ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Berlin ; Heidelberg : Springer  (21)
  • Berlin [u.a.] : Springer  (16)
  • Amsterdam ; New York : North-Holland
  • Cham : Springer
  • GFZ Data Services
  • English  (39)
  • Bulgarian
  • 2015-2019
  • 1995-1999  (39)
  • 1985-1989
  • 1945-1949
  • 1996  (39)
Collection
Language
Years
  • 2015-2019
  • 1995-1999  (39)
  • 1985-1989
  • 1945-1949
Year
  • 1
    Call number: M 96.0318
    Type of Medium: Monograph available for loan
    Pages: XVI, 582 S.
    ISBN: 3540591869
    Classification:
    Sedimentology
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    Berlin [u.a.] : Springer
    Associated volumes
    Call number: M 96.0288 ; 10/M 96.0287
    In: Minerals and rocks
    Type of Medium: Monograph available for loan
    Pages: XIII, 335 S.
    ISBN: 0387604162
    Series Statement: Minerals and rocks 22
    Classification:
    Petrology, Petrography
    Language: English
    Location: Upper compact magazine
    Location: Reading room
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Monograph available for loan
    Monograph available for loan
    Berlin [u.a.] : Springer
    Call number: M 96.0551
    Type of Medium: Monograph available for loan
    Pages: xx, 841 S.
    ISBN: 3540607137
    Classification:
    B.3.2.
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Monograph available for loan
    Monograph available for loan
    Berlin [u.a.] : Springer
    Call number: M 95.0709
    Type of Medium: Monograph available for loan
    Pages: XIX, 466 S.
    ISBN: 3540505644
    Uniform Title: Difraktsiia rentgenovskikh luchei i neitronov v neidealnykh kristallakh
    Classification:
    Mineralogy
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Monograph available for loan
    Monograph available for loan
    Berlin [u.a.] : Springer
    Associated volumes
    Call number: M 96.0025
    In: Die Grundlehren der mathematischen Wissenschaften
    Type of Medium: Monograph available for loan
    Pages: XI, 366 S.
    ISBN: 3540570608
    Series Statement: Grundlehren der mathematischen Wissenschaft 314
    Classification:
    C.1.6.
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Call number: 96.0290 ; 6/M 96.0173
    In: International Association of Geodesy symposia
    Type of Medium: Monograph available for loan
    Pages: XIII, 338 S.
    ISBN: 3540608729
    Series Statement: International Association of Geodesy symposia 115
    Classification:
    Geodetic Measurement Systems
    Language: English
    Location: Upper compact magazine
    Location: Reading room
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Monograph available for loan
    Monograph available for loan
    Berlin [u.a.] : Springer
    Call number: M 96.0063
    Type of Medium: Monograph available for loan
    Pages: XIII, 289 S.
    ISBN: 3540587136
    Classification:
    Tectonics
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Monograph available for loan
    Monograph available for loan
    Berlin [u.a.] : Springer
    Associated volumes
    Call number: 4/M 96.0299
    In: Lecture notes in earth sciences
    Type of Medium: Monograph available for loan
    Pages: 407 S.
    ISBN: 3540607854
    Series Statement: Lecture notes in earth sciences 60
    Classification:
    Geodetic Measurement Systems
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Monograph available for loan
    Monograph available for loan
    Berlin [u.a.] : Springer
    Call number: 96.0308 ; M 96.0435
    Type of Medium: Monograph available for loan
    Pages: XXXII, 960 S.
    Edition: 3rd enl. ed.
    ISBN: 3540609334
    Classification:
    A.1.1.
    Language: English
    Location: Upper compact magazine
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Monograph available for loan
    Monograph available for loan
    Berlin [u.a.] : Springer
    Associated volumes
    Call number: 19/M 97.0041
    In: Solving ordinary differential equations
    Type of Medium: Monograph available for loan
    Pages: XV, 614 S.
    Edition: 2nd rev. ed.
    ISBN: 3540604529
    Classification:
    C.1.8.
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Call number: 6/M 97.0458
    In: International Association of Geodesy symposia
    Type of Medium: Monograph available for loan
    Pages: XVI, 746 S.
    ISBN: 3540633529
    Series Statement: International Association of Geodesy symposia 117
    Classification:
    A.1.1.
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Call number: M 00.0567
    Type of Medium: Monograph available for loan
    Pages: 222 S.
    ISBN: 3540590129
    Classification:
    C.3.2.
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Call number: AWI A3-96-0684
    In: NATO ASI Series, Voume 44
    Type of Medium: Monograph available for loan
    Pages: 493 Seiten , Illustrationen
    ISBN: 3540614591
    Series Statement: NATO ASI Series : Series I, Global Environmental Change 44
    Language: English
    Note: Contents Observed Climatic Variability: Time Dependence / J. M. WALLACE Observed Climatic Variability: Spatial Structure / J. M. WALLACE Predictability of the Atmosphere and Oceans: From Days to Decades / T. N. PALMER Mechanisms for Decadal-to-Centennial Climate Variability / E. S. SARACHIK, M. WINTON and F. L. YIN Long-Term Coordinated Changesin the Convective Activity of the North Atlantic / R. DICKSON, J. LAZIER, J. MEINCKE and P. RHINES Mechanism for Decadal Climate Variability / M. LATIF, A. GROTZNER, M. MUNNICH, E. MAIER-REIMER, S. VENZKE and T. P. BARNETTA The Climate Response to the Changing Greenhouse Gas Concentration in the Atmosphere / L. BENGTSSON Analysis of Thermohaline Feedbacks / J. MAROTZKE An Overview of Century Time-Scale Variability in the Climate System: Observations and Models / T. F. STOCKER Steady States and Variability in Oceanic Zonal Flows / D. OLBERS and C. VOLKER Spectral Methods: What They Can and Cannot Do for Climatic Time Series / M. GHIL and P. Yiou Subject Index List of Participants
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Call number: AWI G3-96-0166
    In: Ecological studies, 120
    Description / Table of Contents: The discovery of large petroleum reserves in northern Alaska prompted the US National Research Council to recommend priorities for ecological research on disturbance effects in the Arctic. Subsequently, this led to the implementation of a field study by the Department of Energy in a small watershed on the North Slope of Alaska. This volume describes results by a research team charged with seeking answers to a number of questions related to disturbance in tundra regions: will short-term disturbances have long-term ecological consequences? Will localized effects be transferred to adjacent systems, e.g., from terrestrial to aquatic? Is it possible to extrapolate understanding of impacts from one landscape to another? The results reported in this volume are an important contribution towards the goal of implementing ecosystem-based management in arctic tundra landscapes. Landscape function and disturbance in Arctic Tundra covers a broad array of topics, from ecosystem physiology to landscape modeling. It is an important source for researchers and students interested in arctic ecology, as well as for environmental managers concerned with practical issues of disturbance.
    Type of Medium: Monograph available for loan
    Pages: XX, 437 Seiten , Illustrationen , 24 cm
    ISBN: 3-540-59263-6
    Series Statement: Ecological Studies 120
    Language: English
    Note: Contents: I INTRODUCTION. - 1 Ecosystem Response, Resistance, Resilience, and Recovery in Arctic Landscapes: Introduction / J. F. Reynolds and J. D. Tenhunen. - 1.1 Introduction. - 1.2 NRC Committee Report. - 1.3 The R4D Program. - 1.3.1 Objectives and Conceptual Framework. - 1.3.2 Program Implementation. - 1.3.3 Landscape Function. - 1.4 Summary. - References. - 2 Integrated Ecosystem Research in Northern Alaska, 1947-1994 / G. R. Shaver. - 2.1 Introduction. - 2.2 Early Days at NARL. - 2.3 The U.S. Tundra Biome Program. - 2.4 The Meade River RATE Program. - 2.5 Eagle Creek and Eagle Summit. - 2.6 The Arctic LTER Program at Toolik Lake. - 2.7 Other Studies In Alaska and Elsewhere. - 2.8 Summary and Prospects. - References. - 3 Disturbance and Recovery of Arctic Alaskan Vegetation / D. A. Walker. - 3.1 Introduction. - 3.2 Disturbance and Recovery. - 3.3Typical Disturbance and Recovery Patterns. - 3.3.1 Small Disturbed Patches. - 3.3.2 Contaminants. - 3.3.2.1 Hydrocarbon Spills. - 3.3.2.2 Seawater and Reserve-Pit Spills. - 3.3.3 Fire. - 3.3.4 Transportation Corridors. - 3.3.4.1 Bulldozed Tundra and Related Disturbances. - 3.3.4.2 Off-Road Vehicle Trails. - 3.3.4.2.1 Summer Travel. - 3.3.4.2.2 Winter Travel. - 3.3.4.3 Permanent Roads and Pads. - 3.3.4.4 Gravel Mines. - 3.3.4.5 Native Species in Revegetation of Gravel Pads and Mines. - 3.3.4.6 Road Dust. - 3.3.4.7 Roadside Impoundments. - 3.3.5 Cumulative Impacts. - 3.4 Conclusions. - References. - 4 Terrain and Vegetation of the Imnavait Creek Watershed / D. A. Walker and M. D. Walker. - 4.1 Introduction. - 4.2 Terrain. - 4.2.1 Glacial Deposits. - 4.2.2 Retransported Hillslope Deposits. - 4.2.3 Colluvial Basin Deposits. - 4.2.4 Floodplain Deposits. - 4.3 Vegetation. - 4.3.1 Flora. - 4.3.2 Vegetation Types. - 4.3.2.1 Lichen-Covered Rocks. - 4.3.2.2 Dry Heath. - 4.3.2.2.1 Exposed Sites. - 4.3.2.2.2 Snowbeds. - 4.3.2.3 Tussock Tundra. - 4.3.2.4 Riparian Areas. - 4.3.2.5 Mires. - 4.3.2.6 Beaded Ponds. - 4.4 West-Facing Toposequence. - 4.5 Terrain Sensitivity to Disturbance. - 4.6 Conclusions. - Appendix A. List of Plants for Imnavait Creek, Alaska. - References. - 5 Vegetation Structure and Aboveground Carbon and Nutrient Pools in the Imnavait Creek Watershed / S. C. Hahn, S. F. Oberbauer, R. Gebauer, N. E. Grulke, O. L. Lange, and J. D. Tenhunen. - 5.1 ntroduction. - 5.2 Description of Vegetation. - 5.3 Sampling Methods. - 5.3.1 Cover. - 5.3.2 Biomass and Nutrient Pools. - 5.4 Cover. - 5.5 Aboveground Biomass. - 5.5.1 Live Biomass. - 5.5.2 Photosynthetic Biomass. - 5.5.3 Lichen Biomass. - 5.5.4 Organic Litter. - 5.5.5 Watershed Patterns. - 5.6 Nutrient Pools. - 5.6.1 N and P in Heath Cryptogams. - 5.6.2 N and P in Communities. - 5.7 Discussion and Conclusions. - References. - II PHYSICAL ENVIRONMENT, HYDROLOGY, and TRANSPORT. - 6 Energy Balance and Hydrological Processes in an Arctic Watershed / L. Hinzmann, D. L. Kane, C. S. Benson, and K. R. Everett. - 6.1 Introduction. - 6.2 Radiation and Thermal Regimes. - 6.2.1 Surface Energy Balance. - 6.2.2 Snow Cover and Soil Thermal Regime. - 6.3 Hydrological Processes. - 6.3.1 Snowmelt. - 6.3.2 Plot and Basin Water Balance. - 6.3.3 Runoff and Basin Discharge. - 6.3.4 Precipitation, Evaporation, and Evapotranspiration. - 6.4 Energy Balance and Hydrology Models. - 6.4.1 Simulation of the Thermal Regime. - 6.4.2 Simulation of Snowmelt. - 6.4.3 Simulation of Catchment Runoff. - 6.5 Conclusions. - References. - 7 Shortwave Reflectance Properties of Arctic Tundra Landscapes / A. S. Hope and D. A. Stow. - 7.1 Introduction. - 7.2 Shortwave Reflectance Studies in Arctic Environments. - 7.2.1 Environmental Considerations. - 7.2.2 Radiometric Data. - 7.2.3 Image Data. - 7.3 Spectral Reflectance. - 7.3.1 Aboveground Biomass. - 7.3.2 Vegetation Composition. - 7.3.3 Landscape Patterns. - 7.3.4 Effects of Dust Deposition. - 7.4 Albedo. - 7.4.1 Undisturbed Tussock Tundra. - 7.4.2 Effects of Dust Deposition. - 7.5 Conclusions. - References. - 8 Isotopic Tracers for Investigating Hydrological Processes / L. W. Cooper, I. L. Larsen, C. Solis, J. M. Grebmeier, C. R. Olsen, D. K. Solomon, and R. B. Cook. - 8.1 Introduction. - 8.1.1 Units. - 8.1.2 Conservative vs Nonconservative Isotopes. - 8.2 Nonconservative Tracers. - 8.3 Sulfur-35. - 8.4 Oxygen-18. - 8.4.1 Oxygen-18 Content of Snowpack. - 8.4.2 Oxygen-18 Content of Imnavait Creek. - 8.4.3 Oxygen-18 Content of Soil Moisture. - 8.4.4 Covariance of Oxygen-18 and Deuterium in Watershed Compartments. - 8.4.5 Covariance of Oxygen-18 and Deuterium in Plant Water. - 8.5 Long-Lived Radioisotopes: Lead-210 and Cesium-137. - 8.5.1 Distribution of 137Cs on Tundra and in Lake Sediments. - 8.5.2 Cycling of 137Cs in Annual Berries. - 8.5.3 Distribution of 210Pb in Tundra. - 8.6 Conclusions. - References. - III NUTRIENT AND CARBON FLUXES. - 9 Surface Water Chemistry and Hydrology of a Small Arctic Drainage Basin / K. R. Everett, D. L. Kane, and L. D. Hinzman. - 9.1 Introduction. - 9.2 Watershed Instrumentation. - 9.3 Snowmelt Period. - 9.3.1 Snowmelt Hydrology. - 9.3.2 Snowmelt Chemistry . - 9.3.2.1 Overland Flow. - 9.3.2.2 Water Track Flow. - 9.3.2.3 Imnavait Creek Flow. - 9.4 Post Snowmelt Period. - 9.4.1 Atmospheric Inputs. - 9.4.1.1 Rainfall. - 9.4.1.2 Dry Deposition. - 9.4.1.3 Rime. - 9.4.2 Water Chemistry. - 9.4.2.1 Overland Flow. - 9.4.2.2 Active Layer Flow. - 9.4.2.3 Imnavait Creek Flow. - 9.5 Conclusions. - References. - 10 Nutrient Availability and Uptake by Tundra Plants / J. P. Schimel, K. Kielland, and F. S. Chapin III. - 10.1 Introduction. - 10.2 Controls on Mineralization and Nutrient Supply. - 10.2.1 Patterns of Nutrient Supply in the Soil. - 10.2.2 Patterns of Mineralization. - 10.2.3 Controls on N and P Mineralization. - 10.2.4 Controls on Decomposition and Mineralization. - 10.2.4.1 Temperature. - 10.2.4.1.1 Enzyme Activities. - 10.2.4.1.2 Microbial Activity at Low Temperatures. - 10.2.4.1.3 Freeze-Thaw Events. - 10.2.4.2 Effects of Low Oxygen on Microbial Activity and Mineralization. - 10.2.4.3 Substrate Quality. - 10.3 Fate of Available Nutrients. - 10.3.1 Microbial Nutrient Uptake and Competition with Plants. - 10.3.2 Plant Uptake. - 10.3.2.1 Soil Factors Controlling Nutrient Absorption. - 10.3.2.2 Rooting Strategies. - 10.3.2.3 Uptake Characteristics of Tundra Plants. - 10.3.2.4 Retranslocation vs Current Uptake. - 10.4 Disturbances. - 10.4.1 Vehicle Tracks. - 10.4.2 Road Dust. - 10.4.3 Gray Water. - 10.4.4 Climate Change. - References. - 11 Landscape Patterns of Carbon Dioxide Exchange in Tundra Ecosytems / S. F. Oberbauer, W. Cheng, C. T. Gillespie, B. Ostendorf, A. Sala, R. Gebauer, R. A. Virginia, and J. D. Tenhunen. - 11.1 Introduction. - 11.2 Methods. - 11.2.1 Community Types. - 11.2.2 Leaf Photosynthesis. - 11.2.3 Ecosystem Efflux. - 11.2.4 Ecosystem Net CO2 Exchange. - 11.3 CO2 Uptake. - 11.3.1 Factors Affecting CO2 Uptake. - 11.3.1.1 Light. - 11.3.1.2 Temperature. - 11.3.1.3 Phenology. - 11.3.1.4 Water Availability. - 11.3.1.5 Nutrition. - 11.3.2 Landscape Patterns in Leaf Photosynthesis. - 11.4 CO2 Efflux. - 11.4.1 Factors Affecting CO2 Efflux. - 11.4.1.1 Live Plant Biomass. - 11.4.1.2 Soil Quality. - 11.4.1.3 Thaw Depth and Depth to Water Table. - 11.4.1.4 Soil Moisture. - 11.4.1.5 Soil Temperature. - 11.4.2 Landscape Patterns of CO2 Efflux. - 11.4.3 Daily and Seasonal Patterns of CO2 Efflux. - 11.4.4 Dust Deposition Effects on CO2 Efflux. - 11.5 Landscape Patterns in Net CO2 Exchange. - 11.6 Conclusions. - References. - 12 Control of Tundra Methane Emission by Microbial Oxidation / S. C. Whalen, W. S. Reeburgh, and C. E. Reimers. - 12.1 Introduction. - 12.2 Sampling Procedure. - 12.3 Results and Discussion. - 12.3.1 Methane Flux and Environmental Variables in Tundra and Taiga. - 12.3.2 Physiology, Controls, and Potential for Microbial CH4 Oxidation. - 12.3.3 Methane Oxidation by Tundra Soils in a Warmer Climate. - 12.4 Conclusions. - References. - 13 Dynamics of Dissolved and Particulate Car
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Monograph available for loan
    Monograph available for loan
    Berlin [u.a.] : Springer
    Call number: M 97.0094 ; PIK N 453-96-0204
    Type of Medium: Monograph available for loan
    Pages: XI, 453 S.
    ISBN: 3540604898
    Classification:
    Oceanology
    Language: English
    Location: Upper compact magazine
    Location: A 18 - must be ordered
    Branch Library: GFZ Library
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Monograph available for loan
    Monograph available for loan
    Berlin [u.a.] : Springer
    Call number: PIK M 370-18-91349
    Type of Medium: Monograph available for loan
    Pages: XX, 502 Seiten , Illustrationen, Diagramme , 24 cm
    ISBN: 3540605053 (kart.)
    Language: English
    Note: Contents: 1 The Biological Paradigm ; 2 Threshold Logic ; 3 Weighted Networks - The Perceptron ; 4 Perceptron Learning ; 5 Unsupervised Learning and Clustering Algorithms ; 6 One and Two Layered Networks ; 7 The Backpropagation Algorithm ; 8 Fast Learning Algorithms ; 9 Statistics and Neural Networks ; 10 The Complexity of Learning ; 11 Fuzzy Logic ; 12 Associative Networks ; 13 The Hopfield Model ; 14 Stochastic Networks ; 15 Kohonen Networks ; 16 Modular Neural Networks ; 17 Genetic Algorithms ; 18 Hardware for Neural Networks
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
  • 18
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Description / Table of Contents: PREFACE The aim of this volume is two-fold. At the more pragmatic level, it is to help answer the many questions about the structure of the Pacific continental margin of North America, which have arisen over the years as a result of continuing field mapping and geophysical surveys. The second objective is methodological - to illustrate the irreplaceable role of geological information among the various data sets used in earth-science studies. The need to address these issues became apparent to the author during the several years he spent taking part in geological and geophysical studies on the west coast of Canada. All too often, results of geologic field mapping disagreed with tectonic predictions from too-straightforward local applications of global plate reconstructions, which due to their generality do not always take a full account of specific character of particular regions. To be sure, the global approach has during the last q~/artercentury greatly expanded the vision of geoscientists, previously restricted to continental regions. However, a negative by-product of this expansion has been a decline of attention paid to local information, as tectonic studies have increasingly relied on simply fitting the development of a particular region into this or that prefabricated tectonic template. Direct geological observations have limitations of their own. The observer in most cases deals with products of geologic processes, rather than with the processes themselves. Field mapping provides local information, and many years of effort are needed before a regional overview becomes possible. Geologic mapping is restricted to the ground surface, and even the deepest drillholes cannot sample more than the outermost shell of the Earth. The factual side of geologic mapping is usually limited to determination of rock types and their relationships in areas of exposure. Conclusions about the three-dimensional structure of a region and its evolution are still mostly inferential. Broad incorporation into geological studies of geophysical data, assisted by ever-more-sophisticated modern computers, provides a huge volume of information unobtainable in other ways. Geophysical methods quickly afford regional coverage or images of the Earth's deep interior. Geophysical methods have prompted the application in geological sciences of methodologies borrowed from exact sciences, such as mathematics and physics. Particularly important has been quantitative modeling, which allows a scientist to use the known parameters of a system to predict others. But in taking this approach too far, one encounters a dangerous pitfall. A model is a simplified representation of a natural phenomenon. The quality of this or that representation is relative, and a representation is never perfect. To incorporate all characteristics of a geologic phenomenon, in a parametrized form, into a numerical or physical imitation is impossible. This requires one to rely on simplifying assumptions, and a model is no better than the assumptions at its base. Unrealistic assumptions lead to unrealistic models. When a disagreement arises between model predictions and observations - such as those from geologic field mapping - a modeler may be tempted to downplay the differences or the significance of the offending observations. It becomes tempting to underestimate the role of an experienced geologist as a principal arbiter of the realism of a model. But it is geological data and geological control that provide the ultimate means of testing abstract models. From this methodological position, the present study of the western North American continental margin is organized as follows: 1. Geological information, available from field mapping and drilling, is gathered and summarized. 2. Current geophysical models for this region are considered, with particular attention to their underlying assumptions. 3. The available data, geological and geophysical, are synthesized into an internally consistent geologic-evolution concept. 4. This concept is tested by comparison with direct geological observations from field mapping and drilling. Because most current data sets and models cover northwestern Washington and western British Columbia, particular attention was paid to these areas. Fortunately, these areas contain many keys that help understand the structure of the entire western North American continental margin, which has baffled scientists for decades. The author does not claim to have resolved all these problems, but he does believe he has made a useful contribution to understanding continental-oceanic plate interrelations at this continental margin. Rigidity of lithospheric plates is a critical assumption in current models of plate evolution. The lithophere of a plate is created at spreading centers manifested in the global system of mid-ocean ridges. It moves away from the place of its birth towards boundaries with other plates, with which it can interact in a variety of ways. Some interactions are of strike-slip type, with two plates simply sliding past each other. However, to compensate for the creation of new lithosphere at spreading centers, older lithosphere at some plate boundaries descends into the mantle as it is overriden by other plates. At such plate boundaries lie subduction zones. If both regimes occur along a single plate boundary, the transition between them must be abrupt. Unless it can be tied to a change in orientation of the boundary, it must be associated with a junction of not two, but three different plates. Such a template was used to interpret the structure and tectonic evolution of the western North American continental margin in the late 1960s and thereafter (Atwater, 1970; McManus et al., 1972; Barr and Chase, 1974; Riddihough and Hyndman, 1976). To satisfy the principles of rigid-plate tectonics, both regimes have to exist along this continental margin. Also needed in rigid-plate reconstructions is a plate triple junction somewhere between the areas of proven ongoing subduction (in Oregon and southern Washington) and transform plate motion (along the southeastern Alaska margin; Atwater, 1970; McManus et al., 1972). Such a triple junction has been placed off Queen Charlotte Sound offshore British Columbia (Keen and Hyndman, 1979; Riddihough et al., 1983), where a spreading center has been postulated between the Pacific and Explorer oceanic plates (Hyndman et al. 1979; Riddihough, 1984). Off northern Vancouver Island, a transform boundary between the Explorer and Juan de Fuca oceanic plates has been postulated, but both these plates are assumed to be subducting beneath Vancouver Island (Hyndman et al., 1979; Riddihough and Hyndman, 1989)o With the assumed universality of the rigid-plate model, "broad similarity" has been suggested between the geology of western Oregon and that of western British Columbia, and the Cascadia zone of active subduction has been extended as far north as the mouth of Queen Charlotte Sound (Riddihough, 1979, 1984). An accretionary sedimentary prism (Yorath, 1980) - or even an accretionary complex containing several exotic "terranes" (Davis and Hyndman, 1989) - has been postulated off Vancouver Island. Geological observations onshore and offshore (Shouldice, 1971; Tiffin et al., 1972) have come to be considered too "surficial" to be of major consequence for large-scale tectonic modeling (Yorath et al., 1985a,b; Yorath, 1987). Variants of the principal geophysical model for this area during the last decade (Clowes et al., 1987; Hyndman et alo, 1990; Spence et al. 1991; Yuan et al., 1992; Dehler and Clowes, 1992) have become increasingly distant from geological observations. As new model variants emerged, they were checked for internal consistency, compatibility with neighboring local models and fidelity to the overall assumed tectonic picture. However, detailed geological work continued, and many of its results proved incompatible with the conventional wisdom (Gehrels, 1990; Babcock et al., 1992, 1994; Allan et al., 1993; Lyatsky, 1993a). Importantly, questions arose about the applicability in this region of the conventional, simple rigid-plate assumption, as it was shown to be unable to account for all the geological and geophysical peculiarities in some areas (Carbotte et al., 1989; Allan et al., 1993; Davis and Currie, 1993). New solutions were made necessary by new findings and by rediscovery of forgotten old data (see Lyatsky et al., 1991; Lyatsky, 1993b). Without aiming to resolve all the outstanding debates, tectonic implications of the geologic mapping and drilling results in this region are considered in the following chapters. These results are integrated with geochemical and geophysical data. Interpretations of these data, made by this author and by other workers, are verified by geological observations and by geologically plausible extrapolations from these observations. In searching for solutions consistent with all the information, the author has restricted himself to analyzing continental-crust structures along this continental margin. He believes, however, that future models for the offshore regions of the northeastern Pacific should consider the results obtained herein.
    Pages: Online-Ressource (352 Seiten)
    ISBN: 9783540608424
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Unknown
    Berlin ; Heidelberg : Springer
    Keywords: GPS ; Global Positioning System ; geodesy
    Description / Table of Contents: The subject of the book is an indepth description of the theory and mathematical models behind the application of the Global Positioning System in geodesy and geodynamics. The text has been prepared by leading experts in the field, contributing their particular points of view. Unlike a collection of disjoint papers, the text provides a continous flow of ideas and developments. The mathematical models for GPS measurements are developed in the first half of the book, followed by the description of GPS solutions for geodetic applications on local, regional and global scales.
    Pages: Online-Ressource (VII, 407 Seiten) , 120 schwarz-weiß Abbildungen
    ISBN: 9783540494478
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
  • 22
  • 23
    Unknown
    Amsterdam ; New York : North-Holland
    Keywords: DDC 512/.2 ; LC QA176 ; Representations of groups
    Pages: Online-Ressource (viii, 971 pages)
    ISBN: 9780444892613
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Unknown
    Berlin ; Heidelberg : Springer
    Description / Table of Contents: PREFACE The objective of this book is to introduce the practitioner as well as the more theoretically interested reader into the integration problem of spatial information for Geo-lnformation Syslems. Former Get-Information Systems are restricted to 2D space. They realize the integration of spatial information by a conversion of vector and raster representations. This, however. leads to conceptual difficulties because of the two totally different paradigms. Furthermore, the internal topology of the get-objects is not considered. In recent years the processing of 3D information has played a growing role in Get-Information Systems. For example, planning processes for environmental protection or city planning are dependent on 3D data. The integration of spatial reformation will become even more impoaant in the 3D context and with the development of a new generation of open GISs. This book is intended to respond to some of these requirements. It presents a model for the integration of spatial information for 3D Geo-lnformation Systems (3D-GISs). As a precondition for the integration of spatial information, the integration of different spatial representations is emphasized. The model is based on a three-level notion of space that likewise includes the geometry, metrics and the topology of get-objects. The so called extended complex (e-complex) is introduced as a kernel of the model. Its internal basic geometries are the point, the line, the triangle and the tetrahedron. It is shown how a convex e-complex (ce-complex) is generated by the construction of the convex hull and the "'filling" of lines, triangles and tetrahedra, respectively. As we know from computer geometry, this results in substantially simpler geometric algorithms. Additionally, the algorithms gain by the explicit utilization of the topology of the ce-complex. This book also builds a bridge from the GIS to the object-oriented database technology, which will likely become a key technology for the development of a new generation of open Geo-lnformation Systems. In the so-called GEtmodel kernel "building blocks" are introduced that s~mplify the development of software architectures for geo-applications. A geological application in the Lower Rhine Basin shows the practical use of the introduced geometric and topological representation for a 3D-GIS...
    Pages: Online-Ressource (171 Seiten)
    ISBN: 9783540608561
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Description / Table of Contents: PREFACE Through the last few decades inversion concepts have become an integral past of experimental data interpretation in several branches of science. In numerous cases similar inversion-like techniques were developed independently in separate disciplines, sometimes based on different lines of reasoning, and sometimes not to the same level of sophistication. This fact was realized early in inversion history. In the seventies and eighties "generalized inversion" and "total inversion" became buzz words in Earth Science, and some even saw inversion as the panacea that would eventually raise all experimental science into a common optimal frame. It is true that a broad awareness of the generality of inversion methods is established by now. On the other hand, the volume of experimental data varies greatly among disciplines, as does the degree of nonlinearity and numerical load of forward calculations, the amount and accuracy of a priori information, and the criticality of correct error propagation analysis. Thus, some clear differences in terminology, philosophy and numerical implementation remain, some of them for good reasons, but some of them simply due to tradition and lack of interdisciplinary communication. In a sense the development of inversion methods could be viewed as an evolution process where it is important that "species" can arise and adapt through isolation, but where it is equally important that they compete and mate afterwards through interdisciplinary exchange of ideas. This book was actually initiated as a proceedings volume of the "Interdisciplinary Inversion Conference 1995", held at the University of Aarhus, Denmark. The aim of this conference was to further the competition and mating part of above-mentioned evolution process, and we decided to extend the effect through this publication of 35 selected contributions. The point of departure is a story about geophysics and astronomy, in which the classical methods of Backus and Gilbert from around 1970 have been picked up by helioseismology. Professor Douglas Gough, who is a pioneer in this field, is the right person to tell this success story of interdisciplinary exchange of research experience and techniques [1-31] (numbers refer to pages in this book). Practitioners of helioseismology like to stress the fact that the seismological coverage on the Sun in a sense is much more complete and accurate than it is on Earth. Indeed we witness vigorous developments in the Backus & Gilbert methods (termed MOLA/SOLA in the helioseismology literature) [32-59] driven by this fortunate data situation. Time may have come for geophysicists to look into helioseismology for new ideas. Seismic methods play a key role in the study of the Earth's lithosphere. The contributions in [79 - 130,139 - 150] relate to reflection seismic oil exploration, while methods for exploration of the whole crust and the underlying mantle axe presented in [131 - 138, 151 - 166]. Two contributions [167 - 185] present the application of inversion for the understanding of the origin of petroleum and the prediction of its migration in sedimentary basins. Inversion is applied to hydrogeophysical and environmental problems [186 - 222], where again developments are driven by the advent of new, mainly electromagnetic, experimental techniques. The role of inversion in electromagnetic investigations of the lithosphere/astenosphere system as well as the ionosphere axe exemplified in [223 - 238]. Geodesy has a fine tradition of sophisticated linear inversion of large, accurate sets of potential field data. This leads naturally to the fundamental study of continuous versus discrete inverse formulations found in [262-275]. Applications of inversion to geodetic satellite data are found in [239 - 261]. General mathematical and computational aspects are mainly found in [262 - 336]. Nonlinearity in weakly nonlinear problems may be coped with by careful modification of lineaxized methods [295 - 302]. Strongly nonlinear problems call for Monte Carlo methods, where the cooling scedule in simulated annealing [303 - 311,139 - 150] is critical for convergence to a useful (local) minimum, and the set of consistent models is explored through importance sampling [89 - 90]. The use of prior information, directly or indirectly, is a key issue in most contributions, ranging from Bayesian formulations based a priori covariances e.g. [98 - 112,122 - 130, 254 - 261], over more general but also less tractable prior probability densities [79 - 97], to inclusion of specific prior knowledge of shape [284 - 294, 312 - 319]. Given the differences and similarities in approach, can we benefit from exchange of ideas and experience? In practice ideas and experience seldom jump across discipline boundaries by themselves. Normally one must go and get them the hard way, for instance by reading and understanding papers from disciplines far from the home ground. Look at the journey into the interdisciplinary cross-field of inversion techniques as a demanding safari into an enormous hunting ground. This book is meant to provide a convenient starting point.
    Pages: Online-Ressource (341 Seiten)
    ISBN: 9783540616931
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Unknown
    Berlin ; Heidelberg : Springer
    Description / Table of Contents: PREFACE The ocean has always been reluctant to reveal its secrets. Its size and the inaccessibility of its deeper regions have made their safeguard a reasonably simple matter with the result that significant misconceptions persisted for many years. Two of the most widespread of these concerned the featureless nature of the sea floor and the silence of the deep ocean. Underwater acoustics has played a key role in discrediting both and in so doing introduced new and exciting developments in oceanography and geophysics. In the years following World War II, echosounders and subbottom profilers based on new active sonar technology, revealed the true nature of the seafloor topography and led to the major advances represented by plate tectonics. Research driven by the requirements of passive sonar, on the other hand, was to demonstrate that the sea was not silent but was characterised by a complex noise spectrum. Many individual mechanisms and sources ranging from man-made, biological and geophysical activity to the intrinsic noise of the sea itself were found to contribute to this spectrum. A major component, which is the subject of this book, was to remain unrecognised to underwater acoustics until noise measurements could be made effectively at very low frequencies, although its presence had been indicated by seismology long before these measurements were possible. By virtue of its geographical isolation in the Southern Ocean, New Zealand has provided an ideal environment for long-range propagation and ambient noise investigations and numerous studies have been reported. Our interest in the subject of this book was aroused initially in the course of one such experiment in 1966. For the first time it had been possible to extend the recording bandwidth to 1 Hz and the improved performance of this new system was anticipated eagerly. However the main purpose of the experiment was nearly aborted by the appearance of a new and unsuspected noise component at frequencies below 10 Hz. Due primarily to technical limitations in the equipment then available, a subsequent programme, designed to identify the properties and origin of the source more clearly, was not productive and was soon abandoned. An opportunity to revisit the problem arose some 10 years later, when the University of Auckland became involved in a major environmental study in support of the development of an offshore gas field in Cook Strait. The technology then available provided an opportunity to examine afresh the relationship between sea state and the seismo-acoustic response generated. An initial trim demonstrated the potential of the site. Accordingly a long-term programme, involving the parallel measurement of the oceanwave field and acoustic response, was undertaken in a series of student research theses. The data so gathered were of sufficiently high quality to ultimately establish wave-wave interactions as the source of the acoustic effects observed and to identify many of its characteristics. This result was soon to be confirmed by other studies. As the noise data accumulated, however, it became apparent that certain refinements to the theories describing the mechanism were required. Our attempts to provide these refinements have been reported in a number of contributions in recent years. The accounts of these and similar contributions by others have unfortunately appeared in the literature in a somewhat disjointed manner, with the result that the evolution of the subject has not been easy to follow. This book attempts to present a more coherent account of the subject and its development. Most of the early experimental and theoretical results from our group have arisen from two key Ph.D. theses, due to Dr. K.C. Ewans and Dr. C.Y. Wu. The painstaking and careful instrumentation development and data analysis provided by Dr. Ewans were critical to the definitive correlation which we were able to establish between wind field, seastate and the acoustic response so generated. Dr. Wu's thesis presented the first phase of our attempt at the resolution of certain key theoretical issues, which were identified in the course of the experimental programme. Both studies owe much to the support of Shell BP Todd Oil Services Ltd., acting for Maui Development Ltd., and to the University of Auckland. The support of the Electricity Corporation of New Zealand Ltd. during a later experimental investigation of the Southern Ocean wave field is also acknowledged...
    Pages: Online-Ressource (313 Seiten)
    ISBN: 9783540607212
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Unknown
    Berlin ; Heidelberg : Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
  • 29
  • 30
    Keywords: Dokument-Bildanalyse - Engineering Drawings - Erkennungsalgorithmen - Graphics Recognition - Ingenieurzeichnungen ; Landkarteninterpretation ; Map Interpretation ; Recognition Algorithms ; algorithms ; cognition ; construction ; knowledge ; learning ; model ; verificat
    Description / Table of Contents: This book contains revised refereed papers selected from the presentations at the First International Workshop on Graphics Recognition, held in University Park, PA, USA, in August 1995. The 23 full papers included are divided into sections on low-level processing, vectorization and segmentation of scanned graphics documents; symbol and diagram recognition, map processing, interpretation of engineering drawings. Each section contains both survey articles to assess the state of the art, and research papers presenting novel results. One section is devoted to a contest held to determine the best algorithm for detection of dashed lines in drawings. The final chapter summarizes the conclusions and recommendations of the discussions held during the workshop.
    Pages: Online-Ressource (X, 314 pages)
    ISBN: 9783540683872
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
  • 32
    Unknown
    Berlin ; Heidelberg : Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
  • 34
  • 35
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
  • 37
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
  • 39
    Publication Date: 2020-02-12
    Description: Local seismic network in Northern Chile, Southern Bolivia. (Grant-number: GIPP199604) Waveform data is available from the GEOFON data centre. License: “Creative Commons Attribution-ShareAlike 4.0 International License” (CC BY-SA).
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...