ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-11-29
    Description: Abstract
    Description: A temporary seismic array was installed in combination with a meteorological station in the Dead Sea valley, Jordan. Within the scope of the HGF virtual institute DESERVE we operated 15 temporary seismic stations between February 2014 and February 2015 together with a nearby meteorological station close to the east coast of the Dead Sea. The main aim was to acquire data to study the influence of wind on seismic records and retrieve related meteorological parameters. The study area is scarcely populated and has ideal meteorological conditions to study periodically occurring winds.
    Keywords: Seismology ; Array ; Noise ; Wind
    Language: English
    Type: Dataset , controlled source data
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    Publication Date: 2020-02-12
    Description: Die vorliegende Ausgabe des GFZ-Journals „System Erde“ soll einen Einblick in die am GFZ betriebene Forschung zur Seismologie geben.
    Language: German
    Type: info:eu-repo/semantics/other
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report STR
    Publication Date: 2020-02-12
    Description: The International Continental Scientific Drilling Program (ICDP) performed a dual-phase scientific drilling project to investigate mountain-building processes called Collisional Orogeny in the Scandinavian Caledonides (COSC). The borehole COSC-1 was drilled through the Lower Seve Nappe, as the first of two 2.5 km deep drill holes close to Åre, central Sweden. The recovered rocks comprise a 1650 m thick suite of high grade gneisses and amphibolites with clear Seve Nappe affinities, while the lower 850 m comprise rather homogenous mylonitic gneisses with interfingered K-rich phyllonite bands of cm to several m size and some intercalated amphibolites. The different lithologies all crosscut the core in a subhorizontal direction with foliation of gneisses and phyllonites in the same direction. Albite and garnet porphyroblasts with pressure shadows show syn-deformational growth and the same sub-horizontal alignment. The focus of this thesis is to detect chemical and mineralogical differences in mylonitic and host rocks and to relate these differences to either metasomatism and deformation or inherited source rock variance. Another goal of this work is to compare chemical core scanning instruments. For this purpose two different μ-Energy-Dispersive X-Ray Fluorescence (μ-EDXRF), Laser Induced Breakdown Spectroscopy (LIBS) and hyperspectral imaging techniques served to measure seven samples from the lower 850 m of the COSC-1 core. The measurements reveal sharp borders between different rock types without indication of metasomatic changes, pointing to a heterogeneous protolith such as greywacke. Element and mineral maps show strong pervasive ductile deformation with mylonite recrystallization. The comparison of the scanning devices shows that the μ-EDXRF scanner with 50 μm resolution can be used perfectly for microstructural investigations and heavy element analysis. The XRF core scanner from AVAATECH is very useful and sufficiently precise for element profiles of line scans. The LIBS scanner is great to create distribution maps of elements from H to U with a resolution of 200 μm. The hyperspectral cameras are extremely fast in acquiring spectral mineral maps and structural information. However, several rock forming minerals in gneisses can currently not be identified and a calibration for metamorphic rocks is still needed.
    Language: English
    Type: info:eu-repo/semantics/masterThesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    Publication Date: 2020-02-12
    Description: Diese Ausgabe des GFZ-Journals „System Erde“ wurde im Dezember 2016 produziert und erscheint im Januar 2017. Das ist der Monat, in dem das Deutsche GeoForschungsZentrum seinen 25. Geburtstag feiert. Der Schwerpunkt Südamerika ist dabei durchaus passend, denn die Forscherinnen und Forscher des GFZ arbeiten dort seit der Gründung des Zentrums. Die Südpazifikküste mit den großen Subduktionsbeben, die Anden mit ihren Vulkanen und all die geologischen Prozesse, die in der Region sichtbar werden, sind wie die Seiten eines Lehrbuchs der Geologie – wenn man sie denn zu entziffern weiß. Selbst die so genannten passiven Kontinentalränder an den Küsten des Südatlantiks bieten uns tiefe Einblicke in die Erdgeschichte; sie sind Geoarchive erster Ordnung. Hinzu kommt, dass sie Lagerstätten für Rohstoffe bergen.
    Language: German
    Type: info:eu-repo/semantics/other
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Geologische Speicherung von CO2
    Publication Date: 2020-02-12
    Description: Film 7: "Die Stilllegung eines CO2-Speichers – Pilotstandort Ketzin" (Länge 10:39) Produktionsjahr: 2015
    Language: German
    Type: info:eu-repo/semantics/other
    Format: video/mpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report STR
    Publication Date: 2022-12-07
    Description: Very long baseline interferometry (VLBI) is one of the fundamental space geodetic techniques. Important goals for the next generation of VLBI technology are continuous operations as well as automated data processing. For this reason, it is necessary to introduce real time capable parameter estimation algorithms, such as Kalman filters, to VLBI data analysis. In this study, such a filter was implemented in the VLBI software VieVS@GFZ, and several aspects related to VLBI data processing were investigated. Within the corresponding module VIE_KAL it is possible, for example, to estimate all parameters important in VLBI analysis, adapt their stochastic models, flexibly define the datum, integrate external data, as well as extract datum free normal equations. The foci of the investigations were on the effects of the troposphere, the most important error source in VLBI analysis, and on the determination of station positions, which are of great importance in geodesy. For the stochastic model of the tropospheric delays, station- and timedependent differences were considered. In comparisons with tropospheric parameters from GNSS, water vapor radiometers and numerical weather models, the Kalman filter solution yielded 5 to 15% smaller differences than a least squares solution based on the same models and VLBI data. Also in the case of estimated station coordinates, the Kalman filter solution exhibited better baseline length and station coordinate repeatabilities. The application of station-based process noise led to additional improvements. Furthermore, the Kalman filter was used to estimate subdaily station coordinate variations caused by tidal and loading effects. Finally, the findings were used to determine Kalman-filter-based global terrestrial reference frames (TRFs). For the stochastic model of the coordinate variations of particular stations, loading deformation time series were utilized. The non-deterministic approach of the Kalman filter allowed the consideration of non-linear station movement, for example, due to irregular seasonal effects or post-seismic deformations. In comparisons with a VLBI TRF solution from a classical adjustment and ITRF2008, a good agreement in terms of transformation parameters and station velocities was achieved. The findings from testing different options related to the parameterization and to the stochastic model will help to improve future reference frames.
    Language: German
    Type: info:eu-repo/semantics/doctoralThesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    Publication Date: 2021-01-28
    Language: German
    Type: info:eu-repo/semantics/other
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  System Erde
    Publication Date: 2022-01-28
    Language: German
    Type: info:eu-repo/semantics/other
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  System Erde
    Publication Date: 2022-01-28
    Language: German
    Type: info:eu-repo/semantics/other
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    Publication Date: 2022-03-28
    Description: A temporary installation has been realized in the Netherlands, in the region of the Groningen gas field. The objective of this installation is to test the usage of a conventional array layout for detection of microseismicity. The region of the Groningen gas field is an excellent test ground, since the operating company NAM (Nederlandse Aardolie Maatschappij) installed a multitude of shallow borehole stations from 2014 to 2017, of which 65 – in addition to the already existing shallow borehole stations installed by KNMI (Koninklijk Nederlands Meteorologisch Instituut) – were already online during the time of measurement, thus ensuring an earthquake catalogue that is complete down to low magnitudes during the time of array installation. The site for the installation was decided together with local parties involved in the seismicity monitoring, i.e. KNMI and NAM, and was located close to the village of Wittewierum. Stations were installed from the 12th of July 2016 to the 29th of August 2016 (49 days). The array was composed of 9 stations. The array was constructed in three concentric rings of 75 m, 150 m and 225 m diameter including a central station, but the geometry had to be adapted to the local conditions. Each station consisted of a broadband sensor (Trillium 120 s), an acquisition system (CUBE datalogger), a battery, and a GPS antenna. The entire system was installed at ~1 m depth (apart from GPS and transmission antennas), requiring only the digging of shallow holes, one for the installation of a thin concrete plate and the sensor, another one for a box containing the remaining instrumentation. The array stations recorded continuously with little outages; only station WAR1 stopped recording on the 22nd of August and station WAR7 stopped recording from 20th to 22nd of August. Waveform data is available from the GEOFON data centre, under network code 1C, and is fully open.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...