio propagation resulting from intense clouds of ionization at heights of the E‐region ionosphere (90–120 km). The formation of an Es layer is generally attributed to the vertical wind shear, which can move metallic ions in the vertical direction by the Lorentz force. According to the wind shear theory, a negative shear of the eastward wind is effective in converging the metallic ions into a thin layer to produce Es. Although previous observations and modeling studies have supported the theory to various degrees, the direct comparison of Es with the vertical wind shear has been limited due to sparse observations of neutral winds at E‐region heights. Neutral wind profiles from the Ionospheric Connection Explorer mission, together with Es data from COSMIC‐2 radio occultation measurements, provide an opportunity to fill this knowledge gap. Direct comparisons of these measurements reveal that the Es occurrence rate is higher and lower for larger negative and positive wind shears, respectively, providing observational evidence for the wind shear theory.
    Description: Key Points: Conjunction observations of sporadic E (Es) from COSMIC‐2 and neutral wind profiles from Ionospheric Connection Explorer/Michelson Interferometer for Global High‐Resolution Thermospheric Imaging are analyzed. Es occurrence rate correlates with the negative vertical shear of eastward wind, providing observational evidence for the wind shear theory. Es can be observed even when the vertical shear of the local eastward wind is positive.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: NASA
    Description: DFG Priority Program Dynamic Earth
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-03-28
    Description: The winter 2019/2020 showed the lowest ozone mixing ratios ever observed in the Arctic winter stratosphere. It was the coldest Arctic stratospheric winter on record and was characterized by an unusually strong and long‐lasting polar vortex. We study the chemical evolution and ozone depletion in the winter 2019/2020 using the global Chemistry and Transport Model ATLAS. We examine whether the chemical processes in 2019/2020 are more characteristic of typical conditions in Antarctic winters or in average Arctic winters. Model runs for the winter 2019/2020 are compared to simulations of the Arctic winters 2004/2005, 2009/2010, and 2010/2011 and of the Antarctic winters 2006 and 2011, to assess differences in chemical evolution in winters with different meteorological conditions. In some respects, the winter 2019/2020 (and also the winter 2010/2011) was a hybrid between Arctic and Antarctic conditions, for example, with respect to the fraction of chlorine deactivation into HCl versus ClONO2, the amount of denitrification, and the importance of the heterogeneous HOCl + HCl reaction for chlorine activation. The pronounced ozone minimum of less than 0.2 ppm at about 450 K potential temperature that was observed in about 20% of the polar vortex area in 2019/2020 was caused by exceptionally long periods in the history of these air masses with low temperatures in sunlight. Based on a simple extrapolation of observed loss rates, only an additional 21–46 h spent below the upper temperature limit for polar stratospheric cloud formation and in sunlight would have been necessary to reduce ozone to near zero values (0.05 ppm) in these parts of the vortex.
    Description: Key Points: The Arctic stratospheric winter 2019/2020 showed the lowest ozone mixing ratios ever observed and was one of the coldest on record. Chemical evolution of the Arctic winter 2019/2020 was a hybrid between typical Arctic and typical Antarctic conditions. Only an additional 21–46 h below PSC temperatures and in sunlight would have been necessary to reduce ozone to near zero locally.
    Description: International Multidisciplinary Drifting Observatory for the Study of the Arctic Climate (MOSAiC)
    Keywords: ddc:551.5 ; ddc:551.9
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-03-23
    Description: The modeling of the atmospheric boundary layer over sea ice is still challenging because of the complex interaction between clouds, radiation and turbulence over the often inhomogeneous sea ice cover. There is still much uncertainty concerning sea ice roughness, near‐surface thermal stability and related processes, and their accurate parameterization. Here, a regional Arctic climate model forced by ERA‐Interim data was used to test the sensitivity of climate simulations to a modified surface flux parameterization for wintertime conditions over the Arctic. The reference parameterization as well as the modified one is based on Monin–Obukhov similarity theory, but different roughness lengths were prescribed and the stability dependence of the transfer coefficients for momentum, heat and moisture differed from each other. The modified parameterization accounts for the most comprehensive observations that are presently available over sea ice in the inner Arctic. Independent of the parameterization used, the model was able to reproduce the two observed dominant winter states with respect to cloud cover and longwave radiation. A stepwise use of the different parameterization assumptions showed that modifications of both surface roughness and stability dependence had a considerable impact on quantities such as air pressure, wind and near‐surface turbulent fluxes. However, the reduction of surface roughness to values agreeing with those observed during the Surface Heat Budget of the Arctic Ocean campaign led to an improvement in the western Arctic, while the modified stability parameterization had only a minor impact. The latter could be traced back to the model's underestimation of the strength of stability over sea ice. Future work should concentrate on possible reasons for this underestimation and on the question of generality of the results for other climate models.
    Description: The modeling of the atmospheric boundary layer over sea ice is challenging. This is, among others, due to the distinct sea ice surface roughness and pressure ridges as shown in the image, and the often stably stratified atmosphere. We quantified the impact of used parameterizations and show that both surface roughness and stability dependence have a considerable impact on near‐surface turbulent fluxes and atmospheric circulation in Arctic climate simulations.
    Description: German Research Foundation (DFG)
    Description: Helmholtz Association (HGF), POLEX http://dx.doi.org/10.13039/100003872
    Description: Russian Science Foundation (RSF) http://dx.doi.org/10.13039/501100006769
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-03-29
    Description: An idealized, three‐dimensional, numerical simulation of tropical cyclone evolution in a quiescent environment on an f‐plane is used to explore aspects of the cyclone's life cycle in the context of the rotating‐convection paradigm. In the 20‐day simulation, the vortex undergoes a life cycle including a gestation period culminating in genesis, a rapid intensification phase, a mature phase, a transient decay and re‐intensification phase, a second mature phase and a rapid decay phase. During much of the life cycle, the flow evolution is highly asymmetric, although important aspects of it can be understood within an azimuthally averaged framework, central to which are a boundary‐layer control mechanism and a new ventilation diagnostic. The boundary‐layer control mechanism provides an explanation for the gradual expansion of the inner core of the vortex. The ventilation diagnostic characterizes the ability of deep convection within a given radius to evacuate the mass of air ascending out of the boundary layer within that radius. The transient decay and re‐intensification phase is not associated with an eyewall replacement cycle, but rather with a hitherto undescribed process in which the eyewall becomes fragmented as a rainband complex forms beyond it. This process is interpreted as an interplay between the boundary layer and ventilation. The final rapid decay of the vortex results from the ever increasing difficulty of deep convection to ventilate the air exiting the boundary layer. Any unventilated air flows radially outwards in the lower troposphere and leads to spin‐down because of the approximate conservation of mean absolute angular momentum. If found in real cyclones, such transience or final decay might be erroneously attributed to ambient vertical wind shear. The results support the hypothesis that, even in a quiescent environment, isolated tropical cyclone vortices are intrinsically transient and never reach a globally steady state.
    Description: A three‐dimensional, idealized numerical simulation of tropical cyclone evolution on an f‐plane is used to explore aspects of the cyclone's life cycle in the framework of the rotating‐convection paradigm. In the simulation, which lasts for 20 days, the vortex undergoes a life cycle that includes a gestation period cultimating in genesis, a rapid intensification period, a mature stage followed by a transient decay and re‐intensification stage, a second mature stage and a final rapid decay stage. The results support the hypothesis that, even in a quiescent environment on an f‐plane, isolated tropical cyclone vortices are intrinsically transient and never reach a globally steady state.
    Description: U.S. Office of Naval Research http://dx.doi.org/10.13039/100000006
    Description: German Research Council
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-03-29
    Description: Four previously identified patterns of meso‐scale cloud organization in the trades — called Sugar, Gravel, Flowers, and Fish — are studied using long‐term records of ground‐based measurements, satellite observations and reanalyzes. A deep neural network trained to detect these patterns is applied to satellite imagery to identify periods during which a particular pattern is observed over the Barbados Cloud Observatory. Surface‐based remote sensing at the observatory is composited and shows that the patterns can be distinguished by differences in cloud geometry. Variations in total cloudiness among the patterns are dominated by variations in cloud‐top cloudiness. Cloud amount near cloud base varies little. Each pattern is associated with a distinct atmospheric environment whose characteristics are traced back to origins that are not solely within the trades. Sugar air‐masses are characterized by weak winds and of tropical origin. Fish are driven by convergence lines originating from synoptical disturbances. Gravel and Flowers are most native to the trades, but distinguish themselves with slightly stronger winds and stronger subsidence in the first case and greater stability in the latter. The patterns with the higher cloud amounts and more negative cloud‐radiative effects, Flowers and Fish, are selected by conditions expected to occur less frequently with greenhouse warming.
    Description: Key Points: Meso‐scale patterns of trade‐wind clouds are identified with a neural network and characterized based on observations. The four analyzed patterns distinguish themselves by stratiform cloudiness and less by cloudiness at the lifting condensation level. Two patterns are imprinted by tropical, respectively extra‐tropical intrusions.
    Description: European Union's Horizon 2020 Research and Innovation Programme
    Description: NASA
    Description: https://doi.org/10.5281/zenodo.4767674
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-03-29
    Description: Monitoring the Vertical Total Electron Content (VTEC) of the ionosphere is important for applications ranging from navigation to detection of space weather events. Therefore, emerging efforts have been made by several analysis centers to estimate the VTEC using different approaches in real‐time. Global Navigation Satellite Systems (GNSS) is a crucial technology for ionosphere modeling due to its worldwide distributed receivers, high temporal resolution, and low latency data dissemination capability. The selection of a convenient approach to extract ionosphere information from GNSS and the representation of VTEC by an appropriate mathematical model are essential factors for providing fast and accurate ionosphere products. Contrarily to the widespread phase‐leveling method, which uses noisy and erroneous code measurements, the modeling concept in this paper utilizes pure carrier‐phase measurements. Measurements acquired through the International GNSS Service (IGS) real‐time service in Radio Technical Commission for Maritime Services format are from GPS, GLONASS, and GALILEO. The measurement biases, including the ambiguity of carrier‐phase measurements, are simultaneously estimated along with VTEC model parameters. In our approach, VTEC is represented by B‐spline expansions embedded into a Kalman filter. Due to their localizing feature, B‐splines form a highly sparse structure in the filter measurement model. Thus, matrix operations for large‐scale problems can be performed fast using sparse matrix operations, as is done in this study. The differential slant total electron content (dSTEC) analysis and the comparison with Jason‐3 altimetry VTEC were performed for validation within selected periods in 2019. The dSTEC analysis shows that the quality of the generated real‐time VTEC maps slightly outperforms those provided by the other IGS analysis centers.
    Description: Plain Language Summary: As part of the Earth's upper atmosphere, the ionosphere is coupled to the Sun and the Earth's lower atmosphere by complex electromagnetic and dynamic interactions of charged particles (electrons and ions) and neutral species. Spatio‐temporal variations of the ionosphere electron content are of particular importance for technologies utilizing electromagnetic signals such as navigation and telecommunication since the electromagnetic waves are refracted/reflected while traveling through the ionosphere. There has been an increasing demand for real‐time ionosphere products to compute interactions between electromagnetic waves and the ionosphere in real‐time. In this context, the IGS and its several analysis centers have been developing models to provide global Vertical Electron Content (VTEC) products using different approaches based on Global Navigation Satellite Systems (GNSS) observations. By considering the crucial impact of the ionosphere and its constituents on our life, in this study, we model the ionosphere VTEC represented by B‐splines embedded into a Kalman filter in real‐time using carrier‐phase observations from geodetic GNSS receivers.
    Description: Key Points: A new real‐time approach estimating simultaneously coefficients of the B‐spline representation and biases of carrier‐phases was introduced. Carrier‐phase observations from GPS, GLONASS, and GALILEO were incorporated into an adaptive Kalman filter. Global Navigation Satellite Systems (GNSS) observations were obtained in Radio Technical Commission for Maritime Services format via the International GNSS Service real‐time service.
    Description: Technical University of Munich http://dx.doi.org/10.13039/501100005713
    Description: German Research Foundation
    Description: Bundeswehr GeoInformation Center
    Description: German Space Situational Awareness Centre
    Keywords: ddc:538.76 ; ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-03-29
    Description: A reanalysis is a physically consistent set of optimally merged simulated model states and historical observational data, using data assimilation. High computational costs for modeled processes and assimilation algorithms has led to Earth system specific reanalysis products for the atmosphere, the ocean and the land separately. Recent developments include the advanced uncertainty quantification and the generation of biogeochemical reanalysis for land and ocean. Here, we review atmospheric and oceanic reanalyzes, and more in detail biogeochemical ocean and terrestrial reanalyzes. In particular, we identify land surface, hydrologic and carbon cycle reanalyzes which are nowadays produced in targeted projects for very specific purposes. Although a future joint reanalysis of land surface, hydrologic, and carbon processes represents an analysis of important ecosystem variables, biotic ecosystem variables are assimilated only to a very limited extent. Continuous data sets of ecosystem variables are needed to explore biotic‐abiotic interactions and the response of ecosystems to global change. Based on the review of existing achievements, we identify five major steps required to develop terrestrial ecosystem reanalysis to deliver continuous data streams on ecosystem dynamics.
    Description: Plain Language Summary: A reanalysis is a unique set of continuous variables produced by optimally merging a numerical model and observed data. The data are merged with the model using available uncertainty estimates to generate the best possible estimate of the target variables. The framework for generating a reanalysis consists of the model, the data, and the model‐data‐fusion algorithm. The very specific requirements of reanalysis frameworks have led to the development of Earth‐compartment specific reanalysis for the atmosphere, the ocean and land. Here, we review atmospheric and oceanic reanalyzes, and in more detail biogeochemical ocean and terrestrial reanalyzes. In particular, we identify land surface, hydrologic, and carbon cycle reanalyzes which are nowadays produced in targeted projects for very specific purposes. Based on a review of existing achievements, we identify five major steps required to develop reanalysis for terrestrial ecosystem to shed more light on biotic and abiotic interactions. In the future, terrestrial ecosystem reanalysis will deliver continuous data streams on the state and the development of terrestrial ecosystems.
    Description: Key Points: Reanalyzes provide decades‐long model‐data‐driven harmonized and continuous data sets for new scientific discoveries. Novel global scale reanalyzes quantify the biogeochemical ocean cycle, terrestrial carbon cycle, land surface, and hydrologic processes. New observation technology and modeling capabilities allow in the near future production of advanced terrestrial ecosystem reanalysis.
    Description: European Union's Horizon 2020 research and innovation programme
    Description: Deutsche Forschungsgemeinschaft
    Description: U.S. Department of Energy
    Description: Emory University's Halle Institute for Global Research and the Halle Foundation Collaborative Research
    Description: NSF
    Description: NASA
    Description: Natural Environment Research Council
    Description: European Union'’s Horizon 2020 research and innovation programme
    Description: NSERC Discovery program, the Ocean Frontier Institute, and MEOPAR
    Description: Research Foundation Flanders (FWO)
    Description: Helmholtz Association
    Description: NASA Terrestrial Ecosystems
    Keywords: ddc:550
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-12-05
    Description: Classification of atmospheric circulation patterns (CP) is a common tool for downscaling rainfall, but it is rarely used for West Africa. In this study, a two‐step classification procedure is proposed for this region, which is applied from 1989 to 2010 for the Sudan‐Sahel zone (Central Burkina Faso) with a focus on heavy rainfall. The approach is based on a classification of large‐scale atmospheric CPs (e.g., Saharan Heat Low) of the West African Monsoon using a fuzzy rule‐based method to describe the seasonal rainfall variability. The wettest CPs are further classified using meso‐scale monsoon patterns to better describe the daily rainfall variability during the monsoon period. A comprehensive predictor screening for the seasonal classification indicates that the best performing predictor variables (e.g., surface pressure, meridional moisture fluxes) are closely related to the main processes of the West African Monsoon. In the second classification step, the stream function at 700 hPa for identifying troughs and ridges of tropical waves shows the highest performance, providing an added value to the overall performance of the classification. Thus, the new approach can better distinguish between dry and wet CPs during the rainy season. Moreover, CPs are identified that are of high relevance for daily heavy rainfall in the study area. The two wettest CPs caused roughly half of the extremes on about 6.5% of days. Both wettest patterns are characterized by an intensified Saharan Heat Low and a cyclonic rotation near the study area, indicating a tropical wave trough. Since the classification can be used to condition other statistical approaches used in climate sciences and other disciplines, the presented classification approach opens many different applications for the West African Monsoon region.
    Description: A two‐step classification of daily atmospheric circulation patterns is used to describe seasonal and daily rainfall variability in West Africa. The approach clearly distinguishes between dry and wet patterns if sea level pressure and stream function at 700 hPa are used. The two wettest patterns trigger about half of heavy rainfall events in Central Burkina Faso. They are characterized by an intensified Saharan Heat Low and a cyclonic rotation indicating a tropical wave trough near the study area.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Keywords: ddc:551.5 ; circulation pattern ; classification ; downscaling ; heavy rainfall ; West Africa
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-12-07
    Description: Based on velocity data from a long‐term moored observatory located at 0°N, 23°W we present evidence of a vertical asymmetry during the intraseasonal maxima of northward and southward upper‐ocean flow in the equatorial Atlantic Ocean. Periods of northward flow are characterized by a meridional velocity maximum close to the surface, while southward phases show a subsurface velocity maximum at about 40 m. We show that the observed asymmetry is caused by the local winds. Southerly wind stress at the equator drives northward flow near the surface and southward flow below that is superimposed on the Tropical Instability Wave (TIW) velocity field. This wind‐driven overturning cell, known as the Equatorial Roll, shows a distinct seasonal cycle linked to the seasonality of the meridional component of the south‐easterly trade winds. The superposition of vertical shear of the Equatorial Roll and TIWs causes asymmetric mixing during northward and southward TIW phases.
    Description: Plain Language Summary; Tropical Instability Waves (TIWs) are clear in satellite measurements of sea surface temperature as horizontal undulations with wavelength of the order of 1,000 km in equatorial regions of both Atlantic and Pacific Oceans. TIWs are characterized by their distinctive upper‐ocean meridional velocity structure. TIWs amplify vertical shear and thus contribute to the generation of turbulence which in turn leads to the mixing of heat and freshwater downward into the deeper ocean. In this study we show that the prevailing southerly winds in the central equatorial Atlantic drive near‐surface northward and subsurface southward flows, which are superposed on the meridional TIW velocity field. The strength of this wind driven cell is linked to the seasonal cycle of the northward component of the trade winds, peaking in boreal fall when TIWs reach their maximum amplitude. The overturning cell affects the vertical structure of the meridional velocity field and thus has impact on the generation of current shear and turbulence. We show that the overturning reduces/enhances shear during northward/southward TIW flow, an asymmetry that is consistent with independent measurements showing asymmetric mixing.
    Description: Key Points: Composites of Tropical Instability Waves at 0°N, 23°W show a surface (subsurface) velocity maximum during northward (southward) phases. Meridional wind stress forces a seasonally‐varying, shallow cross‐equatorial overturning cell‐the Equatorial Roll. The superposition of Tropical Instability Waves and Equatorial Roll causes asymmetric mixing during north‐ and southward phases.
    Description: EU H2020
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: US NSF
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: National Oceanic and Atmospheric Administration http://dx.doi.org/10.13039/100000192
    Description: National Academy of Sciences http://dx.doi.org/10.13039/100000209
    Description: National Science Foundation http://dx.doi.org/10.13039/100000001
    Description: https://doi.pangaea.de/10.1594/PANGAEA.941042
    Description: https://www.pmel.noaa.gov/tao/drupal/disdel/
    Keywords: ddc:551.5 ; tropical instability waves ; equatorial Atlantic ; equatorial roll ; moored velocity data ; ocean mixing ; ocean observations
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-12-06
    Description: Deep learning can accurately represent sub‐grid‐scale convective processes in climate models, learning from high resolution simulations. However, deep learning methods usually lack interpretability due to large internal dimensionality, resulting in reduced trustworthiness in these methods. Here, we use Variational Encoder Decoder structures (VED), a non‐linear dimensionality reduction technique, to learn and understand convective processes in an aquaplanet superparameterized climate model simulation, where deep convective processes are simulated explicitly. We show that similar to previous deep learning studies based on feed‐forward neural nets, the VED is capable of learning and accurately reproducing convective processes. In contrast to past work, we show this can be achieved by compressing the original information into only five latent nodes. As a result, the VED can be used to understand convective processes and delineate modes of convection through the exploration of its latent dimensions. A close investigation of the latent space enables the identification of different convective regimes: (a) stable conditions are clearly distinguished from deep convection with low outgoing longwave radiation and strong precipitation; (b) high optically thin cirrus‐like clouds are separated from low optically thick cumulus clouds; and (c) shallow convective processes are associated with large‐scale moisture content and surface diabatic heating. Our results demonstrate that VEDs can accurately represent convective processes in climate models, while enabling interpretability and better understanding of sub‐grid‐scale physical processes, paving the way to increasingly interpretable machine learning parameterizations with promising generative properties.
    Description: Plain Language Summary: Deep neural nets are hard to interpret due to their hundred thousand or million trainable parameters without further postprocessing. We demonstrate in this paper the usefulness of a network type that is designed to drastically reduce this high dimensional information in a lower‐dimensional space to enhance the interpretability of predictions compared to regular deep neural nets. Our approach is, on the one hand, able to reproduce small‐scale cloud related processes in the atmosphere learned from a physical model that simulates these processes skillfully. On the other hand, our network allows us to identify key features of different cloud types in the lower‐dimensional space. Additionally, the lower‐order manifold separates tropical samples from polar ones with a remarkable skill. Overall, our approach has the potential to boost our understanding of various complex processes in Earth System science.
    Description: Key Points: A Variational Encoder Decoder (VED) can predict sub‐grid‐scale thermodynamics from the coarse‐scale climate state. The VED's latent space can distinguish convective regimes, including shallow/deep/no convection. The VED's latent space reveals the main sources of convective predictability at different latitudes.
    Description: EC ERC HORIZON EUROPE European Research Council http://dx.doi.org/10.13039/100019180
    Description: Columbia sub‐award 1
    Description: Advanced Research Projects Agency - Energy http://dx.doi.org/10.13039/100006133
    Description: Deutsches Klimarechenzentrum http://dx.doi.org/10.13039/100018730
    Description: National Science Foundation Science and Technology Center Learning the Earth with Artificial intelligence and Physics
    Keywords: ddc:551.5 ; machine learning ; generative deep learning ; convection ; parameterization ; explainable artificial intelligence ; dimensionality reduction
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-06-26
    Description: Efficient compositional models are required to simulate underground gas storage in porous formations where, for example, gas quality (such as purity) and loss of gas due to dissolution are of interest. We first extend the concept of vertical equilibrium (VE) to compositional flow, and derive a compositional VE model by vertical integration. Second, we present a hybrid model that couples the efficient compositional VE model to a compositional full‐dimensional model. Subdomains, where the compositional VE model is valid, are identified during simulation based on a VE criterion that compares the vertical profiles of relative permeability at equilibrium to the ones simulated by the full‐dimensional model. We demonstrate the applicability of the hybrid model by simulating hydrogen storage in a radially symmetric, heterogeneous porous aquifer. The hybrid model shows excellent adaptivity over space and time for different permeability values in the heterogeneous region, and compares well to the full‐dimensional model while being computationally efficient, resulting in a runtime of roughly one‐third of the full‐dimensional model. Based on the results, we assume that for larger simulation scales, the efficiency of this new model will increase even more.
    Description: Key Points: A compositional vertical equilibrium model is coupled to its full‐dimensional counterpart. A criterion is developed to adaptively identify and assign regions where the vertical equilibrium model is applicable during simulation. A test case of hydrogen storage in a heterogeneous porous aquifer demonstrates efficiency and accuracy of the hybrid model.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: https://git.iws.uni-stuttgart.de/dumux-pub/Becker2021b.git
    Keywords: ddc:551.49 ; ddc:550
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-06-26
    Description: Marine low clouds cool the Earth's climate, with their coverage (LCC) being controlled by their environment. Here, an observed significant decrease of LCC in the northeastern Pacific over the past two decades is linked quantitatively to changes in cloud‐controlling factors. In a comparison of different statistical and machine learning methods, a decrease in the inversion strength and near‐surface winds, and an increase in sea surface temperatures (SSTs) are unanimously shown to be the main causes of the LCC decrease. While the decreased inversion strength leads to more entrainment of dry free‐tropospheric air, the increasing SSTs are shown to lead to an increased vertical moisture gradient that enhances evaporation when entrainment takes place. While the LCC trend is likely driven by natural variability, the trend‐attribution framework developed here can be used with any method in future analyses. We find the choice of predictors is more important than the method.
    Description: Plain Language Summary: Marine low clouds efficiently cool the Earth's climate, and their prevalence is controlled by environmental factors. Here, a decrease of the cover of marine low clouds in the northeastern Pacific over the past 20 years is analyzed to attribute the trend to changes in environmental factors known to be important for low clouds. A decrease in the strength of the temperature inversion and an increase in sea surface temperatures (SSTs) are shown to be the main causes of the low‐cloud trend. The decreased inversion strength leads to more mixing in of dry air from above the clouds, leading to cloud evaporation. The increasing SSTs increase the atmospheric moisture levels near the surface more than above the cloud, enhancing evaporation when the mixing takes place. While the trend in low clouds is likely driven by natural variability rather than climate change, the analytical framework developed here can be deployed to attribute causes for trends with any statistical or machine learning method in the future. The analysis shows that the choice of environmental factors used for the analysis has a larger impact on the results than the method.
    Description: Key Points: Significant decrease of low cloud cover in northeastern Pacific in last two decades. Increased vertical moisture gradient, decreased inversion strength, and winds drive low cloud trend. Good agreement between statistical and machine‐learning methods, predictor choice more important.
    Description: Horizon 2020 research and innovation program
    Description: https://doi.org/10.24381/cds.f17050d7
    Description: https://doi.org/10.24381/cds.6860a573
    Description: https://dx.doi.org/10.5067/MODIS/MOD08_M3.061
    Description: http://dx.doi.org/10.5067/MODIS/MYD08_M3.061
    Description: https://doi.org/10.5067/TERRA-AQUA/CERES/EBAF-TOA_L3B004.1
    Description: https://doi.org/10.5281/zenodo.5747221
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-06-22
    Description: Basal melting of marine‐terminating glaciers, through its impact on the forces that control the flow of the glaciers, is one of the major factors determining sea level rise in a world of global warming. Detailed quantitative understanding of dynamic and thermodynamic processes in melt‐water plumes underneath the ice‐ocean interface is essential for calculating the subglacial melt rate. The aim of this study is therefore to develop a numerical model of high spatial and process resolution to consistently reproduce the transports of heat and salt from the ambient water across the plume into the glacial ice. Based on boundary layer relations for momentum and tracers, stationary analytical solutions for the vertical structure of subglacial non‐rotational plumes are derived, including entrainment at the plume base. These solutions are used to develop and test convergent numerical formulations for the momentum and tracer fluxes across the ice‐ocean interface. After implementation of these formulations into a water‐column model coupled to a second‐moment turbulence closure model, simulations of a transient rotational subglacial plume are performed. The simulated entrainment rate of ambient water entering the plume at its base is compared to existing entrainment parameterizations based on bulk properties of the plume. A sensitivity study with variations of interfacial slope, interfacial roughness and ambient water temperature reveals substantial performance differences between these bulk formulations. An existing entrainment parameterization based on the Froude number and the Ekman number proves to have the highest predictive skill. Recalibration to subglacial plumes using a variable drag coefficient further improves its performance.
    Description: Plain Language Summary: In a world of global warming, the melting of glaciers terminating as floating ice tongues into the oceans of Arctic and Antarctic regions allows those glaciers to flow faster and hence to make a considerable contribution to global mean sea‐level rise. Underneath the ice‐ocean interface, turbulent currents of the order of 10 m thickness (so‐called plumes) develop that transport the melt water from the grounding line where the glacier enters the ocean toward the calving front that marks the seaward end of the glacier. At its base, ambient relatively warm and salty ocean water is mixed into the plumes and is vertically transported toward the ice‐ocean interface, where the melting is increased due to the additional heat supply. Understanding these processes is essential for their incorporation into computer models for the prediction of such melt processes. In this study, an accurate simulation model for the water column is constructed that is able to consistently reproduce these processes. The algorithms developed here are proven to provide reliable results also for models with only a few grid points across the plume and can therefore be implemented into climate models with surface‐following coordinates to more accurately simulate future scenarios of sea level rise.
    Description: Key Points: A vertically resolving model with second‐moment turbulence closure has been constructed for subglacial plumes. Convergent numerical formulations for the ocean‐to‐ice fluxes of momentum, freshwater and heat have been derived from an analytical model. Model results are consistent with bulk parameterizations for the entrainment of ambient water.
    Description: Bundesministerium für Bildung und Forschung (BMBF) http://dx.doi.org/10.13039/501100002347
    Description: https://doi.org/10.5281/zenodo.6203838
    Keywords: ddc:550
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-10-17
    Description: Hydrogen is a promising alternative to carbon based energy carriers and may be stored in large quantities in subsurface storage deposits. This work assesses the impact of static (density and phase equilibria) and dynamic (viscosity and diffusion coefficients) properties on the pressure field during the injection and extraction of hydrogen in the porous subsurface. In a first step, we derive transport properties for water, hydrogen and their mixture using the Perturbed‐Chain Statistical Associating Fluid Theory equation of state in combination with an entropy scaling approach and compare model predictions to alternative models from the literature. Our model compares excellently to experimental transport coefficients and models from literature with a higher number of adjustable parameters, such as GERG2008, and shows a clear improvement over empirical correlations for transport coefficients of hydrogen. In a second step, we determine the effect of further model reduction by comparing our against a much simpler model applying empirical transport coefficients from the literature. For this purpose, hydrogen is periodically injected into and extracted out of a dome‐shaped porous aquifer under a caprock. Our results show that density and viscosity of hydrogen have the highest impact on the pressure field, and that a thermodynamic model like the new model presented here is essential for modeling the storage aquifer, while keeping the number of coefficients at a minimum. In diffusion‐dominated settings such as the diffusion of hydrogen through the caprock, our developed diffusion coefficients show a much improved dependence on temperature and pressure, leading to a more accurate approximation of the diffusive fluxes.
    Description: Key Points: We model the phase behavior of pure hydrogen and the binary hydrogen‐water mixture using the Perturbed‐Chain Statistical Associating Fluid Theory equation of state. New entropy scaling relations for the transport properties of hydrogen and water and diffusion coefficients of their mixture are derived. The impact of the newly derived fluid properties is analyzed for a scenario of hydrogen storage in a porous aquifer.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: https://git.iws.uni-stuttgart.de/dumux-pub/sauerborn2020a
    Keywords: ddc:550
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-08-04
    Description: The 2011/2012 summer drought in Southeastern South America (SESA) was a short but devastating event. What would this event have looked like under pre‐industrial conditions, or in a +2 degC world? We find that climate change causes the region to be at a higher risk of drought. However, we found no large‐scale changes in the half‐month water budgets. We show that the climate change induced positive precipitation trend in the region outweighs the increased temperatures and potential evapotranspiration during the 2011/2012 drought. image
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-08-05
    Description: Vlasov solvers that operate on a phase‐space grid are highly accurate but also numerically demanding. Coarse velocity space resolutions, which are largely unproblematic in particle‐in‐cell (PIC) simulations, can lead to numerical heating or oscillations in continuum Vlasov methods. To address this issue, we present a new dual Vlasov solver which is based on an established positivity preserving advection scheme for the update of the distribution function and an energy conserving partial differential equation solver for the kinetic update of mean velocity and temperature. The solvers work together via moment fitting during which the maximum entropy part of the distribution function is replaced by the solution from the partial differential equation solver. This numerical scheme makes continuum Vlasov methods competitive with PIC methods concerning computational cost and enables us to model large scale reconnection in Earth's magnetosphere with a fully kinetic continuum method. The simulation results agree well with measurements by the MMS spacecraft.
    Description: Key Points: A moment fitting continuum Vlasov solver is presented that preserves positivity of the distribution function and conserves total energy. The method behaves well at low velocity space resolutions, making it competitive with PIC methods concerning computational cost. There is good agreement of the simulations with measurements of magnetic reconnection by the MMS spacecraft.
    Description: Helmholtz Association (亥姆霍兹联合会致力) http://dx.doi.org/10.13039/501100009318
    Description: https://vlasov.tp1.ruhr-uni-bochum.de/data/paper-JGR-2021
    Keywords: ddc:550 ; ddc:538.7
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-09-29
    Description: Modeling studies have predicted that the acoustic resonance of the atmosphere during geophysical events such as earthquakes and volcanos can lead to an oscillation of the geomagnetic field with a frequency of about 4 mHz. However, observational evidence is still limited due to scarcity of suitable events. On 15 January 2022, the submarine volcano Hunga Tonga‐Hunga Ha'apai (20.5°S, 175.4°W, Tonga) erupted in the Pacific Ocean and caused severe atmospheric disturbance, providing an opportunity to investigate geomagnetic effects associated with acoustic resonance. Following the eruption, geomagnetic oscillation is observed at Apia, approximately 835 km from Hunga Tonga, mainly in the Pc 5 band (150–600 s, or 1.7–6.7 mHz) lasting for about 2 hr. The dominant frequency of the oscillation is 3.8 mHz, which is consistent with the frequency of the atmospheric oscillation due to acoustic resonance. The oscillation is most prominent in the eastward (Y) component, with an amplitude of ∼3 nT, which is much larger than those previously reported for other events (〈1 nT). Comparably large oscillation is not found at other stations located further away (〉2700 km). However, geomagnetic oscillation with a much smaller amplitude (∼0.3 nT) is observed at Honolulu, which is located near the magnetic conjugate point of Hunga Tonga, in a similar wave form as at Apia, indicating interhemispheric coupling. This is the first time that geomagnetic oscillations due to the atmospheric acoustic resonance are simultaneously detected at magnetic conjugate points.
    Description: Key Points: The effect of the January 2022 Hunga Tonga‐Hunga Ha’apai volcano eruption on the geomagnetic field is examined. Geomagnetic oscillation with a frequency of ∼3.8 mHz is observed simultaneously near the volcano and its magnetic conjugate point. The oscillation is attributed to the acoustic resonance of the atmosphere.
    Description: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior http://dx.doi.org/10.13039/501100002322
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://www.intermagnet.org/data-donnee/download-eng.php
    Keywords: ddc:538.7 ; ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-10-04
    Description: The role of clouds for radiative transfer, precipitation formation, and their interaction with atmospheric dynamics depends strongly on cloud microphysics. The parameterization of cloud microphysical processes in weather and climate models is a well‐known source of uncertainties. Hence, robust quantification of this uncertainty is mandatory. Sensitivity analysis to date has typically investigated only a few model parameters. We propose algorithmic differentiation (AD) as a tool to detect the magnitude and timing at which a model state variable is sensitive to any of the hundreds of uncertain model parameters in the cloud microphysics parameterization. AD increases the computational cost by roughly a third in our simulations. We explore this methodology as the example of warm conveyor belt trajectories, that is, air parcels rising rapidly from the planetary boundary layer to the upper troposphere in the vicinity of an extratropical cyclone. Based on the information of derivatives with respect to the uncertain parameters, the ten parameters contributing most to uncertainty are selected. These uncertain parameters are mostly related to the representation of hydrometeor diameter and fall velocity, the activation of cloud condensation nuclei, and heterogeneous freezing. We demonstrate the meaningfulness of the AD‐estimated sensitivities by comparing the AD results with ensemble simulations spawned at different points along the trajectories, where different parameter settings are used in the various ensemble members. The ranking of the most important parameters from these ensemble simulations is consistent with the results from AD. Thus, AD is a helpful tool for selecting parameters contributing most to cloud microphysics uncertainty.
    Description: Plain Language Summary: The formation of clouds is determined by processes that act on smaller scales than weather prediction models can resolve. Consequently, a parameterization with typically hundreds of parameters is constructed to determine the effects of these processes on the resolved larger scales. These parameters are a well‐known source of uncertainty in weather and climate models. Classical attempts to quantify this uncertainty are typically limited to a few parameters. We propose algorithmic differentiation (AD) as a tool to detect parameters with the largest impact for any of the hundreds of parameters on multiple model state variables at every time step in our simulation. This increases the computational cost by roughly a third. The relevance of the AD‐estimated impact is demonstrated by comparing the AD results with ensemble simulations, where different parameter settings are used in the various ensemble members. The ranking of the most important parameters from these ensemble simulations is consistent with the results from AD. Thus, AD is a helpful tool to identify parameters objectively that contribute most to uncertainty in cloud parameterizations.
    Description: Key Points: Quantification of multi‐parameter uncertainty of cloud microphysical evolution of WCB trajectories using algorithmic differentiation. Uncertainty at every time step derived with algorithmic differentiation representative for key uncertainty over at least 30 min intervals. Parameterization of CCN activation, diameter size, and fall velocity of hydrometeors have the largest mean impact on water vapor contents.
    Description: Deutsch Forschungsgemeinschaft DFG
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-10-04
    Description: We use a global 5‐km resolution model to analyze the air‐sea interactions during a katabatic storm in the Irminger Sea originating from the Ammassalik valleys. Katabatic storms have not yet been resolved in global climate models, raising the question of whether and how they modify water masses in the Irminger Sea. Our results show that dense water forms along the boundary current and on the shelf during the katabatic storm due to the heat loss caused by the high wind speeds and the strong temperature contrast. The dense water contributes to the lightest upper North Atlantic Deep Water as upper Irminger Sea Intermediate Water and thus to the lower limb of the Atlantic Meridional Overturning Circulation (AMOC). The katabatic storm triggers a polar low, which in turn amplifies the near‐surface wind speed due to the superimposed pressure gradient, in addition to acceleration from a breaking mountain wave. Overall, katabatic storms account for up to 25% of the total heat loss (20 January 2020 to 30 September 2021) over the Irminger shelf of the Ammassalik area. Resolving katabatic storms in global models is therefore important for the formation of dense water in the western boundary current of the Irminger Sea, which is relevant to the AMOC, and for the large‐scale atmospheric circulation by triggering polar lows.
    Description: Plain Language Summary: Katabatic storms are outbursts of cold air associated with strong winds from coastal valleys of Greenland, in particular from the Ammassalik valleys in southeast Greenland. These storms are not resolved in global climate models because of their small spatial extent. However, they are important for the formation of dense water on the Irminger Sea shelf, because they induce a substantial heat loss from the coastal water. In this study, we resolve katabatic storms for the first time in a global climate model and analyze the water transformation caused by a single storm before quantifying the importance of katabatic storms for the entire simulation period. We find that a water mass is formed during the katabatic storm that is dense enough to contribute to the cooling and sinking of the global conveyor belt in the subpolar North Atlantic. Overall, katabatic storms account for up to 25% of the heat loss over the Irminger shelf of the Ammassalik area.
    Description: Key Points: For the first time, the direct effect of a katabatic storm on the Irminger Sea has been simulated in a global climate model. The katabatic storm induces strong heat loss and dense water formation over the Irminger shelf (Sermilik Trough) and in the boundary current. Dense water forming in the western boundary current during katabatic storms contributes to the lightest upper North Atlantic Deep Water.
    Description: Collaborative Research Centre TRR181 funded by DFG
    Description: Max Planck Society for Advancement of Science
    Description: NextGEMS
    Description: European Union’s Horizon 2020
    Description: https://hdl.handle.net/21.11116/0000-0008-ECF1-E
    Description: https://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=DKRZ_LTA_033_ds00010
    Description: https://mpimet.mpg.de/en/science/modeling-with-icon/code-availability
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-10-04
    Description: We review the widely used concepts of “buoyancy” and “convective available potential energy” (CAPE) in relation to deep convection in tropical cyclones and discuss their limitations. A fact easily forgotten in applying these concepts is that the buoyancy force of an air parcel, as often defined, is non‐unique because it depends on the arbitrary definition of a reference density field. However, when calculating CAPE, the buoyancy of a lifted air parcel is related to the specific reference density field along a vertical column passing through that parcel. Both concepts can be generalized for a vortical flow and to slantwise ascent of a lifted air parcel in such a flow. In all cases, the air parcel is assumed to have infinitely small dimensions. In this article, we explore the consequences of generalizing buoyancy and CAPE for buoyant regions of finite size that perturb the pressure field in their immediate environment. Quantitative calculations of effective buoyancy, defined as the sum of the conventional buoyancy and the static vertical perturbation pressure gradient force induced by it, are shown for buoyant regions of finite width. For a judicious choice of reference density, the effective buoyancy per unit mass is essentially a unique force, independent of the reference density, but its distribution depends on the horizontal scale of the buoyant region. A corresponding concept of “effective CAPE” is introduced and its relevance to deep convection in tropical cyclones is discussed. The study is conceived as a first step to understanding the decreasing ability of inner‐core deep convection in tropical cyclones to ventilate the mass of air converging in the frictional boundary layer as the vortex matures and decays.
    Description: The buoyancy force of an infinitesimally small air parcel is non‐unique, depending on the arbitrary definition of a reference density field. When calculating the “convective available potential energy” (CAPE), the buoyancy of a lifted air parcel is related to the reference density field along a vertical column passing through that parcel. We generalize buoyancy and CAPE for buoyant regions of finite size that perturb the pressure field in their immediate environment and discuss the relevance to deep convection in tropical cyclones.
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    John Wiley & Sons, Ltd | Chichester, UK
    Publication Date: 2022-10-04
    Description: New cross‐validation diagnostics have been derived by further partitioning well‐established impact diagnostics. They are related to consistency relations, the most prominent of which indicates whether the first‐guess departures of a given observation type pull the model state into the direction of the verifying data (when processed with the ensemble estimated model error covariances). Alternatively, this can be regarded as cross‐validation between model error covariance estimates from the ensemble (which are used in the data assimilation system) and estimates diagnosed directly from the observations. A statistical cross‐validation tool has been developed that includes an indicator of statistical significance as well as a normalization that makes the statistical comparison largely independent from the total number of data and the closeness of their collocation. We also present a version of these diagnostics related to single‐observation experiments that exploits the same consistency relations but is easier to compute. Diagnostics computed within the Deutscher Wetterdienst's localized ensemble transform Kalman filter (LETKF) are presented for various kinds of bins. Results from well‐established in‐situ measurements are taken as a benchmark for more complex observations. Good agreement is found for radio‐occultation bending angle measurements, whereas atmospheric motion vectors are generally also beneficial but substantially less optimal than the corresponding in‐situ measurements. This is consistent with reported atmospheric motion vector height assignment problems. To illustrate its potential, a recent example is given where the method allowed identifying bias problems of a subgroup of aircraft measurements. Another diagnostic relationship compares the information content of the analysis increments with a theoretical optimum. From this, the information content of the LETKF increments is found to be considerably lower than those of the deterministic hybrid ensemble–variational system, which is consistent with the LETKF's limitation to the comparably low‐dimensional ensemble space for finding the optimal analysis.
    Description: New cross‐validation diagnostics are presented, allowing to test the consistent use of different observation types in the data assimilation system. The figure gives an example in which these new diagnostics allowed identification of the detrimental impact of a group of aircraft measurements (which as a consequence has now been blacklisted in the Deutscher Wetterdienst's operational system). More precisely, brown colors in this plot indicate regions where these aircraft measurements pulled the analysis state away from radiosonde observations.
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-10-05
    Description: In recent years, Spatial Markov Models have gained popularity in simulating solute transport in heterogeneous formations. They describe the transition times of particles between equidistant observation planes by statistical distributions, assuming correlation of the transit times of individual particles between subsequent steps. By this, the approach naturally captures preasymptotic solute dispersion. In this study, we analyze Spatial Markov Models assuming bivariate log‐normal distributions of the particle slowness (i.e., the inverse velocity) in subsequent transitions. The model is fully parameterized by the mean Eulerian velocity, the variance of the log‐slowness, and the correlation coefficient of log‐slowness in subsequent steps. We derive closed‐form expressions for distance‐dependent ensemble dispersion, which is defined in terms of the second‐central moments of the solute breakthrough curves. We relate the coefficients to the properties of the underlying log‐hydraulic conductivity field assuming second‐order stationarity. The results are consistent with linear stochastic theory in the limit of small log‐conductivity variances, while the approach naturally extends to high‐variance cases. We demonstrate the validity of the approach by comparison to three‐dimensional particle‐tracking simulations of advective transport in heterogeneous media with isotropic, exponential correlation structure for log‐conductivity variances up to five. This study contributes to relating solute dispersion to metrics of the porous‐medium structure in cases of strong heterogeneity.
    Description: Key Points: We derive closed‐form expressions of ensemble dispersion in the spatial‐Markov framework of solute transport. The expressions are consistent with linear theory in the limit of small log‐conductivity variances, but extend to high‐variance cases. Comparison to particle‐tracking simulations of advective transport in 3‐D heterogeneous domains show excellent agreement.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://doi.org/10.5281/zenodo.6554308
    Description: https://www.hsl.rl.ac.uk/catalogue/hsl_mi20.html
    Keywords: ddc:550
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-10-05
    Description: The spatial and angular emission patterns of artificial and natural light emitted, scattered, and reflected from the Earth at night are far more complex than those for scattered and reflected solar radiation during daytime. In this commentary, we use examples to show that there is additional information contained in the angular distribution of emitted light. We argue that this information could be used to improve existing remote sensing retrievals based on night lights, and in some cases could make entirely new remote sensing analyses possible. This work will be challenging, so we hope this article will encourage researchers and funding agencies to pursue further study of how multi‐angle views can be analyzed or acquired.
    Description: Plain Language Summary: When satellites take images of Earth, they usually do so from directly above (or as close to it as is reasonably possible). In this comment, we show that for studies that use imagery of Earth at night, it may be beneficial to take several images of the same area at different angles within a short period of time. For example, different types of lights shine in different directions (street lights usually shine down, while video advertisements shine sideways), and tall buildings can block the view of a street from some viewing angles. Additionally, since views from different directions pass through different amounts of air, imagery at multiple angles could be used to obtain information about Earth's atmosphere, and measure artificial and natural night sky brightness. The main point of the paper is to encourage researchers, funding agencies, and space agencies to think about what new possibilities could be achieved in the future with views of night lights at different angles.
    Description: Key Points: Remote sensing using the visible band at night is more complex than during the daytime, especially due to the variety of artificial lights. Views of night lights intentionally taken from multiple angles provide several advantages over near‐nadir or circumstantial view geometries. Night lights remote sensing would benefit from greater consideration of the role viewing geometry plays in the observed radiance.
    Description: EC H2020 H2020 Societal Challenges http://dx.doi.org/10.13039/100010676
    Description: Helmholtz Association http://dx.doi.org/10.13039/501100009318
    Description: Slovak Research and Development Agency
    Description: Xunta de Galicia (Regional Government of Galicia) http://dx.doi.org/10.13039/501100010801
    Description: National Aeronautics and Space Administration http://dx.doi.org/10.13039/100000104
    Description: University of Hong Kong http://dx.doi.org/10.13039/501100003803
    Description: Fonds de recherche du Québec
    Description: EC Emprego, Assuntos Sociais e Inclusão European Social Fund http://dx.doi.org/10.13039/501100004895
    Description: Natural Environment Research Council http://dx.doi.org/10.13039/501100000270
    Description: City of Cologne, Germany
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2022-10-06
    Description: Trade wind convection organises into a rich spectrum of spatial patterns, often in conjunction with precipitation development. Which role spatial organisation plays for precipitation and vice versa is not well understood. We analyse scenes of trade‐wind convection scanned by the C‐band radar Poldirad during the EUREC4A field campaign to investigate how trade‐wind precipitation fields are spatially organised, quantified by the cells' number, mean size, and spatial arrangement, and how this matters for precipitation characteristics. We find that the mean rain rate (i.e., the amount of precipitation in a scene) and the intensity of precipitation (mean conditional rain rate) relate differently to the spatial pattern of precipitation. Whereas the amount of precipitation increases with mean cell size or number, as it scales well with the precipitation fraction, the intensity increases predominantly with mean cell size. In dry scenes, the increase of precipitation intensity with mean cell size is stronger than in moist scenes. Dry scenes usually contain fewer cells with a higher degree of clustering than moist scenes do. High precipitation intensities hence typically occur in dry scenes with rather large, few, and strongly clustered cells, whereas high precipitation amounts typically occur in moist scenes with rather large, numerous, and weakly clustered cells. As cell size influences both the intensity and amount of precipitation, its importance is highlighted. Our analyses suggest that the cells' spatial arrangement, correlating mainly weakly with precipitation characteristics, is of second‐order importance for precipitation across all regimes, but it could be important for high precipitation intensities and to maintain precipitation amounts in dry environments.
    Description: We analyse scenes of trade‐wind convection scanned by the C‐band radar Poldirad during the EUREC4A field campaign to investigate how trade‐wind precipitation fields are spatially organised, quantified by the cells' number, mean size, and spatial arrangement, and how this matters for precipitation characteristics. We conclude that the cells' size is important for both the amount and intensity of precipitation, whereas the cells' spatial arrangement is of second‐order importance for precipitation across all regimes, but possibly important for precipitation in dry environments.
    Description: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy—EXC 2037 'CLICCS—Climate, Climatic Change, and Society'
    Description: https://doi.org/10.25326/217
    Description: https://doi.org/10.25326/79
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2022-10-06
    Description: Prominent excursions in the number of cosmogenic nuclides (e.g., 10Be) around 774 CE/775 document the most severe solar proton event (SPE) throughout the Holocene. Its manifestation in ice cores is valuable for geochronology, but also for solar‐terrestrial physics and climate modeling. Using the ECHAM/MESSy Atmospheric Chemistry (EMAC) climate model in combination with the Warning System for Aviation Exposure to SEP (WASAVIES), we investigate the transport, mixing, and deposition of the cosmogenic nuclide 10Be produced by the 774 CE/775 SPE. By comparing the model results to the reconstructed 10Be time series from four ice core records, we study the atmospheric pathways of 10Be from its stratospheric source to its sink at Earth's surface. The reconstructed post‐SPE evolution of the 10Be surface fluxes at the ice core sites is well captured by the model. The downward transport of the 10Be atoms is controlled by the Brewer‐Dobson circulation in the stratosphere and cross‐tropopause transport via tropopause folds or large‐scale sinking. Clear hemispheric differences in the transport and deposition processes are identified. In both polar regions the 10Be surface fluxes peak in summertime, with a larger influence of wet deposition on the seasonal 10Be surface flux in Greenland than in Antarctica. Differences in the peak 10Be surface flux following the 774 CE/775 SPE at the drilling sites are explained by specific meteorological conditions depending on the geographic locations of the sites.
    Description: Plain Language Summary: During large solar storms, high energy particles are hurled with enormous force toward Earth by the Sun. As these particles collide with atmospheric constituents (such as oxygen or nitrogen) unique nuclides of cosmogenic origin are formed in the higher atmosphere. From there they are transported downwards and finally precipitate at the surface due to different sink processes. Their imprints can be conserved over thousands of years within natural archives, such as ice cores or tree rings. Analysis of these natural archives around the globe indicates that the strongest solar storm over the last 10.000 years happened around 774 CE/775. This event is estimated to have been up to two orders of magnitude stronger, than the strongest known events documented for the satellite era. In this study, we model and analyze the transport and deposition of the cosmogenic nuclides produced by the extreme 774 CE/775 event, by applying a new experimental setup. Our results might help to interpret the fingerprints of historical extreme events with respect to the prevailing atmospheric conditions.
    Description: Key Points: The modeled transport and deposition of the cosmogenic nuclide10Be produced by the 774/775 solar proton event was compared to 10Be ice core records. Hemispheric differences in stratospheric and cross‐tropopause transport, and deposition were identified, with polar summertime maxima of 10Be surface flux. Differences in reconstructed10Be surface fluxes are explained by the local ratio of wet to dry deposition maximizing in the summertime.
    Description: MEXT Japan Society for the Promotion of Science http://dx.doi.org/10.13039/501100001691
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2022-10-06
    Description: The stochastically perturbed parametrisation tendency (SPPT) scheme is a well‐established technique in ensemble forecasting to address model uncertainty by introducing perturbations into the tendencies provided by the physics parametrisations. The magnitude of the perturbations scales with the local net parametrisation tendency, resulting in large perturbations where diabatic processes are active. Rapidly ascending air streams, such as warm conveyor belts (WCBs) and organized tropical convection, are often driven by cloud diabatic processes and are therefore prone to such perturbations. This study investigates the effects of SPPT and initial condition perturbations on rapidly ascending air streams by computing trajectories in sensitivity experiments with the European Centre for Medium‐Range Weather Forecasts (ECMWF) ensemble prediction system, which are set up to disentangle the effects of initial conditions and physics perturbations. The results demonstrate that SPPT systematically increases the frequency of rapidly ascending air streams. The effect is observed globally, but is enhanced in regions where the latent heating along the trajectories is larger. Despite the frequency changes, there are only minor modifications to the physical properties of the trajectories due to SPPT. In contrast to SPPT, initial condition perturbations do not affect WCBs and tropical convection systematically. An Eulerian perspective on vertical velocities reveals that SPPT increases the frequency of strong upward motions compared with experiments with unperturbed model physics. Consistent with the altered vertical motions, precipitation rates are also affected by the model physics perturbations. The unperturbed control member shows the same characteristics as the experiments without SPPT regarding rapidly ascending air streams. We make use of this to corroborate the findings from the sensitivity experiments by analyzing the differences between perturbed and unperturbed members in operational ensemble forecasts of ECMWF. Finally, we give an explanation of how symmetric, zero‐mean perturbations can lead to a unidirectional response when applied in a nonlinear system.
    Description: The stochastically perturbed parametrisation tendencies (SPPT) scheme is used at ECMWF to perturb the model physics and introduces state‐dependent perturbations into the parametrisation tendencies. The frequency of rapidly ascending air streams is systematically enhanced when SPPT is active. This effect is stronger when the latent heating is large (panel a), and is therefore more pronounced in the Tropics than in the Extratropics. In contrast, the impact of SPPT on the physical properties of the air streams, such as the latent heat release, is very small (panel b).
    Description: Helmholtz Young Investigator Group ‘Sub‐ Seasonal Predictability: Understanding the Role of Diabatic Outflow’
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2022-10-06
    Description: Accurate tropospheric delays from Numerical Weather Models (NWM) are an important input to space geodetic techniques, especially for precise real‐time Global Navigation Satellite Systems, which are indispensable to earthquake and tsunami early warning systems as well as weather forecasting. The NWM‐based tropospheric delays are currently provided either site‐specific with a limited spatial coverage, or on two‐dimensional grids close to the Earth surface, which cannot be used for high altitudes. We introduce a new method of representing NWM‐derived tropospheric zenith hydrostatic and wet delays. A large volume of NWM‐derived data is parameterized with surface values and additional two or three coefficients for their vertical scaling to heights up to 14 km. A precision of 1–2 mm is achieved for reconstructing delays to the NWM‐determined delays at any altitudes. The method can efficiently deliver NWM‐derived tropospheric delays to a broader community of space geodetic techniques.
    Description: Plain Language Summary: Precise positioning with microwave‐based space geodetic techniques, such as Global Navigation Satellite Systems (GNSS), requires accurate modeling of the atmospheric refraction. Numerical Weather Models (NWM) can provide tropospheric delays with an accuracy of 1–2 cm in zenith direction and are therefore useful for improving the data analysis. However, due to the large data volume to handle, NWM‐based products are typically provided only for selected sites, or on a global grid referring to a specific height. We provide an efficient method to represent the vertical profile of tropospheric delay from the Earth surface up to 14 km altitude with a precision of 1–2 mm. The method is used to preserve the precision of NWM‐derived tropospheric delays at the altitudes using three to four coefficients per geographic location (longitude, latitude) at the ground. This paves the way of applying the NWM‐based accurate tropospheric delays in space geodetic data analysis, especially for global augmentations of real‐time GNSS, which play a critical role in the rapid characterization and early warning of geohazards such as earthquake and tsunami, as well as kinematic platforms of high altitudes.
    Description: Key Points: New method for precise modeling of the zenith hydrostatic and wet delays from the Earth surface up to an altitude of 14 km. Tropospheric delay vertical modeling precision of better than 3 mm is achieved on a global scale. The method provides numerical weather model‐derived precise tropospheric augmentation correction for real‐time space geodetic techniques.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: China Scholarship Council CSC
    Description: Helmholtz OCPC Program
    Description: https://cds.climate.copernicus.eu/cdsapp
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    Deutsche Gesellschaft für Erdbebeningenieurwesen und Baudynamik (DGEB) e.V. | Kiel
    Publication Date: 2022-07-13
    Description: This publication developed from the 5th International Colloquium on “Historical Earthquakes, Paleoseismology, Neotectonics and Seismic Hazard” which was held from 11 to 13 October 2017 at the Federal Institute for Geosciences and Natural Resources (BGR) in Hannover, Germany. In this colloquium, 75 experts from 17 countries presented and discussed recent results, ongoing studies and planned projects on the topics historical earthquakes, macroseismology, archeoseismology, paleoseismology, earthquake catalogues and databases, active faults, seismotectonics, neotectonics, and seismic hazard assessment.
    Description: Deutsche Gesellschaft für Erdbebeningenieurwesen und Baudynamik
    Description: 〈b〉Introduction: Historical Earthquakes, Paleoseismology, Neotectonics and Seismic Hazard: New Insights and Suggested Procedures〈/b〉 〈br〉 〈i〉Diethelm Kaiser〈/i〉 〈br〉 〈a href="https://doi.org/10.23689/fidgeo-3868"〉 DOI: https://doi.org/10.23689/fidgeo-3868〈/a〉〈br〉 〈br〉〈/br〉 〈b〉Best practice of macroseismic intensity assessment applied to the earthquake catalogue of southwestern Germany〈/b〉 〈br〉 〈i〉 Wolfgang Brüstle, Uwe Braumann, Silke Hock and Fee-Alexandra Rodler 〈/i〉〈br〉 〈a href="https://doi.org/10.23689/fidgeo-3864"〉 DOI:https://doi.org/10.23689/fidgeo-3864〈/a〉〈br〉 〈br〉〈/br〉 〈b〉The earthquake of September 3, 1770 near Alfhausen (Lower Saxony, Germany): a real, doubtful, or a fake event? 〈/b〉 〈br〉 〈i〉Günter Leydecker and Klaus Lehmann 〈/i〉 〈br〉〈a href="https://doi.org/10.23689/fidgeo-3865"〉 DOI: https://doi.org/10.23689/fidgeo-3865〈/a〉〈br〉 〈br〉〈/br〉 〈b〉How well does known seismicity between the Lower Rhine Graben and southern North Sea reflect future earthquake activity? 〈/b〉 〈br〉 〈i〉Thierry Camelbeeck, Kris Vanneste, Koen Verbeeck, David Garcia-Moreno, Koen Van Noten and Thomas Lecocq 〈/i〉 〈br〉〈a href="https://doi.org/10.23689/fidgeo-3866"〉 DOI: https://doi.org/10.23689/fidgeo-3866〈/a〉〈br〉 〈br〉〈/br〉 〈b〉The Paleoseismic Database of Germany and Adjacent Regions PalSeisDB v1.0〈/b〉〈br〉 〈i〉Jochen Hürtgen, Klaus Reicherter, Thomas Spies, Claudia Geisler and Jörg Schlittenhardt 〈/i〉 〈br〉〈a href="https://doi.org/10.23689/fidgeo-3867"〉 DOI: https://doi.org/10.23689/fidgeo-3867〈/a〉〈br〉
    Description: research
    Keywords: ddc:551.22 ; ddc:554.3 ; ddc:550
    Language: English
    Type: doc-type:book
    Format: 135
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2022-09-22
    Description: February‐March 2020 was marked by highly anomalous large‐scale circulations in the Northern extratropical troposphere and stratosphere. The Atlantic jet reached extreme strength, linked to some of the strongest and most persistent positive values of the Arctic Oscillation index on record, which provided conditions for extreme windstorms hitting Europe. Likewise, the stratospheric polar vortex reached extreme strength that persisted for an unusually long period. Past research indicated that such circulation extremes occurring throughout the troposphere‐stratosphere system are dynamically coupled, although the nature of this coupling is still not fully understood and generally difficult to quantify. We employ sets of numerical ensemble simulations to statistically characterize the mutual coupling of the early 2020 extremes. We find the extreme vortex strength to be linked to the reflection of upward propagating planetary waves and the occurrence of this reflection to be sensitive to the details of the vortex structure. Our results show an overall robust coupling between tropospheric and stratospheric anomalies: ensemble members with polar vortex exceeding a certain strength tend to exhibit a stronger tropospheric jet and vice versa. Moreover, members exhibiting a breakdown of the stratospheric circulation (e.g., sudden stratospheric warming) tend to lack periods of persistently enhanced tropospheric circulation. Despite indications for vertical coupling, our simulations underline the role of internal variability within each atmospheric layer. The circulation extremes during early 2020 may be viewed as resulting from a fortuitous alignment of dynamical evolutions within the troposphere and stratosphere, aided by each layer's modification of the other layer's boundary condition.
    Description: Key Points Large‐ensemble simulations are needed to fully characterize coupled extremes in the polar vortex and tropospheric jet in early 2020. Details of the vortex structure play an important role in promoting either reflection or dissipation of upward propagating waves 1 and/or 2. Modulation of lowermost stratospheric circulation from above and below facilitates co‐evolution of tropospheric and stratospheric extremes.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
    Description: https://doi.org/10.5282/ubm/data.281
    Description: https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-09-22
    Description: Based on the analysis of electron density Ne profiles (Grahamstown ionosonde), a case study of the height‐dependent ionospheric response to two 27‐day solar rotation periods in 2019 is performed. A well‐defined sinusoidal response is observed for the period from 27 April 2019 to 24 May 2019 and reproduced with a Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model simulation. The occurring differences between model and observations as well as the driving physical and chemical processes are discussed based on the height‐dependent variations of Ne and major species. Further simulations with an artificial noise free sinusoidal solar flux input show that the Ne delay is defined by contributions due to accumulation of O+ at the Ne peak (positive delay) and continuous loss of O2+ in the lower ionosphere (negative delay). The neutral parts' 27‐day signatures show stronger phase shifts. The time‐dependent and height‐dependent impact of the processes responsible for the delayed ionospheric response can therefore be described by a joint analysis of the neutral and ionized parts. The return to the initial ionospheric state (and thus the loss of the accumulated O+) is driven by an increase of downward transport in the second half of the 27‐day solar rotation period. For this reason, the neutral vertical winds (upwards and downwards) and their different height‐dependent 27‐day signatures are discussed. Finally, the importance of a wavelength‐dependent analysis, statistical methods (superposed epoch analysis), and coupling with the middle atmosphere is discussed to outline steps for future analysis.
    Description: Key Points: A response to solar 27‐day signatures is observed in ionosonde Ne height profiles and successfully reproduced with a Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model simulation. Height‐dependent variations of the delayed ionospheric response are driven by the respective contributions of O+ and O2+. Transport processes have a significant impact on the 27‐day signatures of neutral and ionized parts in the upper atmosphere.
    Keywords: ddc:538.7 ; ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    John Wiley & Sons, Ltd. | Chichester, UK
    Publication Date: 2022-09-22
    Description: This note is framed as an open question to the community regarding parameterisation schemes using the blocking layer depth to reduce the orographic gravity wave drag. It is the purpose of this note to argue that the current orographic gravity wave drag parameterisation in the vicinity of blocking is inadequate. Reducing the gravity wave amplitude (and thereby reducing the gravity wave drag) by assuming an effective mountain height dependent on the blocking depth is not realistic. The arguments given here will hopefully spark a debate and new considerations, ultimately leading to improvements in current orographic gravity wave drag parameterisations. This note illustrates that low‐level blocking can induce more gravity waves or gravity waves with a higher momentum flux (compared to the current parameterisation schemes). More realistic parameterisation schemes are likely to improve the models' performance. However, the fact is complex theories are needed to describe gravity wave excitation by orography so that it is difficult to represent gravity wave nature by a ‘too simple’ parameterisation scheme.
    Description: The purpose of this letter is to provide arguments that the current gravity wave drag parameterisation in the vicinity of blocking is inadequate. Reducing the gravity wave drag depending on the blocking depth is not a realistic representation. The letter lists five ways in which the blocking layer can result in a greater amount of gravity wave drag.
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-06-17
    Description: Relationships between vegetation and air quality are intricate and still not fully understood. For regional air quality assessments, a better understanding of the diverse feedback mechanisms is crucial. The present article investigates the impact of land use data set detailedness on air quality predictions. Therefore, two different land use data sets were applied for simulations with COSMO‐MUSCAT for Germany in May 2014. One data set includes detailed information about tree species while the second one obtains generalized widely applied land use classes including mixed and coniferous forests. Moreover, we examined the role of agricultural NO soil emissions, agricultural biomass density enhancements, and model resolution. For a more comprehensive implementation of the secondary organic aerosol (SOA) formation, the SOA module was extended considering additional biogenic volatile organic compound (BVOC) precursor groups from isoprene, α‐pinene, limonene, and sesquiterpene oxidations. The model studies showed substantial differences in BVOC emission patterns between the two land use data sets. The application of detailed tree species information leads to complex BVOC emission patterns with high emission spots. In contrast, coarser forest information lead to standardized comprehensive emissions which result in 50% higher BVOC emissions. These differences affect both the atmospheric oxidizing potential and the production rates of SOA precursors. Land use induced regional differences (tree species minus forest information) in NOx (±2.5%), ozone (−2.5%), OH (±50%), NO3 radical (+70%) concentrations, and SOA (−60%) mass are modeled. Overall, the simulations demonstrate that detailed land use information, extended organic chemistry treatment, and high spatial resolution are mandatory for air quality assessments.
    Description: Plain Language Summary: Trees are associated with being the lungs of the atmosphere as they filter out harmful substances from the air, they store CO2, and produce oxygen via photosynthesis. Other by‐products of photosynthesis are biogenic volatile organic compounds (BVOCs). BVOCs are chemical substances with a high vapor pressure already at room temperatures, so they quickly evaporate from the leaves into the surrounding air and are responsible for the characteristic forest smell. The amount and composition of BVOC emissions strongly depend on the tree species. Every plant has its own distinct emission properties. The chemical degradation of BVOCs impacts the chemical composition of the troposphere and is connected to ground level ozone production and the formation of secondary organic aerosols (SOA), contributing substantially to particulate matter (PM). On a global scale, standardized BVOC emission information on forest levels are often used, but for regional air quality assessments detailed plant specific information is crucial, but still often lacking. Therefore, two different land use data sets were applied in the present study to investigate the impact of standardized forest versus detailed tree‐species information for Germany in May 2014. The study reveals changes in NOx (±2.5%), ozone (−2.5%), OH (±50%), NO3 radical (+70%), and SOA (−60%) concentrations.
    Description: Key Points: Detail of land use data sets crucial for biogenic volatile organic compound emission strength and composition. Composition and concentration variation of these organic compounds induce changes in regional air quality predictions. Detailed land use information, extended organic matter treatment, and high‐resolution simulations are mandatory for air quality assessments.
    Description: Deutsche Bundesstiftung Umwelt (DBU) http://dx.doi.org/10.13039/100007636
    Description: https://doi.org/10.5281/zenodo.4783106
    Description: http://ebas.nilu.no/
    Keywords: ddc:551.5 ; ddc:551.9
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2022-06-16
    Description: Atmospheric delay corrections for satellite altimetry measurements are essential for deriving highly accurate sea surface heights and reliable global mean sea level (GMSL) trend estimates. A commonly used method to correct for ionospheric path delays are the usage of GNSS‐based Global Ionospheric Maps (GIM). The different orbit heights of GNSS and altimeter satellites require an adaption of GIM corrections to account for free electrons in the Earth plasmasphere. This study shows that the widely used scaling approach based on the International Reference Ionosphere (IRI) is not able to accurately scale the GIM models. The impact of neglecting the plasmaspheric part of the atmosphere strongly correlates with the solar activity of about 11 years. This manifests itself as trend errors in global GMSL. For the Jason period (2002–2021) a trend error of 0.17 mm/year can be shown, which is even larger for smaller periods (e.g., 1.0 mm/year for Jason‐1 lifetime). The application of an additional constant scaling factor of 0.886 can reduce the trend differences to below 0.05 mm/year.
    Description: Plain Language Summary: Global mean sea level (GMSL) rise is an important indicator for climate change. To precisely measure this quantity that is only in the order of about 3 mm/year, satellite altimeters are used. Their observations have to be corrected for influences in the Earth atmosphere. This study shows deficiencies in one commonly used correction data set. These corrections, based on observations from the Global Navigation Satellite Systems (GNSS) are not accounting for the higher part of the atmosphere, the plasmasphere. Neglecting this influence derives systematic errors with a 11 years cycle that impacts the estimation of GMSL by up to 1 mm/year, depending on the period under investigation. It is recommended to apply an additional scaling of the available corrections in order to reduce the trend error to below 0.05 mm/year.
    Description: Key Points: Global Ionospheric Map corrections in altimetry Sensor Geophysical Data Records are not fully scaled to account for plasmaspheric electron content. Neglecting the plasmaspheric effect leads to trends of up to 1 mm/year in Global mean sea level estimates. The additional application of a scale factor improves the consistency in trend with respect to dual‐frequency satellite altimetry data.
    Description: https://podaac.jpl.nasa.gov/
    Description: https://www.aviso.altimetry.fr/
    Description: https://openadb.dgfi.tum.de/en/products/vertical-total-electron-content/
    Keywords: ddc:538.767 ; ddc:550
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2022-08-09
    Description: High wind speed (U) is one of the most dangerous natural hazards in North America and Europe. As a result, spatially explicit, statistical estimation of extreme U is of particular relevance for many sectors. However, the most common sources of wind speed data such as reanalysis data and in situ measurements are limited for this purpose due to their coarse spatial resolution and low representativeness. Thus, the main goal was to develop a high spatial resolution (250 m × 250 m) model (GloWiSMo‐X) for monthly mapping of the maximum hourly U for a 10‐year return period (U10yr) in North America and Europe. The multistep development of GloWiSMo‐X is based on 2544 hourly U time series available from the integrated surface global hourly meteorological data set (UNCEI), U time series from ERA5 (UERA5), and mean wind speed from the Global Wind Speed Model (U¯GloWiSMo). Firstly, the block maxima method was applied to estimate monthly wind speed for a 10‐year return period for both UNCEI (U10yr,NCEI) and UERA5 (U10yr,ERA5). Secondly, the least squares boosting approach was used to predict the target variable U10yr,NCEI yielding the predictions Û10yr. The predictor variables U10yr,ERA5, U¯GloWiSMo, continent, and month were used as input. It was found that the highest monthly continental means of Û10yr (U¯10yr) in January are 16.4 m/s in North America and 16.3 m/s in Europe. U¯10yr dropped to 13.4 m/s and 12.5 m/s in August. The annual cycle of U¯10yr is more pronounced in Europe than in North America. The central parts of the USA and Western Europe were identified as intracontinental regions with the highest U¯10yr. GloWiSMo‐X proves to be very broadly applicable as it covers two different continents and all months. The model validation by the mean squared error (MSE) demonstrates its improved predictive power compared to ERA5.
    Description: A high spatial resolution (250 m × 250 m) model (GloWiSMo‐X) for monthly mapping of the maximum hourly wind speed for a 10‐year return period in North America and Europe was developed. The highest monthly continental means are 16.4 m/s in North America and 16.3 m/s in Europe. Due to the pronounced annual cycle, it drops to 13.4 m/s and 12.5 m/s in August. image
    Description: Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2022-11-01
    Description: An update of the two‐energy turbulence scheme is presented, the 2TE + APDF scheme. The original version of the two‐energy scheme is able to successfully model shallow convection without the need of an additional parameterization for non‐local fluxes. However, the performance of the two‐energy scheme is worse in stratocumulus cases, where it tends to overestimate the erosion of the stable layers. We have identified the causes: the non‐local stability parameter does not consider local stratification, the scheme lacks an internal parameter that could distinguish between a shallow convection regime and a stratocumulus regime, and it uses an inflexible turbulence length scale formulation. To alleviate this problem, we propose several modifications: an update of the stability parameter, a modified computation of the turbulence length scale, and the introduction of the entropy potential temperature to distinguish between a shallow convection and a stratocumulus regime. In addition, the two‐energy scheme is coupled to a simplified assumed probability density function method in order to achieve a more universal representation of the cloudy regimes. The updated turbulence scheme is evaluated for several idealized cases and one selected real case in the ICOsahedral Nonhydrostatic (ICON) modeling framework. The results show that the updated scheme corrects the overmixing problem in the stratocumulus cases. The performance of the updated scheme is comparable to the operational setup, and can be thus used instead of the operational turbulence and shallow convection scheme in ICON. Additionally, the updated scheme improves the coupling with dynamics, which is beneficial for the modeling of coherent flow structures in the atmospheric boundary layer.
    Description: Plain Language Summary: The two‐energy turbulence scheme parametrizes turbulence and boundary layer clouds in a unified framework. This enables the scheme to be more consistent and more continuous in time and space than the classical combination of separate turbulence and convection schemes. The original version of the scheme tends to overestimate the erosion of the stable layers, particularly in stratocumulus cases. We have identified several reasons for this problem and updated the scheme accordingly. To achieve a more universal representation of the cloudy regimes, the two‐energy scheme has been also coupled to the assumed probability density function (PDF) method. This method is based on assuming the shape of the trivariate PDF of moisture, heat and vertical velocity. The new version of the scheme was implemented into the ICOsahedral Nonhydrostatic (ICON) modeling framework and was tested on several idealized cases and one realistic case. The results show that the updated scheme corrects the overmixing problem in the stratocumulus cases. The performance of the updated scheme is comparable to the operational setup, and can be thus used instead of the operational turbulence and shallow convection scheme in ICON. Additionally, the updated scheme improves the coupling with dynamics, which is beneficial for the modeling of coherent flow structures in the atmospheric boundary layer.
    Description: Key Points: An update of the two‐energy scheme for the unified parameterization of the turbulence and clouds in the atmospheric boundary layer (ABL) is presented. The performance of the updated scheme is comparable to the operational ICOsahedral Nonhydrostatic configuration. The updated scheme shows the ability to model coherent flow structures in the ABL.
    Description: Hans Ertel Centre for Weather Research of DWD
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: https://zenodo.org/record/822842
    Description: https://doi.org/10.5281/zenodo.6403030
    Keywords: ddc:550.724 ; ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2022-12-15
    Description: The subduction of serpentinized slabs is the dominant process to transport “water” into Earth's mantle, and plays a pivotal role for subduction dynamics. Antigorite, the most abundant serpentine mineral in subduction settings, may imprint a seismic signature on serpentinized slabs, making them seismically distinguishable from the dry, non‐serpentinized ones. However, the complete single‐crystal elasticity of antigorite has not been experimentally constrained at high pressures, hindering the use of seismological approaches to detect serpentinization in subducting slabs. Here, we report the full elastic stiffness tensor of antigorite by single‐crystal Brillouin spectroscopy and X‐ray diffraction up to 7.71(5) GPa. We use our results to model seismic properties of antigorite‐bearing rocks and show that their seismological detectability depends on the geometrical relation between seismic wave paths and foliation of serpentinized rocks. In particular, we demonstrate that seismic shear anisotropy shows low sensitivity to serpentinization for a range of relevant geometries.
    Description: Plain Language Summary: The subduction of serpentinized slabs plays a key role in the deep recycling of water into the Earth's interior. Antigorite is the main serpentine mineral in subducting slabs, and the most important carrier of water. Antigorite‐bearing rocks are predicted to have a distinct seismic signature, potentially allowing them to be detected with seismological approaches. However, our current knowledge on seismic properties of antigorite‐bearing rocks is limited, mostly hampered by a lack of experimental constraints on single‐crystal elasticity of antigorite at relevant pressures. In this study, state‐of‐the‐art techniques were employed to produce the first experimental description of the complete high‐pressure elasticity of antigorite single crystals. Our experimental data set was implemented in the modeling of seismic properties of antigorite‐bearing rocks at pressures relevant for subduction. Our results were used to discuss the relation between seismic wave path and shear wave anisotropy in serpentinized slabs, and challenge the use of shear wave splitting as a proxy for serpentinization in slabs.
    Description: Key Points: Single‐crystal elasticity of antigorite at high pressures is determined by Brillouin spectroscopy and X‐ray diffraction experiments. Seismic signature of serpentinized slabs is constrained in a relevant composition‐pressure space. Serpentinization in slabs may be undetectable through shear wave anisotropy.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: EC Horizon 2020 Framework Programme http://dx.doi.org/10.13039/100010661
    Description: https://doi.org/10.6084/m9.figshare.20348748
    Description: https://doi.org/10.6084/m9.figshare.20348781
    Keywords: ddc:550 ; serpentine ; elasticity ; Brillouin spectroscopy ; antigorite ; seismic anisotropy ; shear wave splitting
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2022-12-01
    Description: Over the last years, installations of wind turbines (WTs) increased worldwide. Owing to negative effects on humans, WTs are often installed in areas with low population density. Because of low anthropogenic noise, these areas are also well suited for sites of seismological stations. As a consequence, WTs are often installed in the same areas as seismological stations. By comparing the noise in recorded data before and after installation of WTs, seismologists noticed a substantial worsening of station quality leading to conflicts between the operators of WTs and earthquake services. In this study, we compare different techniques to reduce or eliminate the disturbing signal from WTs at seismological stations. For this purpose, we selected a seismological station that shows a significant correlation between the power spectral density and the hourly windspeed measurements. Usually, spectral filtering is used to suppress noise in seismic data processing. However, this approach is not effective when noise and signal have overlapping frequency bands which is the case for WT noise. As a first method, we applied the continuous wavelet transform (CWT) on our data to obtain a time-scale representation. From this representation, we estimated a noise threshold function (Langston & Mousavi, 2019) either from noise before the theoretical P-arrival (pre-noise) or using a noise signal from the past with similar ground velocity conditions at the surrounding WTs. Therefore, we installed low cost seismometers at the surrounding WTs to find similar signals at each WT. From these similar signals, we obtain a noise model at the seismological station, which is used to estimate the threshold function. As a second method, we used a denoising autoencoder (DAE) that learns mapping functions to distinguish between noise and signal (Zhu et al., 2019). In our tests, the threshold function performs well when the event is visible in the raw or spectral filtered data, but it fails when WT noise dominates and the event is hidden. In these cases, the DAE removes the WT noise from the data. However, the DAE must be trained with typical noise samples and high signal-to-noise ratio events to distinguish between signal and interfering noise. Using the threshold function and pre-noise can be applied immediately on real-time data and has a low computational cost. Using a noise model from our prerecorded database at the seismological station does not improve the result and it is more time consuming to find similar ground velocity conditions at the surrounding WTs.
    Description: poster
    Keywords: ddc:550
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2022-12-01
    Description: As part of the German continental seismic reflection program (Deutsches Kontinentales Reflexionsseismisches Programm, DEKORP), three large seismic traverses (with the sub-profiles: DEKORP'84-2S and '86-2N; DEKORP'88-9N; DEKORP'90-3A and '90-3B) were measured in the state of Hesse in Germany. The main research topic of DEKORP were deep seismic studies to investigate the lithospheric structure beneath Germany. Thus, for acquisition, strong sources were used to image in these depths, resulting in an excellent S/N ratio, but the main focus was not on the uppermost kilometres. From today's perspective, however, this depth range is of great interest for a wide range of possible technical applications (including medium-deep and deep geothermal projects). The DEKORP profiles cover approx. 450 km in the state of Hesse and mostly cross areas where only insufficient geological data exist (i.e. only few deep boreholes). In order to close or reduce these knowledge gaps, these DEKORP lines were reprocessed in 2019/20. The focus of the reprocessing was on improving the resolution / mapping of geological structures down to a depth of 6 km (approx. 3 s TWT) to describe the prolongation of faults and geological structures in more detail than in previous studies. Nevertheless, deeper structures were also reinterpreted and compared to previous interpretations. The results were directly incorporated into the new geological 3D model of the state of Hesse, developed by the Technical University of Darmstadt (Hessen3D 2.0, BMWi-FKZ: 0325944). In order to achieve these goals and in view of the fact that today's processing methods have improved considerably compared to the 1990‘s, a state-of-the-art reprocessing was applied for all DEKORP profiles traversing the state of Hesse. In comparison to the original processing, additional processing steps like CRS instead of CDP stacking, turning-ray tomography and prestack depth migration were carried out. We present exemplary results of the reprocessing as well as initial geological reinterpretations for the profile DEKORP'88-9N.
    Description: poster
    Keywords: ddc:550 ; DEKORP ; Reprocessing of 2D seismic profiles ; Hesse ; Upper Rhine Graben ; DEKORP'88-9N
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2022-12-01
    Description: The work presented here is part of ongoing studies in the AlpArray initiative and the priority program "MB-4D" regarding the modelling of the lithosphere in the Ligurian Sea (northwestern Mediterranean Sea). It will be based on constraining data from LOBSTER and LISA campaigns of past GEOMAR projects and a study in our research group at CAU Kiel. Our motivation is the combination and interdisciplinary interpretation of independent information from geology, tectonics, geophysics, and petrology. The existing gravity fields, especially the new compilation of the AlpArray Gravity Research Group (AAGRG) is considered as database (high resolution Free Air- and Bouguer anomalies) and the isostatic residual field, besides data of the ICGEM Potsdam (disturbance) and the ESA GOCE gradients for gravity and data for the magnetic field anomaly. The gravity and magnetic fields are analyzed using Euler deconvolution with regularization (R. Pašteka, Comenius University Bratislava) and application of curvature analysis we use both, the fields themselves and their gradients. Besides the calculation of the so-called "3rd derivative" of the gravity potential, we also investigate a possible use of the invariants of the gravity field based on gradient data and compare and correlate the results with structural and tectonic maps in the area of the Ligurian Sea and the adjacent French and Italian mainland. The findings from these comparisons will later be used to initiate the compilation of 3D density and susceptibility models for the studied region.
    Description: poster
    Keywords: ddc:550 ; Gravity gradients, ; curvature gravity field ; Gravity invariants ; Ligurean Sea
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2022-12-01
    Description: FloodRisk is an interdisciplinary project focusing on the effects of mine water level rise in bandoned coal mine regions in Germany. Such effects are heterogeneous ground uplift, stress changes due to the change in pore pressure and the reactivation of potential faults. One of the most directly measurable effects is certainly the induced micro seismicity. It is known from previous studies that the flooding of old mines can lead to a renewed increase level in induced micro seismicity in these regions. In this study the relationship between mine water rise, fluid-induced stress changes and induced seismicity in the Haus Aden dewatering area in the eastern Ruhr area (Germany) will be investigated in more detail. For this purpose, we operate a network of currently 21 short period seismic stations in the region of the former "Bergwerk Ost" colliery, which had the highest seismicity rate in the Ruhr area during active underground coal mining. This network is still to be expanded to cover the entire water drainage area, about 30 Raspberry Shake sensors are waiting for the possibility of installation. Nevertheless, the existing network registered almost 1000 induced micro seismic events in a magnitude range from -0.7 up to 2.6 MLv. Many of these events are spatially clustered and some show quite high waveform similarity. This allows relative localisation and can increase the accuracy of the location. The depth location of the earthquakes, within the limits of localisation accuracy, agrees very well with the distribution of seismicity at the time of active mining. The spatial distribution so far seems to be limited by a large inactive transverse fault in the west. It needs to be clarified what influence this fault has on the propagation of mine water in the underground. The measured temporal trend of the mine water level, after pumps were shut down in mid-2019, shows a strong correlation with the temporal evolution of the observed micro seismicity. In the first months after the pumps are switched off, the water levels at the observation points rise only slowly and isolated microseismic events occur again. In November 2019, the rise in water levels doubled and at the same time, the strongest induced event in the measurement period was recorded with a magnitude of 2.6 MLv . In the following months, the seismicity rate ranged from 8 to 34 events above 0.5 MLv per month, some of which were felt.
    Description: Bundesministerium für Bildung und Forschung
    Description: poster
    Keywords: ddc:550 ; induced microseismicity ; FloodRisk ; waveform similarity ; raising mine water level
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2022-12-01
    Description: We introduce an approach for 3D joint interpretation of potential fields and its derivatives under the condition of constraining data and information. The interactive 3D gravity and magnetic application IGMAS (Interactive Gravity and Magnetic Application System) has been around for more than 30 years, initially developed on a mainframe and then transferred to the first DOS PCs, before it was adapted to Linux in the ’90s and finally implemented as a cross-platform Java application with GUI. Since 2019 IGMAS+ is maintained and developed in the Helmholtz Centre Potsdam – GFZ German Research Centre by the staff of Section 4.5 – Basin Modelling and ID2 – eScience Centre. The core of IGMAS+ applies an analytical solution of the volume integral for the gravity and magnetic effect of a homogeneous body. It is based on the reduction of the three-folded integral to an integral over the bounding polyhedrons that are formed by triangles. Later the algorithm has been extended to cover all elements of the gravity tensor as well and the optimized storage enables fast leastsquares inversion of densities and changes to the model geometry and this flexibility makes geometry changes easy. Because of the triangular model structure of model interfaces, IGMAS can handle complex structures (multi- Z surfaces) like the overhangs of salt domes and variable densities due to voxelization. To account for the curvature of the Earth, we use spherical geometries. Therefore IGMAS+ is capable to handle models from big-scale to regional and small-scale models (meters) used in Applied Geophysics.
    Description: poster
    Keywords: ddc:550 ; Potential field modelling ; Complex modelling ; Visualization ; Software development
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2022-12-01
    Description: A new crustal model of the Volga-Uralian subcraton was built. The compilation of the model was subdivided in two steps: (1) inverse gravity modeling followed by (2) thorough forward gravity modeling. For inverse gravity modeling GOCE gravity gradients were used. The effect of the Earth sphericity was taken into account by using tesseroids. Density contrasts between crust and mantle were varied laterally according to the tectonic units present in the region. The model is constrained by the available seismic data including receiver function studies, and deep reflection and refraction profiles. The Moho discontinuity obtained during the gravity inversion was consequently modified, and complemented by the sedimentary cover, upper crust, lower crust, and lithospheric mantle layers in the process of forward gravity modeling. Obtained model showed crustal thickness variation from 34 to more than 55 km in some areas. The thinnest crust with the thickness below 40 km appeared on the Pericaspian basin with the thickest sedimentary column. A relatively thin crust was found along the central Russia rift system, while the thickest crust is located underneath Ural Mountains as well as in the center of the Volga-Uralian subcraton. In both areas the crustal thickness exceeds 50 km. At the same time, the gravity misfit of ca. 95 mGal between the measured Bouguer gravity anomaly and forward calculated gravity field was revealed in the central area of the Volga-Uralian subcraton. This misfit was interpreted and modeled as high-density lower crust which can possibly represent an underplated material. In the end, the new crustal model of Volga-Uralian subcraton respects the gravity and seismic constraints, and reflects the main geological features of the region. This model will be used for further geothermal analysis of the area.
    Description: poster
    Keywords: ddc:550 ; Crustal model ; Gravity ; Inversion ; Volgo-Uralia ; Tesseroids ; Moho
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2022-12-01
    Description: poster
    Keywords: ddc:550
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2022-12-01
    Description: This presentation summarizes input data, procedures and results of probabilistic seismic hazard assessment (PSHA) in Bangladesh in the framework of the project ‘Geo information for Urban Planning and Adaptation to Climate Change’. It is a cooperation of the Geological Survey of Bangladesh (GSB) and the Federal Institute for Geosciences and Natural Resources (BGR) of Germany. The main aim of the project is to provide city planners with “Ground Suitability Maps”, which display different geo-factors. Seismic hazard is one of the geo-factors that contributes to these maps. For the derivation of “Ground Suitability Maps”, the influence of the local underground conditions will be taken into account additionally. A major part of Bangladesh is located in earthquake prone regions due to active tectonics. The Indian plate moves north-eastward towards the Eurasian plate at a velocity of about 6 cm/year. This motion leads to thrusting to the north (Himalaya) and to subduction to the east together with strike-slip mechanism. The thrusting and subduction processes have caused large historical earthquakes even inside Bangladesh (e.g. 1885 Bengal Earthquake M7 and 1918 Srimangal Earthquake M7.6). Therefore, it is crucial to assess seismic hazard in urban planning in Bangladesh. The input databases were compiled from the literature, reviewed and evaluated in this study. These are earthquake catalogs, the distribution of active faults and ground motion prediction equations. The most consistent and reliable databases were selected to be used in PSHA. The data of the earthquake catalog were declustered to eliminate the duplicated events, aftershocks and foreshocks. The spatial distribution of areal seismic sources was characterized using the distributions of earthquakes in the catalog and active faults. The completeness analysis of the earthquake catalog was performed and the Gutenberg-Richter magnitude recurrence distribution was derived for each seismic source. The results of PSHA are presented in the form of peak ground acceleration (PGA) maps with 10% exceedance probability in 50 years. As usual in regional PSHA, the results were compiled assuming bedrock as underground condition (so-called engineering bedrock with shear velocity of Vs30≥760 m/s). The northern and eastern parts of Bangladesh show the highest seismic hazard with PGA around 0.4 g with 10% exceedance probability in 50 years. This observation was expected because of the active tectonics in these parts.
    Description: poster
    Keywords: ddc:550
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2022-12-01
    Description: As part of the EPOS-Norway infrastructure project, NORSAR received funding from the Research Council of Norway for a new regional seismic array on Bjørnøya (Bear Island) in the European Arctic. After along planning phase, a six-element broadband array was installed by NORSAR staff in August 2019 and has been providing data to NORSAR in near real-time since then. Due to several logistical and administrative constraints the 6-element array has an aperture of only 300 m. All sites are equipped with Kinemetrics MBB-2 sensors and Earth Data EDR-209 digitizers that are installed in near-surface vaults. Data are automatically copied to the Norwegian node of the European Integrated Data Archive (EIDA) and are openly available. Due to environmental restrictions less than the planned 9 array sites could be installed on Bjørnøya and the non-used instruments are now available to extend the broadband station Hornsund (HSPB), Southern Spitsbergen, to another small aperture broadband array, also with 6 sites. The array installation had to be postponed because of the ongoing pandemic and is now planned for the Arctic summer 2021.
    Description: poster
    Keywords: ddc:550
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2022-12-01
    Description: Seismotectonic regions are a basic input in seismic hazard assessment. Several seismotectonic zonations for Germany have been proposed in the past. We have developed a new regionalization based on the definition in the German Nuclear Safety Standard: “A seismotectonic unit is a region for which uniformity is assumed regarding seismic activity, geological structure and development and, in particular, regarding neotectonic conditions”. Our new concept aims for transparent implementation of geological criteria, which we initially analyze separately from seismicity. We strive for a better documentation and justification of the geological elements used to delimit seismotectonic regions, based on an analysis of the geological evolution in six time slices from the Permian (300 Ma) to the Present. The time slices are separated by marked changes in the tectonic regime and associated with the development of new fault systems or reactivation of existing ones. The present-day fault network comprises faults from all time slices. For each time slice, a subset of active faults has been extracted based on geological evidence for fault activity at that time. Uncertainties of these age assignments are documented. The fault subsets delimit regions of different strain intensity. The superposition of strain intensity distributions across all time slices identifies regions affected by polyphase deformation and regions nearly undeformed over geological time, potentially indicating areas of increased or reduced present-day seismic hazard. Our new zonation consists of fewer regions than earlier ones. The geological zonation correlates well with recent seismicity in areas of Cenozoic rifting and reasonably well with less frequent earthquakes in a belt affected by Mesozoic extension and contraction. However, a few stronger earthquake cluster in regions of low geological strain. The most prominent earthquake clusters (Swabian Jura, Vogtland / NW Bohemia) also defy a simple correlation with known geological structures.
    Description: poster
    Keywords: ddc:550
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2022-12-01
    Description: poster
    Keywords: ddc:550
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2022-12-01
    Description: As a result of the joint project ‘Subsurface Potentials for Storage and Economic Use in the North German Basin’ (German acronym: TUNB) the Geological Surveys of Northern Germany and the Federal Institute for Geosciences and Natural Resources (BGR) finalized a coherent geological 3D-model of the deep subsurface of the North German Basin in early 2021. The model consists of 13 major base surfaces from Oligocene to Zechstein, fault surfaces and hull surfaces of salt diapirs. In the northwestern part it is based on the datasets of the Tectonic Atlas of NW-Germany (GTA) along with well and seismic data from the hydrocarbon industry. Additionally to modelling the onshore part of Schleswig-Holstein and Hamburg and insuring cross-border consistency to the neighboring federal states, the Geological Survey of Schleswig-Holstein (LLUR) reconstructed a 3D-large-scale velocity model based on previous work from Jaritz et al. (1991). Their velocity approach was developed within the GTA-project and is based on sonic-log and check-shot-velocities. It assumes a linear velocity increase, which is calculated from specific global gradients for different major lithostratigraphic layers and laterally varying starting-velocities. To validate the constructed 3D-velocity-model, its velocities were compared to velocities measured at boreholes by oil and gas companies. In general, a good agreement was found between modeled and measured data (deviation 〈 5%), in which the average velocities seemed to resemble the check-shot data more accurately than the interval velocities the sonic-log-measurements. In distinct locations, the velocity model was used to convert the newly constructed TUNB-horizons from the depth- to the time-domain in order to compare them to seismic sections. Whereas overall a good agreement between horizons and seismic reflectors was found, differences were identified especially in structural complex areas. Whether these can be attributed to earlier interpretations from the GTA, the modelling of the horizons or insufficiencies in the velocity-model has yet to be determined. A follow-up project to the TUNB-project is anticipated to start in early summer 2021. The goal of the project is to derive a consistent velocity model over large parts of the North German Basin. Main challenges will be integrating available borehole and seismic data into existing velocity-modelling approaches with a special focus on establishing cross border consistency to eastern federal states.
    Description: poster
    Keywords: ddc:550
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2022-12-01
    Description: About 25% of the Earth’s mid-ocean ridges spread at ultraslow rates of less than 20 mm/yr. However, most of these ultraslow spreading ridges are located in geographically remote areas, which hamper investigation. Consequently, how the crust forms and ages at such spreading centres, which traditional models predict to be magma-starved and cold, remains poorly understood. One of the most accessible ultra-slow spreading centres is the Mid Cayman Spreading Centre (MCSC), in the Caribbean Sea, with spreading rates of ~15-17 mm/yr. CAYSEIS project was proposed to survey the Cayman Trough area in order to obtain new data that constraints the nature of the crust, tectonic structures, lithologies outcropping and hydrothermal processes taking place in this area. Understanding the sub-seabed geophysical structure of the MCSC is key to understanding not only the lithologies and structures exposed at the seabed, but more fundamentally, how they are related at depth and what role hydrothermal fluid flow plays in the geodynamics of ultraslow spreading. CAYSEIS was a joint and multidisciplinary programme of German, British and US American top tier scientists designed for the obtaining of a new high-quality dataset, including 3D Wide-Angle Seismic (WAS), magnetic, gravimetric and seismological data. During the CAYMAN project, we took leverage of the CAYSEIS dataset to invert a 3D tomographic model of the Cayman Trough lithosphere using the Tomo3D code (Meléndez et al., 2015; 2019). This is one of the first times that the Tomo3D code is used for 3D inversion of real datasets. Thus, we are checking our results comparing them with tomographic inversions of 2D lines and testing the different parameters to obtain the more accurate and higher resolution model as possible. The results of this experiment will show not only the lithospheric structure along and across the MSCS, including the exhumed Ocean Core Complexes in the surrounding areas, but the 3D lithospheric configuration of the region which is important to understand the crustal formation processes and the evolution of ultra-slow spreading settings.
    Description: Poster
    Description: poster
    Keywords: ddc:550 ; 3D tomography ; crustal characterization ; ultra-slow spreading ; Cayman Trough
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2022-12-01
    Description: The ongoing activity of Mount Etna and the proximity to the nearby population requires constant monitoring. Infrasound recordings play an important role in volcanic observation because explosive activity near or above ground as well as shallow tremor processes are easier to identify with airborne sound waves than with seismic waves that are significantly scattered and refracted in the volcano edifice. However, infrasound signals are often blurred by noise, in case of Mount Etna, mostly wind induced noise. manual distinction of noisy data from real volcanogenic signals brings along a considerable effort and requires expert knowledge. At Mount Etna five summit craters are currently known with fluctuating levels of activity. This leads to a wide variety of infrasound signal patterns interfered by changing noise levels. In order to distinguish waveforms of noise from signals of volcanic origin we apply unsupervised pattern recognition techniques. We show that by extracting features from the amplitude spectrum different infrasound regimes can be distinguished with Self-Organizing maps (SOMs). This technique provides an option to color-code the results for an intuitive interpretation and allows even for a more detailed recognition of transitional activity regimes. We create a reference data set from multiple months of infrasound waveforms to include as many activity regimes as possible to train the SOM. This enables a fast classification of new data.
    Description: poster
    Keywords: ddc:550 ; Infrasound ; Pattern Recognition ; Volcano Monitoring ; Etna
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2022-12-01
    Description: DFG FOR 2825
    Description: poster
    Keywords: ddc:550 ; Ultrasound ; Coda Wave Interferometry ; Bridge Monitoring
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2022-12-01
    Description: poster
    Keywords: ddc:550
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2022-12-01
    Description: Due to a complex interplay between the Earth and overlying ice sheets, a large variety of subglacial landforms developed. One example is the in the North German Basin widely spread phenomenon of tunnel valleys. An observed correlation to underlying salt structures is often explained mechanically. We focus on an alternative hypothesis based on thermodynamic processes: As salt better conducts heat than the surrounding rocks, the geothermal heat flux is augmented above salt structures. This leads to melting processes at the interface between the Earth and the ice sheet. The subglacial rivers finally erode the tunnel valleys. To test this hypothesis, we model related hydrothermal processes by means of a finite-difference open-source code (SHEMAT-Suit). The model accounts for heat conduction, groundwater flows, processes in the glaciothermal system such as the motion and spatiotemporal temperature evolution within the ice, and finally the coupling of both at the subglacial interface to account for the feedback mechanisms. Glaciothermal system and coupling processes are incorporated based on an idealized 1D model for the ice cover. We present a scaling analysis to discuss dominant processes. Our results show that a purely conductive subsurface (complete absence of groundwater flow) leads to a very moderate increase of the geothermal heat flux above salt structures. This implies a slight increase of the melting rates, which by itself is not enough to trigger tunnel valley erosion. Additional hydrothermal flows e.g. through fault zones may increase the subglacial melting rates. In this contribution, we will present results from a case study in the Southern North Sea. A 2D seismic section includes two tunnel valleys above salt structures. To model the state prior to erosion and sedimentation during and after the Quaternary glaciations, the Quaternary strata is replaced by strata with the same physical properties and thicknesses than the Paleocene to Miocene strata. Simulation runs with SHEMAT-Suite calculated the subsurface temperature distribution and the geothermal heat flux distribution at the subglacial interface. This allows assessing the subglacial melting rates along with the temperature profile within the ice cover for a number of glaciation scenarios. Current results show that thermodynamic processes reinforce the formation of tunnel valleys together with e.g. mechanical weakening by faulting.
    Description: poster
    Keywords: ddc:550
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2022-12-01
    Description: A combination of noninvasive geophysical magnetic gradiometery and electrical resistivity tomography (ERT) was employed to locate the remains of an old church form the 9th century in Neuss-Norf, Germany. The gradiometery survey was carried out along 27 parallel profiles oriented approximately E–W with a profile spacing of 1 m and a sampling spatial interval of 0.5 m along each profile in order to detect the distributions of the possible buried walls of the church and other related archaeological remains. The vertical gradient of the magnetic field, with a fixed distance of 1.04 m between the sensors, was measured. The lower sensor was fixed at a height of 0.32 m from the ground surface. The magnetic data were transferred to the frequency domain using Fast Fourier transform then reduced to the magnetic pole. The analytic signal and power spectrum techniques were applied to the obtained magnetic data. Moreover, ERT measurements were performed based on the results of the magnetic survey along 12 profiles utilizing the Wenner and Dipole-Dipole arrays with 0.5 m electrode spacing. The ERT data from both arrays were merged into one dataset to form a non-conventional mixed array. The ERT data were inverted into 2D resistivity models using robust (blocky) inversion technique, and then a 3D resistivity prospective was created. The combined interpretation of the magnetic and ERT showed that the archaeological structures are close to the ground surface with a maximum depth of up to 2 m. We successfully detected anomalous zones that could be associated with the walls of at least one ancient church-building in addition to several possible archaeological structures in the survey area. A considerable agreement between the results of both methods was observed. Highly magnetic sources that could be associated with metallic objects within tomb-like structures were detected. An archaeological map of the possible location of the old church and the assumed surrounding tombs and features was constructed. Finally, some promising places were suggested in order to start an archaeological excavation in the site based on the findings of our research.
    Description: poster
    Keywords: ddc:550 ; Archaeogeophysics; ERT; Magnetic gradiometery; Neuss-Norf, Germany
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2022-12-01
    Description: Geological maps are complex to produce through intensive and expensive field studies. Comparisons of geophysical data with geological conditions are difficult and often only qualitatively possible. The following work therefore examines an automated procedure to better reconcile this information. For this purpose, the terracing method, and a cluster analysis of potential field (gravity and magnetic field) and petrophysical data from the Karasjok and Ligurian Sea regions are used to interpret this geophysical measurements in a geological way. Two different tectonic regions were selected: (1) The Karasjok region is located in Northern Norway, where the Karasjok Greenstone Belt (KGB) dominates geological settings, consisting of abundant ultramafic intrusions, komatiites, gabbroic intrusions, amphibolites and migmatites. (2) The Ligurian-Provençal basin, part of the Western Mediterranean Sea, which is located between the French-Italian coastline and the island of Corsica. Geologically the area is characterised by the spreading zone in the Western Mediterranean. The high-resolution Airborne Gravity Gradient Survey and aeromagnetic datasets of the Karasjok region cover an area of 20 km x 30 km with a data resolution of 50 m. The dataset of the Ligurian basin cover a much larger area with the resolution of 5 km. Data constraints come from former LOBSTER and LISA campaigns and a study in the research group at CAU Kiel, new compilation of the AlpArray Gravity Research Group (AAGRG), besides data of the ICGEM Potsdam (disturbance) and the GOCE mission. By aid of the terracing algorithm, the boundaries of the anomalies are to be sharpened and regions with constant field amplitude were generated. For this purpose, a shape index-based algorithm was applied, which uses the shape index calculated at each field point to grade the function. Through an iterative process and the variation of parameters, the terracing result is refined. The resulting data sets are then further processed using a cluster analysis method. Here, the k-mean algorithm for domain classification is used to divide the geophysical measurement data into groups (cluster) of similar properties. The number of clusters k is specified and the data points are assigned to the respective clusters through an iterative process. Using the data of the datasets mentioned above the results of this applications are successfully compared with the corresponding geological maps of the two areas.
    Description: Deutsche Forschungsgemeinschaft (DFG), SPP "MB-4D"
    Description: https://doi.org/10.5880/fidgeo.2020.045 (Zahorec et al., 2021) via GFZ Data Services
    Description: poster
    Keywords: ddc:550 ; Clustering ; terracing ; gravity field ; Liguro-Provencial Basin
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2022-12-01
    Description: The German continental seismic reflection program DEKORP (DEutsches KOntinentales Reflexionsseismisches Programm) was carried out in the years between 1984 and 1999. The aim of DEKORP was to investigate the deep crustal structure of Germany with high-resolution near-vertical incidence (mostly vibro)seismic acquisition, supplemented by wide-angle seismic and other target-oriented piggy-back experiments, all complemented by optimized methods of data processing and interpretation. The DEKORP project was an equivalent to many other deep-seismic programs world-wide such as COCORP, BIRPS, LITHOPROBE, ECORS, CROP, BELCORP, IBERSEIS and others. The resulting DEKORP database consists of approximately 40 crustal-scale 2D-seismic reflection lines covering a total of ca. 4 700 km and one 3D-seismic survey covering ca. 400 km², recorded in close connection with the German Continental Deep Drilling Program (KTB). Nowadays, re-recording of these seismic traverses in the same extent and quality would often not be possible anymore due to increased acquisition costs and tightened permission requirements. Therefore these datasets provide unique and deep insights into the subsurface below Germany covering the earth’s crust from the surface to the upper mantle. Currently, many of the original raw data are still stored on old storage media and in formats, which can only be read by special devices, programs and experts. To prevent the final loss of this valuable geoscientific treasure an initiative at GFZ transcripts all relevant DEKORP data to modern formats and media. Over the last few years the demand for DEKORP data continuously increased. Several academic institutions and commercial companies reprocess and/or reinterpret these data, which lead to significant improvements in the quality of the results. Fields of applications are geothermal development, hazard analysis, hydrocarbon/shale gas exploration, underground gas storage, tunnel construction, disposal of nuclear waste and more. To simplify the data access for the scientific as well as for the commercial geo-community, a well-structured provision and utilisation concept is being developed. The concept includes so-called data publications with DOIs, a defined license model and automised retrieval for each of the surveys providing raw data, processed data, meta data, related links and more. The plan aims to have all relevant DEKORP datasets compiled and prepared for access via web interface till 2022.
    Description: poster
    Keywords: ddc:550
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2022-12-01
    Description: Aeromagnetic surveys help us to learn about geology. To achieve good coverage, surveys need to be merged. However, conventional methods introduce long-wavelength bias and cannot handle the individual survey quality. We develop a new approach to process large aeromagnetic surveys with an equivalent layer approach and combine them with satellite data. To facilitate the usage of large data sets, we divide the study area into blocks and treat each block individually. We adjust the block size according to the resolution of the equivalent source model. Within each block we solve for equivalent sources using an iterative linear inversion with Tikhonov regularization. We apply a multi-resolution strategy by iteratively decreasing the dipole spacing, dipole depth and block size. In each step, the resolution is applied to the residual of the previous steps. This ensures both a good representation of the large and small-scale structures as well as reasonable computational costs. Advantages of the blockwise inversion are the handling with large data sets due to splitting up the study area and neglecting influences of sources above a certain distance. This reduces computational costs and still fits the data well in comparison with an unblocked inversion. Some structures cannot be resolved well with just one dipole layer, so the multi-resolution strategy enables to have a better fit by separating regional and local sources. For the final compilation, we replace the long wavelengths part of the aeromagnetic data with satellite data to spherical harmonic degree 110. We demonstrate our new approach with a newly compiled large data base for Greenland.
    Description: poster
    Keywords: ddc:550 ; aeromagnetic ; inversion ; greenland ; multi-layer
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2022-12-01
    Description: Recent years have shown an increased interest in Polar research and in particular in understanding tectonics and seismic hazard in the Arctic. To understand the seismic activity in the European Arctic, the seismic bulletins should be as complete as possible. We present a new seismic event bulletin for the European Arctic (70° – 90° N, -15° – 75° E), for the 24-year long period 1990 – 2013. The poster will show in detail the merging of the different sources taken in account for the compilation, the homogenization of the data and the relocation of the seismic events. With respect to the ISC bulletin for this region, the new bulletin contains 5,932 new seismic events and 54,630 new seismic onset readings from stations mostly located at regional distances. The gains are distributed over the entire study region, with the most significant contributions across the Svalbard Archipelago, along the Knipovich and northern Mohns Ridges, as well as northern Fennoscandia.
    Description: Norwegian Research Council Grant 233973/H30
    Description: Russian Foundation for Basic Research Grant 14-05-93080
    Description: Russian Foundation for Basic Research Grant 18-05-70018
    Description: https://doi.org/10.31905/TYLLQY8T
    Description: poster
    Keywords: ddc:550 ; European Arctic ; Seismic Bulletin
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2022-12-01
    Description: During the last few years, the use of Ground-Penetrating-Radar (GPR) multi-channel antenna arrays in the Archaeological Prospection increased dramatically. The main advantage of this type of survey is a much faster data acquisition combined with a dense profile spacing. However, most of the common multi-channel arrays consist of antennae with a spacing of not smaller than 8 cm. The aim of our test survey was to evaluate how an even denser spacing of 4 cm that is provided by the IDS Stream-C GPR device at a centre frequency of 600 MHz can improve the detection of small archaeological features. As a test site, we chose the Great Bath in Kempten-Cambodunum. This first capital of the Roman province Rhaetia never has been overbuilt in the following centuries and even today it is used as a grassland declared as an Archaeological Park. Already in 1911, the Great Bath was excavated and beside the walls of different building phases, also small features like a multitude of hypocaust pillars were unearthed. Hence, this building structure depicts an ideal test site and a 40x40m grid covering the main part of the construction was chosen for the application of the antenna array. As a comparison, the same grid was contemporaneously surveyed with a single antenna IDS Duo device (600 and 200 MHz) and a 50 cm profile spacing. Regarding the walls of the Roman bath, the two surveys show comparable results: both datasets represent the stone constructions of 50 – 90 cm width quite well. Furthermore, the depth slices of both devices provide a differentiation of the single building phases. Nevertheless, the resolution for the multi-channel antenna array is of course much higher due to the denser profile spacing. Huger differences occur for the hypocaust pillars of 25 cm lateral length. These features can be mapped in detail with the 4 cm profile spacing of the IDS Stream-C system. Whereas the IDS Duo can only resolve some of the hypocausts, a multitude of them gets visible between 70 and 110 cm depth in the Stream-C data. As a conclusion, it can be stated that standard archaeological remains like stone walls, for sure, can be surveyed with single antenna GPR devices in a common profile spacing of 50 cm. However, in case of the existence of faint archaeological features the application of ultra-dense antenna arrays like the IDS Stream-C is advisable to get a comprehensive overview of a site without the necessity to excavate them.
    Description: poster
    Keywords: ddc:550 ; Ground-Penetrating Radar ; GPR ; Multichannel Antenna Array ; Roman Bath ; Hypocaust Pillars
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2022-12-01
    Description: The Floodrisk project takes a muti- and interdisciplinary look on the effects of the rise in mine water level in abandoned coal mine regions in Germany. Such effects are heterogeneous ground uplift, stress changes due to the pore pressure changes and the reactivation potential of faults. One of the most directly measurable effects is the induced seismicity. It is known from previous studies that the flooding of old mines can lead to a renewed increase in induced microseismicity in these regions. We focused on the observation of the eastern Ruhr area and investigate in detail the relationship between mine water rise and induced seismicity in the Haus Aden dewatering area. For this purpose, we operate a network of up to 30 short period seismic stations in the region of the former "Bergwerk Ost" colliery, which had the highest seismicity rate in the Ruhr area during active mining. Continuous monitoring of seismicity and mine water levels is available for this region from the active mining phase, through the post-mining phase to flooding. Since the beginning of the flooding, more than 20000 onsets were picked and over 1700 induced events were localised in a magnitude range from -0.7 up to 2.6 MLv. For some larger events, focal mechanisms could be determined. The spatial distribution of hypocentres is divided into two areas, with few events in the central study area and over 95% of earthquakes in its eastern part. Many of these events are spatially clustered and some show quite high waveform similarity. This allows relative localisation to increase the accuracy of the location. Comparing the old galleries,which today serve as the main underground waterways, with the localisations from the relative localisation, strong correlations can be seen. The measured temporal trend of the mine water level, after pumps were shut down in mid-2019, shows a strong correlation with the temporal evolution of the observed micro seismicity. In the first months after the pumps are switched off, the water levels at the observation points rise only slowly and isolated microseismic events occur again. In November 2019, the rise in water levels doubled and at the same time, the strongest induced event in the measurement period was recorded with a magnitude of 2.6 MLv. In the years 2020, 2021 66 and 58 events 〉= MLv 1 were observed, respectively. In contrast to this number only 2- 9 events 〉= MLv 1 per year were observed in the post-minig phase before flooding.
    Description: Bundesministerium für Bildung und Forschung
    Description: poster
    Keywords: ddc:550 ; induced seismicity ; post mining ; mine water rise ; Ruhr Area
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2022-12-01
    Description: In the last few years, several Unmanned Aerial Vehicle (UAV) based magnetometer systems have been tested for archaeological prospection. Due to their higher sensitivity, scalar magnetometers have been preferred as test sensors. However, total field magnetometer are vulnerable to disturbances, especially those generated by the UAV itself. Therefore, most UAV scalar magnetometer systems use the method of increasing the distance between magnetic sensors and the UAV to reduce interference. But freely suspended sensors tend to swing on ropes under the UAV and can produce data that are strongly influenced by heading errors. For our test, we therefore chose the UAV-fixed, compact setup of the SENSYS MagDrone R4, which is equipped with five three-axis FGM3D/75 fluxgate sensors at 50 cm spacing and is covering a swath width of 2.5 m. The 200Hz sampling rate of the R4 allows easy filtering of interference generated by the UAV and external disturbances like power lines or infrastructure. Magnetograms with a spatial resolution of up to 0.20 m per pixel were produced from the data. At Ganacker, we chose the former infrastructure core of the World War II German Air Force airfield as a test site. A wide range of archaeological structures and features with high magnetic contrast were expected on this area. The test site is currently an open agricultural area with a quite flat terrain. Hence, the R4 could be operated at a fixed flight height of just one metre above the surface of the terrain that is controlled actively by a radar sensor. An area of around 110 hectares were prospected within only four days. The MagDrone R4 system thus offers an outstanding survey area progress that cannot even reached by common vehicle-moved multi-sensor arrays. Here, we present the first results of this test survey by comparing the magnetograms, historical and current geodata. Most of the expected archaeological features and several unknown ones were detected by the R4 system. Our results show that the R4 system is well suited for mapping large archaeological structures with high magnetisations. In the future, we want to compare the R4 data with data from a ground-based fluxgate magnetometer. We also want to test whether the system is suitable for detecting archaeological features that have lower magnetic susceptibility and remanence contrasts with the surrounding soil.
    Description: poster
    Keywords: ddc:550 ; UAV magnetometer survey ; 3-axis fluxgate magnetometers ; archaeological prospection ; low-level flight ; Second World War airfield ; conflict landscapes
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2022-12-01
    Description: NEXD is an open source software package for the simulation of seismic waves in complex geological media. This includes elastic, viscoelastic, porous and fractured media with complex geometries. For the computation of the wave fields, the nodal discontinuous Galerkin approach (NDG) is used. The NDG approach combines unstructured tetrahedral meshes with an element-wise, high-order spatial interpolation of the wave field based on Lagrange polynomials. NEXD offers capabilities for modeling wave propagation in one-, two- and three-dimensional settings of very different spatial scale with little logistical overhead. It allows the import of external triangular (2D) and tetrahedral (3D) meshes provided by independent meshing software and can be run in a parallel computing environment. The computation of adjoint wavefields and an interface for the computation of waveform sensitivity kernels are offered. The method is verified by means of symmetry tests and the method of exact solutions. The capabilities of NEXD are demonstrated through, for example, a 2D synthetic survey of a geological carbon storage site. The most recent developments have been the inclusion of porous media in 2D and the inversion capabilities to the latest release versions of the 2D and 3D codes as well as the release of the 1D code. NEXD is available on GitHub: https://github.com/seismology-RUB.
    Description: poster
    Keywords: ddc:550 ; Numerical modelling ; Computational seismology ; Wave propagation
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2022-12-01
    Description: The ocean worlds of our Solar System, like Saturn's moon Enceladus and Jupiter's moon Europa are covered with ice. Recently, these icy moons gained further scientific interest, as they are attributed some potential to sustain or host extraterrestrial life in a subglacial ocean. The investigation of these moons will also help to understand the evolution of the Solar System. The in-situ exploration of these moons requires novel technological solutions as well as intelligent data acquisition and interpretation tools. In 2020, the DLR Space Administration started the TRIPLE project (Technologies for Rapid Ice Penetration and subglacial Lake Exploration) which develops an integrated concept for a melting probe that launches an autonomous underwater vehicle (nanoAUV) into a scientifically interesting water reservoir and an AstroBioLab for in-situ analysis. These three components build up the TRIPLE system. As part of a second project stage, it is envisioned to build the TRIPLE system and test it in Antarctica in 2026. In this contribution, we are going to present the general concept of TRIPLE with a focus on the geophysically most relevant aspects. To navigate the melting probe through the ice, a forefield reconnaissance system (TRIPLE-FRS) based on combined radar and sonar techniques is designed. This will include radar antennas directly integrated into the melting head combined with a pulse amplifier and a piezoelectric acoustic transducer just behind the melting head. In addition, an in-situ permittivity sensor will be implemented to account for the ice structure dependent propagation speed of electromagnetic waves. With this system, obstacles as well as the ice-water interface at the bottom of the icy shell could be detected. To deliver key parameters such as transit time and overall energy requirement, a virtual test bed for strategic mission planning is currently under development. This consists of the Ice Data Hub that combines available data from Earth or any other planetary body – measured or taken from the literature – and allows display, interpretation and export of data, as well as trajectory models for the melting probe. We develop high-fidelity thermal contact models for the phase change as well as macroscopic trajectory models that consider the thermodynamic melting process and the convective loss of heat via the melt-water flow.
    Description: Bundesministerium für Wirtschaft und Energie (FKZ: 50NA1908, 50RK2050, 50RK2051, 50RK2052, 50RK2053)
    Description: poster
    Keywords: ddc:550 ; Icy Moon ; mission concept ; ice melting probe ; reconnaissance
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2022-12-01
    Description: Deutsche Forschungsgemeinschaft
    Description: poster
    Keywords: ddc:550
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2022-12-01
    Description: Modelling the propagation of seismic waves in porous media gets more and more popular in the seismological community since it is an important but challenging task in the field of computational seismology. The fluid content of, for example, reservoir rocks or soils, and the interaction between the fluid and the rock or between different immiscible fluids has to be taken into account to accurately describe seismic wave propagation through such porous media. Often, numerical models are based on the elastic wave equation and some might include artificially introduced attenuation. This simplifies the problem but only approximates the true physics involved. Hence, the results are also simplified and could lack accuracy or miss phenomena in some applications. The aim of the conducted work was the consistent derivation of a theory for seismic wave propagation in porous media saturated by two immiscible fluids and the accompanying numerical solution for the derived wave equation. The theory is based on Biot's theory of poroelasticity. Starting from the basic conservation equations (energy, momentum, etc.) and generally accepted laws, the theory was derived using a macroscopic approach which demands that the wavelength is significantly larger than the size of the heterogeneities in the medium due to the size of the grains and pores or due to effects on the mesoscopic scale. This condition is usually fulfilled for seismic waves since the typical wavelength of seismic waves is in the order of 10 m to 10 km. Fluid flow is described by a Darcy type flow law and interactions between the fluids by means of capillary pressure curve models. In addition, consistent boundary conditions on interfaces between poroelastic media and elastic or acoustic media are derived from this poroelastic theory itself. The nodal discontinuous Galerkin method is used for the numerical modelling. The poroelastic solver is integrated into the 1D and 2D codes of the larger software package NEXD that uses the nodal discontinuous Galerkin method to solve wave equations. The implementation has been verified using symmetry tests and the method of exact solutions. This work has potential for applications in various scientific fields like, for example, exploration and monitoring of hydrocarbon or geothermal reservoirs as well as CO2 storage sites.
    Description: poster
    Keywords: ddc:550
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2022-11-29
    Description: Knowledge sharing in academia has been considered indispensable and is becoming a priority in most European funding schemes. Although we are already quite familiar with the different possibilities to publish our results in open-access journals, open science means way more than that. Open science aims at opening up research processes and granting access to research outputs to researchers, professionals and amateur scientists. There are different ways to ensure the storage and reusability of our data, making it available to other scientists. Furthermore, most of the scientific disciplines migrate their analyses to open-source environments (e.g., R, Phyton). However, tons of code produced remain stored in our personal computers either because we do not know the appropriate tools to share them with our colleagues or because we believe that it is not well structured. In this short course, you would learn how to establish links between publications, data, software and methods. Hence, we will discuss with our experts: i) the options to share our data and code with other peers, ii) obtain some tips to better organize our scripts, and iii) uncover potential barriers to sharing research and discuss possible solutions.
    Description: DFG, SUB Göttingen, GFZ Potsdam
    Description: presentation
    Keywords: ddc:550 ; Repository ; Data Management ; Open Science
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2022-11-29
    Description: The rise of Open Science practices is impacting the entire scientific publishing culture. The transition to Open Access for text publications goes hand in hand with the growing demand to make scientific data and software available to the general public. The FAIR data principles play a key role in this, designed to make research and the underlying data easily findable, accessible, interoperable, and reusable for humans and machines. Geosciences data are as diverse as their content. They range from large real-time data streams of international observing networks to small data sets produced by individual researchers at their laboratories. Consequently, there need to be different strategies for data management and publication in which research data repositories can be important partners for the researchers. The Specialised Information Service for Geoscience (FID GEO) is a DFG-funded project that is promoting a holistic approach of Open Science that includes scholarly literature, data, samples, and scientific software equally and pushes for their interlinkage. FID GEO has become an important player for connecting researchers, data repositories, information infrastructures, German geoscientific societies, and publishers. FID GEO actively provides data and text publishing services through its affiliated repositories GFZ Data Services and GEO-LEOe-docs, as well as on-demand digitization of printed geoscience literature and maps. In addition, FID GEO aims to inform the German-based geoscience community about all aspects of Open Science and FAIR data by bringing the discussions to the individual disciplines through various communication channels.
    Description: DFG, SUB Göttingen, GFZ Potsdam
    Description: http://doi.org/10.5194/egusphere-egu22-13354
    Description: presentation
    Keywords: ddc:550 ; Open Science ; Geoscience
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2022-11-29
    Description: The rise of Open Science practices is impacting the entire scientific publishing culture. The transition to Open Access for text publications goes hand in hand with the growing demand to make scientific data and software available to the general public. The FAIR data principles play a key role in this, designed to make research and the underlying data easily findable, accessible, interoperable, and reusable for humans and machines. Geosciences data are as diverse as their content. They range from large real-time data streams of international observing networks to small data sets produced by individual researchers at their laboratories. Consequently, there need to be different strategies for data management and publication in which research data repositories can be important partners for the researchers. The Specialised Information Service for Geoscience (FID GEO) is a DFG-funded project that is promoting a holistic approach of Open Science that includes scholarly literature, data, samples, and scientific software equally and pushes for their interlinkage. FID GEO has become an important player for connecting researchers, data repositories, information infrastructures, German geoscientific societies, and publishers. FID GEO actively provides data and text publishing services through its affiliated repositories GFZ Data Services and GEO-LEOe-docs, as well as on-demand digitization of printed geoscience literature and maps. In addition, FID GEO aims to inform the German-based geoscience community about all aspects of Open Science and FAIR data by bringing the discussions to the individual disciplines through various communication channels.
    Description: DFG, SUB Göttingen, GFZ Potsdam
    Description: presentation
    Keywords: ddc:550 ; Open Science ; Geoscience
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2022-11-29
    Description: FZ Data Services is a domain repository for geosciences data comprising the Earth, Space and Environmental Sciences. It assigns digital object identifier (DOI) to data and scientific software since 2004. Hosted at the GFZ German Research Centre for Geosciences (GFZ), the repository has a focus on the curation of long-tail data by domain scientists on one hand, but also provides DOI minting services for several global monitoring networks/observatories in geodesy and geophysics and collaborative projects. Furthermore, as Allocating Agent for the International Generic Sample Number (IGSN), the globally unique persistent identifier for physical samples, GFZ is providing IGSN minting services for physical samples. GFZ Data Services increases the interoperability of long-tail data through (1) the provision of comprehensive domain-specific data description via standardised and machine-readable metadata with controlled domain vocabularies. Metadata is (2) complemeted with comprehensive and standardised technical data descriptions or reports; and (3) by embedding the research data in wider context by providing cross-references through Persistent Identifiers (DOI, IGSN, ORCID, Fundref) to related research products (text, data, software) and people or institutions involved. In addition to the task as a research data publisher, GFZ Data Services is the central node for research data management at the GFZ with information on metadata, data formats, the data publication workflow, FAQ, links to different versions of our metadata editor and downloadable data description templates. Specific data publication guidance is complemented by more general information on data management, like a data management roadmap for PhD students.
    Description: GFZ Potsdam
    Description: presentation
    Keywords: ddc:550 ; Data Management ; Repository
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2022-11-29
    Description: Open Access to scientific literature and research data has significant advantages for researchers as well as for society as a whole. Researchers might gain from increased citation rates and from higher visibility of their research outputs, while researchers as well as the public benefit from a better accessibility of scientific literature and data. Increasingly, funding organisations such as the European Commission in the context of Horizon 2020-funded projects or the 16 national and international members of “Plan S” demand that publications that result from projects funded by them are made openly accessible. The poster outlines the different ways of publishing text and data in Open Access. After a brief overview of reasons for publishing Open Access, it points out different routes for publishing texts in Open Access (in Open-Access-Journals or self-archiving) and major aspects for FAIR and open data publication.
    Description: DFG, GFZ Potsdam
    Description: poster
    Keywords: ddc:550 ; Open Access
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2022-11-29
    Description: The shift towards Open Science practices is increasingly demanded by science policy. The transition to Open Access for text publications goes hand in hand with a growing demand to make data, scientific software and samples, freely and FAIRly available to the general public. A persistent problem here is the clear and permanent accessibility and re-usability of scientific publications. This development affects both the scientific publication culture as well as the information infrastructures and poses major challenges to the German- based geosciences community. The specialized information service for geosciences (FID GEO) is a service funded by the German Research Foundation (DFG) and supports the cultural change towards Open Access publications. Hereby, FID GEO pursues a holistic approach to Open Science, including scientific literature, data, samples, and scientific software, and aims to promote their interconnection. FID GEO actively provides data and text publishing services through the affiliated repositories GFZ Data Services and GEO-LEOe-docs, as well as an on-demand digitization service of printed geoscientific literature and maps. The focus here is on the services and information systems that ensure permanently available and reliably citable publications of writings and data. Specifically, the service for text publications is provided in the FID GEOs own subject repository GEO-LEOe- docs. The affiliated research data repository GFZ Data Services is available for the publication of research data and scientific software from the earth and environmental sciences. In addition, FID GEO aims to comprehensively inform the German-based geoscientific community about Open Science and FAIR data by bringing the discussions to the individual disciplines through various communication channels. To strengthen the open information culture in the geosciences, FID GEO collaborates with strategic (inter)national initiatives such as NFDI4Earth, COPDESS and OneGeochemistry.
    Description: DFG, SUB Göttingen, GFZ Potsdam
    Description: poster
    Keywords: ddc:550 ; Open Access
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2022-11-29
    Description: i-EDDA-Research School (BGR Spandau); i-EDDA = Innovative Exploration Drilling and Data Acquisition, https://www.iedda.eu/ ; Datenmanagement Workshop: 05.11.2021
    Description: DFG, GFZ Potsdam
    Description: presentation
    Keywords: ddc:550
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2022-11-29
    Description: The Berlin Declaration from 2003 was the starting point for Open Access to scholarly publications. Today, however, we speak about Open Science that reaches far beyond Open Access and represents collaborative, transparent and accessible research that includes all kinds of research results: scholarly literature, research data, software, samples, instruments, etc. In addition, efforts such as the FAIR Principles and the Enabling FAIR Data Commitment Statement, combined with increasing demands for machine accessibility to data, have raised user expectations towards the capabilities of research data repositories and datacentres. These repositories are often key partners supporting researchers in fulfilling the new requirements. This presentation will draw the line from major statements and requirements of Open Science, delineate the role of research data repositories as well as major research infrastructures, like the fNFDI4Earth or EPOS (European Plate Observing System) are additional players in making research data accessible in harmonised form.
    Description: DFG, SUB Göttingen, GFZ Potsdam
    Description: presentation
    Keywords: ddc:550 ; Data ; Open Science
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2022-11-29
    Description: How open is our research? A discussion on the state of Open Science in the field of mineralogy and petrology. Vortrag bei der Arbeitsgruppe Mineralogie+Petrologie der Uni Potsdam, 29.04.2022 A brief look at current trends toward an open science with a focused look at the state of the art in mineralogy and petrology. Followed by a discussion on how research in mineralogy and petrology can become more open.
    Description: DFG, GFZ Potsdam
    Description: presentation
    Keywords: ddc:550 ; Open Access
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...