ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Hanover, NH : U.S. Army Cold Regions Research and Engineering Laboratory  (7)
  • English  (7)
  • Chinese
  • Spanish
  • 2015-2019
  • 1975-1979  (7)
  • 1945-1949
  • 1975  (7)
  • 1
    Series available for loan
    Series available for loan
    Hanover, NH : U.S. Army Cold Regions Research and Engineering Laboratory
    Associated volumes
    Call number: ZSP-202-345
    In: Research report / Cold Regions Research and Engineering Laboratory, 345
    Description / Table of Contents: CONTENTS: Abstract. - Preface. - List of symbols. - Introduction. - Previous work. - Experimental design. - The radioisotope 22Na. - Description of apparatus. - Experimental procedure. - Correction of profiles. - Assumptions. - Decay correction. - Boundary correction. - Error analysis. - Results. - Salinity data. - Temperature data. - Growth velocity. - Discussion. - Brine and ice properties. - Brine salinity. - Brine density. - Brine volume. - Brine latent heat of freezing. - Brine viscosity, specific heat, and thermal conductivity. - Ice properties. - Theoretical brine expulsion model. - Continuity equations. - Thermal energy equation. - Simplified brine expulsion equations. - Brine expulsion in NaCl ice. - Results. - Discussion. - Gravity drainage in NaCl ice. - Application of results to natural sea ice. - Effective distribution coefficient. - Previous work. - Experimental procedure and results. - Conclusions. - Literature cited. - Appendix A: Profile correction data. - Appendix B: Program "correct" and sample output. - Appendix C: Tabulation of salinity data. - Appendix D: Tabulation of profile data. - Appendix E: Time-ice thickness equations (Runs 2 and 3). - Appendix F: Tabulation of distribution coefficient data.
    Description / Table of Contents: To obtain a better understanding of the desalination of natural sea ice, an experimental technique was developed to measure sequential salinity profiles of a growing sodium chloride ice sheet. Using radioactive 22Na as a tracer, it was possible to determine both the concentration and movement of the brine within the ice without destroying the sample. A detailed temperature and growth history of the ice was also maintained so that the variation of the salinity profiles could be properly interpreted. Since the experimental salinity profile represented a smoothed, rather than a true salinity distribution, a deconvolution method was devised to restore the true salinity profile. This was achieved without any significant loss of end points. In all respects, the salinity profiles are similar to those of natural sea ice. They have a characteristic C-shape, and clearly exhibit the effects of brine drainage. Not knowing the rates of brine expulsion or gravity drainage, the variation of the salinity profiles during the period of ice growth could be explained by either process. To determine the relative importance of the desalination mechanisms, a theoretical brine expulsion model was derived and compared to the experimental data. As input for the model, equations describing the variation of some properties of NaCl brine with temperature were derived. These included the brine salinity, viscosity, specific heat, thermal conductivity, and latent heat of freezing. The theoretical brine expulsion model was derived by performing mass and energy balances over a control volume of NaCl ice. A simplified form of the model, when compared to the experimental results, indicated that brine expulsion was only important during the first several hours of ice growth, and later became a minor desalination process relative to gravity drainage which continued to be the dominant mechanism for the remainder of the study period (up to 6 weeks). The rate of gravity drainage was found to be dependent on the brine volume and the temperature gradient of the ice. As either the brine volume or temperature gradient was increased, the rate of change of salinity due to gravity drainage increased. The equation commonly used to calculate the effective distribution coefficient (Weeks and Lofgren 1967) was modified and improved by taking brine drainage into account. An expression was also derived to give the distribution coefficient at very low growth velocities.
    Type of Medium: Series available for loan
    Pages: vii, 85 Seiten , Illustrationen
    Series Statement: Research report / Cold Regions Research and Engineering Laboratory 345
    Language: English
    Location: AWI Archive
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Series available for loan
    Series available for loan
    Hanover, NH : U.S. Army Cold Regions Research and Engineering Laboratory
    Associated volumes
    Call number: ZSP-202-340
    In: Research report
    Description / Table of Contents: CONTENTS: Abstract. - Preface. - Nomenclature. - Introduction. - Theory. - Application. - Literature cited. - Appendix.
    Description / Table of Contents: The equations describing water movement in a dry snow cover are derived and examples of flow through ripe, refrozen and fresh snows are given. The grain size of snow has a large effect on the timing of water discharge. Water is retained by dry snow to raise its temperature and satisfy the irreducible water saturation. These requirements delay and reduce runoff following rain on dry snow.
    Type of Medium: Series available for loan
    Pages: iv, 13 S. : graph. Darst.
    Series Statement: Research report / Cold Regions Research and Engineering Laboratory, CRREL, US Army Material Command 340
    Language: English
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Call number: ZSP-202-337
    In: Research report
    Description / Table of Contents: Contents: Introduction. - Surface ice observations. - Imagery interpretation. - Side-looking airborne radar. - Infrared. - Conclusions. - Literature cited.
    Description / Table of Contents: Ice conditions during mid-January 1974 in the Gulf of St. Lawrence and in the estuaty as far upstream as Rimouski are described utilitizing side-looking airborne radar, infrared and photographic imagery. The interpretations were verified by simultaneous surface observations on the ice by investigators operating from the CSS Dawson. The ice examined was undergoing rapid drift and deformation and showed a wide variety of thin ice (0-40 cm) features formed under the influence of strong winds and currents. These observations should serve as a guide in interpreting ice conditions in similar areas where ground truth data are not available.
    Type of Medium: Series available for loan
    Pages: 41 Seiten , Illustrationen
    Series Statement: Research report / Cold Regions Research and Engineering Laboratory, CRREL, US Army Material Command 337
    Language: English
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Series available for loan
    Series available for loan
    Hanover, NH : U.S. Army Cold Regions Research and Engineering Laboratory
    Associated volumes
    Call number: ZSP-202-336
    In: Research report
    Description / Table of Contents: CONTENTS: Abstract. - Preface. - Nomenclature. - Introduction. - Description of study. - Sample preparation. - Test equipment and procedure. - Discussion of results. - Stress-density relationship. - Effect of rate of deformation. - Effect of temperature. - Effect of initial snow density. - Stress-deformation relationship. - Summary and conclusions. - Microstructural analysis. - Introduction. - Analytical methods. - Results and discussion. - Conclusion. - Literature cited. - Anpendix: Test data.
    Description / Table of Contents: The effects of snow temperature, rate of deformation, and initial density on the stress vs density and stress vs deformation relationships were investigated in the pressure range of 0.1 to 75 bars. The rate of deformation in the range of 0.027 to 27 cm sec^-1 does not have a significant effect. A decrease in temperature in the range of 0° to -40°C increases the resistance to stress and deformation, the temperature effect increasing with applied pressure and initial density. The effect of initial density is significant. For any stress, an increase in the initial density results in an increase in the resulting density, particularly at low stress levels and at temperatures near 0°C. The texture of artificially compacted snow is significantly different from that of naturally compacted snow of the same density because of the very short recrystallization time period.
    Type of Medium: Series available for loan
    Pages: iv, 57 Seiten , Illustrations
    Series Statement: Research report / Cold Regions Research and Engineering Laboratory, CRREL, US Army Material Command 336
    Language: English
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Call number: ZSP-202-347
    In: Research report / Cold Regions Research and Engineering Laboratory, 347
    Description / Table of Contents: CONTENTS: Abstract. - Preface. - Introduction. - Experimental. - Results and discussion. - Applications. - Literature cited.
    Description / Table of Contents: Chemical analysis of century-old ice from continuous 5 to 7 year intervals of three ice cores from south and central Greenland (Dye 3, Milcent and Crete) show maximum concentrations of Na, Mg,Ca, K, and Al during early spring and minimum concentrations during late summer and early fall. Peak spring values are as much as 10 times greater than fall values. Because of the large seasonal chemical variations, samples used for depth-age or annual deposition rate studies must represent accumulation from exactly one year or whole multiples of a year. The seasonal chemical variations seem promising as a new method of defining annual layers and thus dating old ice cores.
    Type of Medium: Series available for loan
    Pages: iii, 5 Seiten , Illustrationen
    Series Statement: Research report / Cold Regions Research and Engineering Laboratory 347
    Language: English
    Location: AWI Archive
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Series available for loan
    Series available for loan
    Hanover, NH : U.S. Army Cold Regions Research and Engineering Laboratory
    Associated volumes
    Call number: ZSP-202-339
    In: Research report
    Description / Table of Contents: CONTENTS: Abstract. - Preface. - Introduction. - Analytical procedures. - Thick section analysis. - Measurements of inclusion pressure. - Gas volume measurements. - Density and porosity measurements. - Results and discussion. - Sizes, shapes and distributions of bubbles. - Sizes, shapes and distributions of cavities. - Inclusion abundances. - Gas pressures in bubbles and cavities. - Total gas content. - Case for lattice diffusion. - Literature cited.
    Description / Table of Contents: Cores obtained to the bottom of the Antarctic Ice Sheet at Byrd Station were used to analyze the physical properties of air bubbles trapped in the ice. These bubbles originate as pockets of air in the upper layers of snow and approximately 10 ml of air/100 cm^3 of ice; i.e., 10% by volume is retained permanently when the snow transforms into ice. Parameters measured were the sizes, shapes, abundances, spatial distributions, gas volumes and pressures of bubbles, and their variations with depth in the ice sheet. Bubbles occur abundantly in the top 800 m of ice but then gradually disappear until they can no longer be detected optically below 1100 m. This disappearance is not accompanied by any significant loss of air from the ice and all available evidence indicates that the air actually diffuses into the ice in response to increasing overburden pressure. The possibility exists that the dissolved gases are retained in the form of a gas hydrate or clathrate which, because of release of confining pressures, begins to decompose soon after ice cores are pulled to the surface. This decomposition is accompanied by the growth of gas-filled bubble-like cavities, and as much as 40% of the dissolved air has exsolved already from some cores in the space of less than three years. Bubble pressure measurements show that 1) bubbles with pressures exceeding about 16 bars begin to relax back to this value soon after in situ pressures are relieved by drilling, 2) further slow decompression occurs with time, and 3) the rate of decompression is controlled to some extent by the intrinsic structural properties of the ice and its thermal and deformational history. Only small variations were observed in the entrapped air content of the ice cores; they probably reflect variations in the temperature and/or pressure of the air at the time of its entrapment, but the data are not sufficient to draw any firm conclusions regarding past variations in ice sheet thickness. Only ice from the bottom 4.83 m was found to lack any detectable trace of air. Since this absence of air coincided precisely with the first appearance of stratified moraine in the cores, it is concluded that this ice originated from the refreezing of air-depleted water produced under pressure melting conditions at the bottom of the ice sheet.
    Type of Medium: Series available for loan
    Pages: v, 18 Seiten , Illlustrationen
    Series Statement: Research report / Cold Regions Research and Engineering Laboratory, CRREL, US Army Material Command 339
    Language: English
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Call number: ZSP-202-346
    In: Research report / Cold Regions Research and Engineering Laboratory, 346
    Description / Table of Contents: CONTENTS: Abstract. - Preface. - USA CRREL project and personnel involvement. - Part I. Introduction. - Background. - Literature review. - Part II. CRREL investigations from 1970 - 1974. - Initial literature survey (1970). - Oil detection kit development. - Survey of Cape Simpson, Alaska, natural crude oil seepages (1970). - Haines-Fairbanks military pipeline investigations (1971-1973). - Barrow investigations (1970-1974). - Fairbanks and Fox investigations. - Germination studies. - Physiological studies. - Dispersant studies. - Microbiological investigations. - Field investigations of accidental petroleum losses. - Part III. Recent related literature. - Part IV. Conclusions and recommendations. - USA CRREL reports, publications and presentations on Alaska oil spill research. - Literature cited.
    Description / Table of Contents: Knowledge concerning the biological effects of oil pollution on arctic and subarctic terrestrial ecosystems is limited. USA CRREL research personnel conducted investigations from 1970 through 1974 to expand information in this field. Objectives were to: 1) define the ecosystems most sensitive to the presence of crude oil or its refined products, 2) quantify and understand the injury response, and 3) establish time frames for manifestation of damage and natural restorative processes in arctic and subarctic regions. This was accomplished through: 1) surveys of natural oil seepages and past accidential spills in the Arctic and Subarctic, 2) initiation of controlled oil spills and 3) detailed laboratory investigations. Results demonstrated that terrestrial oil spills will to some degree be detrimental to both arctic and subarctic plant communities. Degree and longevity of damage will be influenced primarily by the magnitude of the spill, season of occurrence and existing soil moisture content. Rapid recovery of plant communities subjected to spills will occur only if root systems remain relatively unaffected. Damage will be more extensive and long-term when root systems are saturated with oil. Effects of damage will be manifested gradually over several seasons being influenced by winter stresses. Variation does exist in plant species susceptibility. Carex aquatilis, a predominant sedge of the arctic, is markedly resistant to crude oil damage. In the taiga Picea mariana is very susceptible. Plant recovery can be enhanced through the application of fertilizer. Fertilization, in addition to its direct effect on plant nutrition, will stimulate microbial decomposition of crude oil.
    Type of Medium: Series available for loan
    Pages: vii, 66 Seiten , Illustrationen
    Series Statement: Research report / Cold Regions Research and Engineering Laboratory 346
    Language: English
    Location: AWI Archive
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...