ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 551.6  (38)
  • 551  (31)
  • English  (69)
  • Bulgarian
  • Portuguese
  • Russian
  • 2025-2025
  • 2020-2022  (69)
  • 1995-1999
  • 1970-1974
Collection
Keywords
Language
  • English  (69)
  • Bulgarian
  • Portuguese
  • Russian
  • German  (15)
Years
Year
  • 1
    Publication Date: 2021-07-22
    Description: The variability of the Atlantic meridional overturning circulation (AMOC) and its governing processes during the Last Glacial Maximum (LGM) is investigated in the Kiel Climate Model. Under LGM conditions, multidecadal AMOC variability is mainly forced by the surface heat flux variability linked to the East Atlantic pattern (EAP). In contrast, the multidecadal AMOC variability under preindustrial conditions is mainly driven by the surface heat flux variability associated with the North Atlantic Oscillation. Stand-alone atmosphere model experiments show that relative to preindustrial conditions, the change in AMOC forcing under LGM conditions is tightly linked to the differences in topography.
    Keywords: 551.6
    Language: English
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-11-03
    Description: Stable organic carbon and nitrogen isotopes can be used to interpret past vegetation patterns and ecosystem qualities. Here we present these proxies for two loess-palaeosol sequences from the southern Carpathian Basin to reconstruct the palaeoenvironment during the past 350 ka and establish regional commonalities and differences. Until now, isotopic studies on loess sequences from this region were only conducted on deposits from the last glacial cycle. We conducted methodological tests concerning the complete decalcification of the samples prior to stable isotope analyses. Two decalcification methods (fumigation method and wet chemical acidification), different treatment times, and the reproducibility of carbon isotope analyses were tested. Obtained results indicate that the choice of the decalcification method is essential for organic carbon stable isotope analyses of loess-palaeosol sequences because ratios vary by more than 10‰ between the wet chemical and fumigation methods, due to incomplete carbonate removal by the latter. Therefore, we suggest avoiding the fumigation method for studies on loess-palaeosol sequences. In addition, our data show that samples with TOC content 〈0.2% bear increased potential for misinterpretation of their carbon isotope ratios. For our sites, C3-vegetation is predominant and no palaeoenvironmental shifts leading to a change of the dominant photosynthesis pathway can be detected during the Middle to Late Pleistocene. Furthermore, the potential for further stable nitrogen isotope studies is highlighted, since this proxy seems to reflect especially past precipitation patterns and reveals favourable conditions in the southern Carpathian Basin, especially during interstadials.
    Keywords: 551 ; southern Carpathian Basin ; loess-palaeosol sequences ; stable isotope analyses ; Pleistocene ecosystem reconstruction
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-11-03
    Description: In Antarctic and Subantarctic environments, 14C-based age determination is often challenging due to unknown reservoir effects, low organic carbon contents of sediments, and high contributions of petrogenic (14C-free) carbon in ice marginal settings. In this study, we evaluate possible benefits and challenges of compound-specific radiocarbon analysis (CSRA) as a tool for age determination of marine Antarctic and Subantarctic sediment sequences. We present a comprehensive data set of 14C ages obtained on bulk organic carbon, carbonates, and on fatty acids (FA) from three coastal marine sediment cores from Subantarctic South Georgia and East Antarctica. Low molecular weight (LMW) FA represent the least 14C-depleted fraction, indicating that the phytoplankton-derived compounds can be a means of dating sediments. In contrast, vascular plant-derived high molecular weight FA are systematically depleted in 14C relative to the low molecular weight homologues, reflecting processes such as soil formation/erosion in the catchment. Comparative age-depth models show significant differences, depending on the material used for the respective models. While the land plant-derived FA may lead to an overestimation of the actual sediment age, LMW FA reveal complex aquatic reservoir effects. Bulk sedimentary organic carbon 14C ages likely provide appropriate age estimates in settings with low petrogenic carbon input in the Antarctic, whereas CSRA has the potential to produce improved age control in settings with high contributions of petrogenic carbon.
    Keywords: 551 ; Antarctica ; marine sediments ; compound‐specific radiocarbon analysis (CSRA)
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-28
    Description: It is widely assumed that the ventilation of the Southern Ocean played a crucial role in driving glacial-interglacial atmospheric CO2 levels. So far, however, ventilation records from the Indian sector of the Southern Ocean are widely missing. Here we present reconstructions of water residence times (depicted as ΔΔ14C and Δδ13C) for the last 32,000 years on sediment records from the Kerguelen Plateau and the Conrad Rise (~570- to 2,500-m water depth), along with simulated changes in ocean stratification from a transient climate model experiment. Our data indicate that Circumpolar Deep Waters in the Indian Ocean were part of the glacial carbon pool. At our sites, close to or bathed by upwelling deep waters, we find two pulses of decreasing ΔΔ14C and δ13C values (~21–17 ka; ~15–12 ka). Both transient pulses precede a similar pattern in downstream intermediate waters in the tropical Indian Ocean as well as rising atmospheric CO2 values. These findings suggest that 14C-depleted, CO2-rich Circumpolar Deep Water from the Indian Ocean contributed to the rise in atmospheric CO2 during Heinrich Stadial 1 and also the Younger Dryas and that the southern Indian Ocean acted as a gateway for sequestered carbon to the atmosphere and tropical intermediate waters.
    Keywords: 551 ; radiocarbon ; ventilation ; Southern Ocean ; Younger Dryas ; carbon cycle ; Indian Ocean
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-10-28
    Description: There is a converging body of evidence supporting a measurable slowdown of the Atlantic Meridional Overturning Circulation (AMOC) as climate warms and Northern Hemisphere ice sheets inexorably shrink. Within this context, we assess the variability of the AMOC during the Holocene based on a marine sediment core retrieved from the deep northwest Atlantic, which sensitively recorded large-scale deglacial transitions in deep water circulation. While there is a diffuse notion of Holocene variability in Labrador and Nordic Seas overturning, we report a largely invariable deep water circulation for the last ~11,000 years, even during the meltwater pulse associated with the 8.2-ka event. Sensitivity tests along with high-resolution 231Pa/230Th data constrain the duration and the magnitude of possible Holocene AMOC variations. The generally constant baseline during the Holocene suggests attenuated natural variability of the large-scale AMOC on submillennial timescales and calls for compensating effects involving the upstream components of North Atlantic Deep Water.
    Keywords: 551 ; AMOC ; Holocene ; high resolution 231Pa/230Th ; Bermuda Rise ; sensitivity tests
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-10-29
    Description: Tunnel valleys are major features of glaciated margins and they enable meltwater expulsion from underneath a thick ice cover. Their formation is related to the erosion of subglacial sediments by overpressured meltwater and direct glacial erosion. Yet, the impact of pre-existing structures on their formation and morphology remains poorly known. High-quality 3D seismic data allowed the mapping of a large tunnel valley that eroded underlying preglacial delta deposits in the southern North Sea. The valley follows the N–S strike of crestal faults related to a Zechstein salt wall. A change in downstream tunnel valley orientation towards the SE accompanies a change in the strike direction of salt-induced faults. Fault offsets indicate important activity of crestal faults during the deposition of preglacial deltaic sediments. We propose that crestal faults facilitated tunnel valley erosion by acting as high-permeability pathways and allowing subglacial meltwater to reach low-permeability sediments in the underlying Neogene deltaic sequences, ultimately resulting in meltwater overpressure build-up and tunnel valley excavation. Active faults probably also weakened the near-surface sediment to allow a more efficient erosion of the glacial substrate. This control of substrate structures on tunnel valley morphology is considered as a primary factor in subglacial drainage pattern development in the study area.
    Keywords: 551 ; southern North Sea ; Quarternary ; tunnel valley formation ; salt-induced faults
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-10-29
    Description: The timing and mechanisms of the Cretaceous sea incursions into Central Asia are still poorly constrained. We provide a new chronostratigraphic framework based on biostratigraphy and magnetostratigraphy together with detailed paleoenvironmental analyses of Cretaceous records of the proto-Paratethys Sea fluctuations in the Tajik and Tarim basins. The Early Cretaceous marine incursion in the western Tajik Basin was followed by major marine incursions during the Cenomanian (ca. 100 Ma) and Santonian (ca. 86 Ma) that reached far into the eastern Tajik and Tarim basins. These marine incursions were separated by a Turonian-Coniacian (ca. 92–86 Ma) regression. Basin-wide tectonic subsidence analyses imply that the Early Cretaceous sea incursion into the Tajik Basin was related to increased Pamir tectonism. We find that thrusting along the northern edge of the Pamir at ca. 130–90 Ma resulted in increased subsidence in a retro-arc basin setting. This tectonic event and coeval eustatic highstand resulted in the maximum observed geographic extent of the sea during the Cenomanian (ca. 100 Ma). The following Turonian-Coniacian (ca. 92–86 Ma) major regression, driven by eustasy, coincides with a sharp slowdown in tectonic subsidence during the late orogenic unloading period with limited thrusting. The Santonian (ca. 86 Ma) major sea incursion was likely controlled by eustasy as evidenced by the coeval fluctuations in the west Siberian Basin. An early Maastrichtian cooling (ca. 71–70 Ma), potentially connected to global Late Cretaceous trends, is inferred from the replacement of mollusk-rich limestones by bryozoan- and echinoderm-rich limestones.
    Keywords: 551 ; Tajik Basin ; Tarim Basin ; Cretaceous sea incursions ; tectonic subsidence ; proto‐Paratethys Sea
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-10-29
    Description: Columnar jointed lava is an important facies in many geothermal reservoir systems. The permeability of jointed lavas is dominated by the contribution from fracture networks. We use a scaling for the permeability of a set of fractures in a solid or porous mass and extend this to arrays of hexagonal intercolumn fractures. To validate our analytical results, we create numerical domains with relevant geometries and extract system-scale permeability using the LBflow lattice-Boltzmann fluid flow simulation tool. Finally, we model the cooling contraction of columns to extend our results so that they predict the permeability with time after lava emplacement. Importantly, we use these results to estimate the range of permeabilities typical of columnar joints that form during cooling from high temperature and are preserved in the crust at moderate to low temperatures.
    Keywords: 551 ; fractured lavas ; permeability ; prediction
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-09-27
    Description: At regional to local scales internal variability is expected to be a dominant source of uncertainty in analyzing precipitation extremes and mean precipitation even far into the 21st century. A debated topic is whether a faster increase in subdaily precipitation extremes can be expected. Here we analyzed seasonal maximum precipitation in various time steps (3 hr, days, and 5 days) from a high-resolution 50-member large-ensemble (CRCM5-LE) and compared them to changes in mean precipitation over Europe. Our results show that the magnitude of change in extreme precipitation varies for season and duration. Subdaily extremes increase at higher rates than daily extremes and show higher scaling with temperature. Northern Europe shows widespread scaling above Clausius-Clapeyron of subdaily extremes in all seasons and for daily extremes in winter/spring. Scaling above Clausius-Clapeyron is also visible over Eastern Europe in winter/spring. For most regions and seasons the forced response emerges from the internal variability by midcentury.
    Keywords: 551.6 ; large ensembles ; SMILEs ; Regional Climate Model ; precipitation extremes ; subdaily ; Europe
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-09-27
    Description: An abundance of evidence indicates that the tropics are expanding. Despite many attempts to decipher the cause, the underlying dynamical mechanism driving tropical expansion is still not entirely clear. Here, based on observations, multimodel simulations from the Coupled Model Intercomparison Project phase 5 (CMIP5) and purposefully designed numerical experiments, the variations and trends of the tropical width are explored from a regional perspective. We find that the width of the tropics closely follows the displacement of oceanic midlatitude meridional temperature gradients (MMTG). Under global warming, as a first-order response, the subtropical ocean experiences more surface warming because of the mean Ekman convergence of anomalously warm water. The enhanced subtropical warming, which is partially independent of natural climate oscillations, such as the Pacific Decadal Oscillation, leads to poleward advance of the MMTG and drives the tropical expansion. Our results, supported by both observations and model simulations, imply that global warming may have already significantly contributed to the ongoing tropical expansion, especially over the ocean-dominant Southern Hemisphere.
    Keywords: 551.6 ; Tropical Expansion ; Ocean Circulation ; Jet Stream ; Storm Track ; Mid-latitude Temperature Gradients ; Global Warming
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2021-09-27
    Description: Vb cyclones are major drivers of extreme precipitation and floods in the study area of hydrological Bavaria (Germany). When assessing climate change impacts on Vb cyclones, internal variability of the climate system is an important underlying uncertainty. Here, we employ a 50-member single-model initial-condition large ensemble of a regional climate model to study climate variability and forced change on Vb cyclones. An artificial neural network detects cutoff lows over central Europe, which are associated with extreme precipitation Vb cyclones. Thus, machine learning filters the large ensemble prior to cyclone tracking. Our results show a striking change in Vb seasonality with a strong decrease of Vb cyclones in summer (−52%) and a large increase in spring (+73%) under the Representative Concentration Pathway 8.5. This change exceeds the noise of internal variability and leads to a peak shift from summer to spring. Additionally, we show significant increases in the daily precipitation intensity during Vb cyclones in all seasons.
    Keywords: 551.6 ; Vb-cyclones ; Machine Learning ; Artificial Neural Networks (ANN) ; Single-Model Large Ensembles ; Internal Variability ; Floods
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2021-09-27
    Description: A new global climate model setup using FESOM2.0 for the sea ice-ocean component and ECHAM6.3 for the atmosphere and land surface has been developed. Replacing FESOM1.4 by FESOM2.0 promises a higher efficiency of the new climate setup compared to its predecessor. The new setup allows for long-term climate integrations using a locally eddy-resolving ocean. Here it is evaluated in terms of (1) the mean state and long-term drift under preindustrial climate conditions, (2) the fidelity in simulating the historical warming, and (3) differences between coarse and eddy-resolving ocean configurations. The results show that the realism of the new climate setup is overall within the range of existing models. In terms of oceanic temperatures, the historical warming signal is of smaller amplitude than the model drift in case of a relatively short spin-up. However, it is argued that the strategy of “de-drifting” climate runs after the short spin-up, proposed by the HighResMIP protocol, allows one to isolate the warming signal. Moreover, the eddy-permitting/resolving ocean setup shows notable improvements regarding the simulation of oceanic surface temperatures, in particular in the Southern Ocean.
    Keywords: 551.6 ; FESOM ; ocean model ; climate model ; unstructured mesh ; Finite Volume
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-09-27
    Description: Detailed organic geochemical and carbon isotopic (δ13C and Δ14C) analyses are performed on permafrost deposits affected by coastal erosion (Herschel Island, Canadian Beaufort Sea) and adjacent marine sediments (Herschel Basin) to understand the fate of organic carbon in Arctic nearshore environments. We use an end-member model based on the carbon isotopic composition of bulk organic matter to identify sources of organic carbon. Monte Carlo simulations are applied to quantify the contribution of coastal permafrost erosion to the sedimentary carbon budget. The models suggest that ~40% of all carbon released by local coastal permafrost erosion is efficiently trapped and sequestered in the nearshore zone. This highlights the importance of sedimentary traps in environments such as basins, lagoons, troughs, and canyons for the carbon sequestration in previously poorly investigated, nearshore areas.
    Keywords: 551 ; permafrost ; coastal erosion ; biomarker ; radiocarbon ; carbon flux ; carbon burial
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-10-07
    Description: Land use and climate changes both affect terrestrial ecosystems. Here, we used three combinations of Shared Socioeconomic Pathways and Representative Concentration Pathways (SSP1xRCP26, SSP3xRCP60, and SSP5xRCP85) as input to three dynamic global vegetation models to assess the impacts and associated uncertainty on several ecosystem functions: terrestrial carbon storage and fluxes, evapotranspiration, surface albedo, and runoff. We also performed sensitivity simulations in which we kept either land use or climate (including atmospheric CO2) constant from year 2015 on to calculate the isolated land use versus climate effects. By the 2080–2099 period, carbon storage increases by up to 87 ± 47 Gt (SSP1xRCP26) compared to present day, with large spatial variance across scenarios and models. Most of the carbon uptake is attributed to drivers beyond future land use and climate change, particularly the lagged effects of historic environmental changes. Future climate change typically increases carbon stocks in vegetation but not soils, while future land use change causes carbon losses, even for net agricultural abandonment (SSP1xRCP26). Evapotranspiration changes are highly variable across scenarios, and models do not agree on the magnitude or even sign of change of the individual effects. A calculated decrease in January and July surface albedo (up to −0.021 ± 0.007 and −0.004 ± 0.004 for SSP5xRCP85) and increase in runoff (+67 ± 6 mm/year) is largely driven by climate change. Overall, our results show that future land use and climate change will both have substantial impacts on ecosystem functioning. However, future changes can often not be fully explained by these two drivers and legacy effects have to be considered.
    Keywords: 333.7 ; 551.6 ; land use change ; climate change projections ; terrestrial ecosystems ; vegetation modeling ; ecosystem service indicators ; legacy effects
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2021-10-07
    Description: The transition from the Pliocene to the Pleistocene was accompanied by major tectonic reorganizations of key oceanic gateways. In particular, the gradual closure of the Panama Gateway and the constriction of the Indonesian Gateway significantly affected the structure of the Pacific thermocline. In the East Pacific, the thermocline shoaled from an early Pliocene El Niño-like depth to its modern state, which had significant implications for global climate. Here we use Mg/Ca temperature estimates from subsurface and thermocline dwelling foraminifera to reconstruct the meridional Plio-Pleistocene evolution of the Southeast Pacific thermocline, in relation to atmospheric circulation changes. In combination with similar reconstructions from the north-equatorial Pacific, our data indicate a change in the thermocline, responding to the northward displacement of the Intertropical Convergence Zone/South Pacific High system between ~3.8 and 3.5 Ma. After 3.5 Ma, we record a second major phase of thermocline shoaling, which points to the Intertropical Convergence Zone/South Pacific High-system movement toward its modern position along with the gradual cooling of the Northern Hemisphere and its associated glaciation. These findings highlight that a warming globe may affect equatorial regions more intensively due to the potential temperature-driven movement of the Intertropical Convergence Zone/South Pacific High and their associated oceanic systems.
    Keywords: 551 ; ITCZ ; South Pacific High ; Plio-Pleistocene ; El Niño ; thermocline
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-10-07
    Description: The brittle-ductile transition is a domain of finite extent characterized by high differential stress where both brittle and ductile deformation are likely to occur. Understanding its depth location, extent, and stability through time is of relevance for diverse applications including subduction dynamics, mantle-surface interactions, and, more recently, proper targeting of high-enthalpy unconventional geothermal resources, where local thermal conditions may activate ductile creep at shallower depths than expected. In this contribution, we describe a thermodynamically consistent physical framework and its numerical implementation, therefore extending the formulation of the companion paper Jacquey and Cacace (2020, https://doi.org/10.1029/2019JB018474) to model thermo-hydro-mechanical coupled processes responsible for the occurrence of transitional semi-brittle, semi-ductile behavior in porous rocks. We make use of a damage rheology to account for the macroscopic effects of microstructural processes leading to brittle-like material weakening and of a rate-dependent plastic model to account for ductile material behavior. Our formulation additionally considers the role of porosity and its evolution during loading in controlling the volumetric mechanical response of a stressed rock. By means of dedicated applications, we discuss how our damage poro-visco-elasto-viscoplastic rheology can effectively reconcile the style of localized deformation under different confining pressure conditions as well as the bulk macroscopic material response as recorded by laboratory experiments under full triaxial conditions.
    Keywords: 551 ; lithosphere ; brittle-ductile transition ; modeling
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2021-10-07
    Description: Abstract One of the most intriguing facets of the climate system is that it exhibits variability across all temporal and spatial scales; pronounced examples are temperature and precipitation. The structure of this variability, however, is not arbitrary. Over certain spatial and temporal ranges, it can be described by scaling relationships in the form of power laws in probability density distributions and autocorrelation functions. These scaling relationships can be quantified by scaling exponents which measure how the variability changes across scales and how the intensity changes with frequency of occurrence. Scaling determines the relative magnitudes and persistence of natural climate fluctuations. Here, we review various scaling mechanisms and their relevance for the climate system. We show observational evidence of scaling and discuss the application of scaling properties and methods in trend detection, climate sensitivity analyses, and climate prediction.
    Keywords: 551.6 ; scaling ; climate variability ; memory ; scaling mechanisms ; paleoclimate ; power law
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2021-10-07
    Description: This paper presents evidence for a limnological response to the Laacher See eruption (LSE) as detected in lake sediments from Nahe, northern Germany. The sediment section of the Allerød period dating to between 13 422 and 12 708 cal. a BP is preserved in annual laminations. Within this section, the LSE was identified as a cryptotephra layer (12 944±44 cal. a BP). Microfacies analysis, continuous high-resolution geochemical measurements and pollen analyses enabled a high-resolution reconstruction of environmental change. The older part of the Allerød (c. 13 422 to 12 943 cal. a BP) was characterized by relatively stable sedimentation conditions. Evidence for windier conditions dating to c. 13 160 to 13 080 cal. a BP probably reflects the Gerzensee oscillation. Pronounced changes of the lake sedimentation followed the LSE. Four unusually thick varves with increased amounts of allochthonous material indicate serious disturbance of the local environment immediately after the LSE, related to increased storminess and/or the occurrence of high intensity rainfall events. A pronounced reduction of biogenic silica accumulation for c. 60 years after the LSE could reflect a period of acidification. Indications of a simultaneous lake level increase until c. 60 years after the LSE are in line with the supposed reduced evapotranspiration associated with cooler conditions. About 120 years after the LSE, increased oxygen access at the lake bottom, allochthonous input and Cl fluxes point to an onset of increasingly stronger westerly winds, probably as a long-term response to the LSE. This supports the idea of a southward shift of the mid-latitude westerlies wind system within the interval between the LSE and the beginning of the Younger Dryas. The pace of the southwards shift of this wind system decreased from 10 km a−1 in the initial phase (40–120 years after LSE) to 6 km a−1 in the later phase (120–200 years after LSE).
    Keywords: 551 ; Laacher See eruption (LSE) ; lake sediments
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2021-10-07
    Description: We reconstructed the variability of the Earth's strongest hydrological system, the Indian monsoon, over the interval 6.24 to 4.91 Ma at International Ocean Discovery Program (IODP) Expedition 353 Site U1448 in the Andaman Sea. We integrated high-resolution benthic and planktic foraminiferal carbon and oxygen isotopes with Mg/Ca measurements of the mixed layer foraminifer Trilobatus sacculifer to reconstruct the isotopic composition of seawater (δ18Osw) and the gradient between planktic and benthic foraminiferal δ13C. A prominent increase in mixed layer temperatures of ~4°C occurred between 5.55 and 5.28 Ma, accompanied by a change from precession- to obliquity-driven variability in planktic δ18O and δ18Osw. We suggest that an intensified cross-equatorial transport of heat and moisture, paced by obliquity, led to increased summer monsoon precipitation during warm stages after 5.55 Ma. Transient cold stages were characterized by reduced mixed layer temperatures and summer monsoon failure, thus resembling late Pleistocene stadials. In contrast, an overall cooler background climate state with a strengthened biological pump prevailed prior to 5.55 Ma. These findings highlight the importance of internal feedback processes for the long-term evolution of the Indian monsoon.
    Keywords: 551.6 ; Indian monsoon ; Miocene-Pliocene transition ; Bay of Bengal ; Mg/Ca paleothermometry ; stable isotopes ; orbital forcing
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2021-10-07
    Description: Forest canopies present irregular surfaces that alter both the quantity and spatiotemporal variability of precipitation inputs. The drop size distribution (DSD) of rainfall varies with rainfall event characteristics and is altered substantially by the forest stand properties. Yet, the influence of two major European tree species, European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) H. karst), on throughfall DSD is largely unknown. In order to assess the impact of these two species with differing canopy structures on throughfall DSD, two optical disdrometers, one above and one below the canopy of each European beech and Norway spruce, measured DSD of both incident rainfall and throughfall over 2 months at a 10-s resolution. Fractions of different throughfall categories were analysed for single-precipitation events of different intensities. While penetrating the canopies, clear shifts in drop size and temporal distributions of incoming rainfall were observed. Beech and spruce, however, had different DSD, behaved differently in their effect on diameter volume percentiles as well as width of drop spectrum. The maximum drop sizes under beech were higher than under spruce. The mean ± standard deviation of the median volume drops size (D50) over all rain events was 2.7 ± 0.28 mm for beech and 0.80 ± 0.04 mm for spruce, respectively. In general, there was a high-DSD variability within events indicating varying amounts of the different throughfall fractions. These findings help to better understand the effects of different tree species on rainfall partitioning processes and small-scale variations in subcanopy rainfall inputs, thereby demonstrating the need for further research in high-resolution spatial and temporal properties of rainfall and throughfall.
    Keywords: 551.6 ; canopy drip ; canopy interaction ; disdrometer ; droplets ; interception ; rain intensity ; rain rate ; splash droplets
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2021-10-07
    Description: Precipitation extremes with devastating socioeconomic consequences within the South American Monsoon System (SAMS) are expected to become more frequent in the near future. The complexity in SAMS behavior, however, poses severe challenges for reliable future projections. Thus, robust paleomonsoon records are needed to constrain the high spatiotemporal variability in the response of SAMS rainfall to different climatic drivers. This study uses Ti/Ca ratios from X-ray fluorescence scanning of a sediment core retrieved off eastern Brazilian to trace precipitation changes over the past 322 Kyr. The results indicate that despite the spatiotemporal complexity of the SAMS, insolation forcing is the primary pacemaker of variations in the monsoonal system. Additional modulation by atmospheric pCO2 suggests that SAMS intensity over eastern Brazil will be suppressed by rising CO2 emissions in the future. Lastly, our record reveals an unprecedented strong and persistent wet period during Marine Isotope Stage 6 driven by anomalously strong trade winds.
    Keywords: 551.6 ; South American Monsoon System (SAMS)
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2021-10-15
    Description: Upwelling ocean currents associated with oxygen minimum zones (OMZs) supply nutrients fuelling intense marine productivity. Perturbations in the extent and intensity of OMZs are projected in the future, but it is currently uncertain how this will impact fluxes of redox-sensitive trace metal micronutrients to the surface ocean. Here we report seawater concentrations of Fe, Mn, Co, Cd, and Ni alongside the redox indicator iodide/iodate in the Peruvian OMZ during the 2015 El Niño event. The El Niño drove atypical upwelling of oxygen-enriched water over the Peruvian Shelf, resulting in oxidized iodine and strongly depleted Fe (II), total dissolved Fe, and reactive particulate Fe concentrations relative to non-El Niño conditions. Observations of Fe were matched by the redox-sensitive micronutrients Co and Mn, but not by non-redox-sensitive Cd and Ni. These observations demonstrate that oxygenation of OMZs significantly reduces water column inventories of redox-sensitive micronutrients, with potential impacts on ocean productivity.
    Keywords: 551 ; iron ; trace metals ; oxygen minimum zone ; El Niño ; eastern tropical south pacific ; shelf source
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2021-10-15
    Description: Heat transport in natural porous media, such as aquifers or streambeds, is generally modeled assuming local thermal equilibrium (LTE) between the fluid and solid phases. Yet, the mathematical and hydrogeological conditions and implications of this simplification have not been fully established for natural porous media. To quantify the occurrence and effects of local thermal disequilibrium during heat transport, we systematically compared thermal breakthrough curves from a LTE with those calculated using a local thermal nonequilibrium (LTNE) model, explicitly allowing for different temperatures in the fluid and solid phases. For the LTNE model, we developed a new correlation for the heat transfer coefficient representative of the conditions in natural porous aquifers using six published experimental results. By conducting an extensive parameter study (〉50,000 simulations), we show that LTNE effects do not occur for grain sizes smaller than 7 mm or for groundwater flow velocities that are slower than 1.6 m day−1. The limits of LTE are likely exceeded in gravel aquifers or in the vicinity of pumped bores. For such aquifers, the use of a LTE model can lead to an underestimation of the effective thermal dispersion by a factor of up to 30 or higher, while the advective thermal velocity remains unaffected for most conditions. Based on a regression analysis of the simulation results, we provide a criterion which can be used to determine if LTNE effects are expected for particular conditions.
    Keywords: 551 ; local thermal nonequilibrium ; thermal dispersion ; modeling advective heat transport ; local thermal equilibrium ; porous aquifer
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2021-10-15
    Description: Winter chill is expected to decrease in many of the suitable growing regions for deciduous trees. Argentinean North Patagonia hosts extensive fruit tree cultivation, which provides an important contribution to both local and global food security. Using historic records from 11 weather stations from North Patagonia, we evaluate the possible impacts of climate change on fruit tree cultivation. We assess winter chill and seasonal heat availability, and the risk of spring frost events based on outputs from 15 Global Climate Models (GCMs) for two Representative Concentration Pathway (RCP) scenarios and two future time periods (represented by central years 2050 and 2085). Metrics were estimated for 47 years of records from the weather stations, as well as typical conditions for 10 past scenarios and 60 future GCM and RCP projections. Scenarios consisted of 100 plausible annual temperature records produced by a weather generator. Results suggest that fruit tree dormancy in Argentinean North Patagonia will not be strongly affected by climate change. Compared to the past, winter chill may only decrease by 9% in the RCP4.5 scenario by 2050 in the northeastern and eastern subregion, while in the central-south and west the reduction seems unlikely to exceed 6% by the same RCP scenario and year. Our models project stable high growing season heat in the northeastern and eastern regions, and major increases in the south by 2085 in both RCP scenarios. Projections of spring frost events varied between 0 and about 25 hours below 0°C depending on the site. Increasing heat availability may create opportunities for fruit and nut growers to introduce new species and cultivars to the region. Our results provide a basis for planning such introductions and for enabling growers to exploit new opportunities for producing temperate orchard crops beyond their traditional ranges.
    Keywords: 551.6 ; chill models ; chill requirement ; heat requirement ; Prunus sp. ; spring frost risk ; temperate trees ; warm winters
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2021-10-15
    Description: Tunnel valleys are assumed to form near the margin of ice sheets. Hence, they can be used to reconstruct the dynamics of former ice margins. The detailed formation and infill of tunnel valleys, however, are still not well understood. Here, we present a dense grid of high-resolution 2D multi-channel reflection seismic data from the German sector of the southeastern North Sea imaging tunnel valleys in very great detail. Three tunnel valley systems were traced over distances ranging between 11 and 21 km. All tunnel valleys are completely filled and buried. They differ in incision depth, incision width and number of incisions. The tunnel valleys cut 130–380 m deep into Neogene, Palaeogene and Cretaceous sediments; they show a lower V-shaped and an upper U-shaped morphology. For individual tunnel valleys, the overall incision direction ranges from east–west to northeast–southwest. Two tunnel valleys intersect at an oblique angle without reuse of the thalweg. These valleys incise into a pre-existing glaciotectonic complex consisting of thrust sheets in the northwest of the study area. The analysis of the glaciotectonic complex and the tunnel valleys leads us to assume that we identified several marginal positions of (pre-)Elsterian ice lobes in the southeastern North Sea.
    Keywords: 551 ; 622.15 ; glaciogenic unconformity ; glaciotectonic complex ; ice margin ; Quaternary succession ; tunnel valleys
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2021-10-15
    Description: The climate of the western Mediterranean was characterized by a strong precipitation gradient during the Holocene driven by atmospheric circulation patterns. The scarcity of terrestrial paleoclimate archives has precluded exploring this hydroclimate pattern during Marine Isotope Stages 5 to 3. Here we present stable carbon and oxygen isotope records from three flowstones from southeast Iberia, which show that Dansgaard/Oeschger events were associated with more humid conditions. This is in agreement with other records from the Iberian Peninsula, the Mediterranean, and western Europe, which all responded in a similar way to millennial-scale climate variability in Greenland. This general increase in precipitation during Dansgaard/Oeschger events cannot be explained by any present-day or Holocene winter atmospheric circulation pattern. Instead, we suggest that changes in sea surface temperature played a dominant role in determining precipitation amounts in the western Mediterranean.
    Keywords: 551 ; Spain ; last glacial ; Dansgaard/Oeschger ; speleothem ; Marine Isotope Stage 3 ; western Mediterranean climate
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2021-10-15
    Description: The Middle Eocene Climatic Optimum (MECO) was a gradual warming event and carbon cycle perturbation that occurred between 40.5 and 40.1 Ma. A number of characteristics, including greater-than-expected deep-sea carbonate dissolution, a lack of globally coherent negative δ13C excursion in marine carbonates, a duration longer than the characteristic timescale of carbon cycle recovery, and the absence of a clear trigger mechanism, challenge our current understanding of the Earth system and its regulatory feedbacks. This makes the MECO one of the most enigmatic events in the Cenozoic, dubbed a middle Eocene “carbon cycle conundrum.” Here we use boron isotopes in planktic foraminifera to better constrain pCO2 changes over the event. Over the MECO itself, we find that pCO2 rose by only 0.55–0.75 doublings, thus requiring a much more modest carbon injection than previously indicated by the alkenone δ13C-pCO2 proxy. In addition, this rise in pCO2 was focused around the peak of the 400 kyr warming trend. Before this, considerable global carbonate δ18O change was asynchronous with any coherent ocean pH (and hence pCO2) excursion. This finding suggests that middle Eocene climate (and perhaps a nascent cryosphere) was highly sensitive to small changes in radiative forcing.
    Keywords: 551 ; boron isotopes ; pCO2 reconstruction ; Middle Eocene Climatic Optimum ; carbon cycle ; paleoclimate ; cryosphere
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2021-10-15
    Description: Millennial-scale reductions in monsoon precipitation, so-called Weak Monsoon Intervals (WMIs), have been identified in numerous paleoclimate records across the Afro-Asian monsoon domain throughout the last glacial-interglacial cycle. These are considered the regional response to cooling during Heinrich events in the North Atlantic realm and several mechanisms have been suggested to explain this hemisphere-scale climatic teleconnection. In particular, reductions in Indian Ocean sea surface temperature (SST) have been proposed as the linking element between Heinrich events and WMIs. However, the validity of this relationship has only been demonstrated for the last ~20 kyr, leaving unresolved whether it also holds on longer time scales. Here we present a new paired record of planktonic foraminifera-based δ18Osw-ivc and UK'37-based SST from the northern Bay of Bengal, covering the last ~130 kyr. The δ18Osw-ivc record clearly reflects orbitally paced changes of Indian Summer Monsoon intensity superimposed by centennial- to millennial-scale WMIs that occurred synchronously to North Atlantic Heinrich events. Comparison with the UK'37-based SST reconstruction reveals, however, that WMIs in most cases were not paralleled by ocean surface cooling, questioning whether Indian Ocean SST lowering was the linking element between Heinrich events and reductions in monsoon precipitation in Asia also during the last glacial period.
    Keywords: 551 ; Indian Summer Monsoon ; Weak Monsoon Intervals ; marine sediments ; Bay of Bengal ; foraminifera oxygen isotopes ; UK'37 sea surface temperature
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2021-10-27
    Description: Vertical and horizontal components of GNSS displacements in the Long Valley Caldera and adjacent Sierra Nevada range show a clear correlation with hydrological trends at both multiyear and seasonal time scales. We observe a clear vertical and horizontal seasonal deformation pattern primarily attributable to the solid earth response to hydrological surface loading at large-to-regional (Sierra Nevada range) scales. Several GNSS sites, located at the eastern edge of the Sierra Nevada along the southwestern rim of Long Valley Caldera, also show significant horizontal deformation that cannot be explained by elastic deformation from surface loading. Due to the location of these sites and the strong correlation between their horizontal displacements and spring discharge, we hypothesize that this deformation reflects poroelastic processes related to snowmelt runoff water infiltrating into the Sierra Nevada slopes around Long Valley Caldera. Interestingly, this is also an area where water infiltrates to feed the local hydrothermal system, and where snowmelt-induced earthquake swarms have been recently detected.
    Keywords: 551 ; Long Valley Caldera ; GNSS observations ; transient signal ; nontectonic deformation
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2021-10-27
    Description: On interannual timescales the growth rate of atmospheric CO2 is largely controlled by the response of the land and ocean carbon sinks to climate variability. Yet, it is unknown to what extent this variability limits the predictability of atmospheric CO2 variations. Using perfect-model Earth System Model simulations, we show that variations in atmospheric CO2 are potentially predictable for 3 years. We find a 2-year predictability horizon for global oceanic CO2 flux with longer regional predictability of up to 7 years. The 2-year predictability horizon of terrestrial CO2 flux originates in the tropics and midlatitudes. With the predictability of the isolated effects of land and ocean carbon sink on atmospheric CO2 of 5 and 12 years respectively, land dampens the overall predictability of atmospheric CO2 variations. Our research shows the potential of Earth System Model-based predictions to forecast multiyear variations in atmospheric CO2.
    Keywords: 551 ; decadal predictability ; atmospheric CO2 ; carbon fluxes ; internal variability ; Earth System Model
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2021-10-27
    Description: Wheat production plays an important role in Morocco. Current wheat forecast systems use weather and vegetation data during the crop growing phase, thus limiting the earliest possible release date to early spring. However, Morocco's wheat production is mostly rainfed and thus strongly tied to fluctuations in rainfall, which in turn depend on slowly evolving climate dynamics. This offers a source of predictability at longer time scales. Using physically guided causal discovery algorithms, we extract climate precursors for wheat yield variability from gridded fields of geopotential height and sea surface temperatures which show potential for accurate yield forecasts already in December, with around 50% explained variance in an out-of-sample cross validation. The detected interactions are physically meaningful and consistent with documented ocean-atmosphere feedbacks. Reliable yield forecasts at such long lead times could provide farmers and policy makers with necessary information for early action and strategic adaptation measurements to support food security.
    Keywords: 551.6 ; causal discovery algorithms ; teleconnections ; seasonal forecast ; machine learning ; wheat forecast ; climate precursors
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2021-10-27
    Description: Rising global temperatures over the last decades have increased heat exposure among populations worldwide. An accurate estimate of the resulting impacts on human health demands temporally explicit and spatially resolved monitoring of near-surface air temperature (Ta). Neither ground-based nor satellite-borne observations can achieve this individually, but the combination of the two provides synergistic opportunities. In this study, we propose a two-stage machine learning-based hybrid model to estimate 1 × 1 km2 gridded intra-daily Ta from surface skin temperature (Ts) across the complex terrain of Israel during 2004–2016. We first applied a random forest (RF) regression model to impute missing Ts from the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua and Terra satellites, integrating Ts from the geostationary Spinning Enhanced Visible and InfraRed Imager (SEVIRI) satellite and synoptic variables from European Centre for Medium-Range Weather Forecasts' (ECMWF) ERA5 reanalysis data sets. The imputed Ts are in turn fed into the Stage 2 RF-based model to estimate Ta at the satellite overpass hours of each day. We evaluated the model's performance applying out-of-sample fivefold cross validation. Both stages of the hybrid model perform very well with out-of-sample fivefold cross validated R2 of 0.99 and 0.96, MAE of 0.42°C and 1.12°C, and RMSE of 0.65°C and 1.58°C (Stage 1: imputation of Ts, and Stage 2: estimation of Ta from Ts, respectively). The newly proposed model provides excellent computationally efficient estimation of near-surface air temperature at high resolution in both space and time, which helps further minimize exposure misclassification in epidemiological studies.
    Keywords: 551.6 ; air temperature ; health 〈 6. application/context ; health exposure ; MODIS ; random forest ; remote sensing 〈 1. tools and methods ; statistical methods 〈 1. tools and methods ; surface skin temperature
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2021-10-27
    Description: Understanding hemisphere-wide millennial-scale temperature variability during past glacials in response to ice sheet dynamics and orbital forcing is one of the key targets for Quaternary climate research. While an inland propagation of abrupt temperature changes into Eurasia from the North Atlantic realm during the last glacial (Weichselian) receives increasingly broad support, much less is known regarding the penultimate glacial (Saalian) temperature variability, especially from a continental interior perspective. Here, we present a TEX86-derived lake surface temperature (LST) record from the former Black Sea “Lake” covering nearly the entire Marine Isotope Stage (MIS) 6. While orbital-scale LST cooling likely relates to meltwater discharge from the retreating Eurasian Ice Sheet during insolation maxima, millennial-scale LST variability suggests interstadial warming in phase with Greenland and northern Mediterranean Sea temperature records during the first half of MIS 6. Although summer insolation reached an interglacial-like level during this period, we propose that the reduced extent of the Eurasian Ice Sheet associated with northward shifted atmospheric fronts was ultimately responsible for the inland propagation of Dansgaard-Oeschger-like temperature variability. During the second half of MIS 6, temperature patterns across the North Atlantic-Eurasian corridor were more variable and less comparable with each other, likely because of the larger continental ice sheet weakening northern hemisphere atmospheric teleconnections. Temperature records across the North Atlantic-Eurasian realm suggest a weaker atmospheric teleconnection during MIS 6 compared to MIS 3, likely related to a stronger imprint of the Eurasian Ice Sheet on the continental and regional climate.
    Keywords: 551 ; lake surface temperature ; Black Sea ; MIS 6 ; Eurasia
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2021-10-27
    Description: Using seven single-model ensembles and the two multimodel ensembles CMIP5 and CMIP6, we show that observed and simulated trends in sea surface temperature (SST) patterns are globally consistent when accounting for internal variability. Some individual ensemble members simulate trends in large-scale SST patterns that closely resemble the observed ones. Observed regional trends that lie at the outer edge of the models' internal variability range allow two nonexclusive interpretations: (a) Observed trends are unusual realizations of the Earth's possible behavior and/or (b) the models are systematically biased but large internal variability leads to some good matches with the observations. The existing range of multidecadal SST trends is influenced more strongly by large internal variability than by differences in the model formulation or the observational data sets.
    Keywords: 551.6 ; sea surface temperature patterns ; internal variability ; global climate models ; large ensembles ; model evaluation
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2021-11-01
    Description: Mapping spatial and temporal variability of urban microclimate is pivotal for an accurate estimation of the ever-increasing exposure of urbanized humanity to global warming. This particularly concerns cities in arid/semi-arid regions which cover two fifths of the global land area and are home to more than one third of the world's population. Focusing on the desert city of Be'er Sheva Israel, we investigate the spatial and temporal patterns of urban–rural and intra-urban temperature variability by means of satellite observation, vehicular traverse measurement, and computer simulation. Our study reveals a well-developed nocturnal canopy layer urban heat island in Be'er Sheva, particularly in the winter, but a weak diurnal cool island in the mid-morning. Near surface air temperature exhibits weak urban–rural and intra-urban differences during the daytime (〈1°C), despite pronounced urban surface cool islands observed in satellite images. This phenomenon, also recorded in some other desert cities, is explained by the rapid increase in surface skin temperature of exposed desert soils (in the absence of vegetation or moisture) after sunrise, while urban surfaces are heated more slowly. The study highlights differences among the three methods used for describing urban temperature variability, each of which may have different applications in fields such as urban planning, climate change mitigation, and epidemiological research.
    Keywords: 551.6 ; Israel ; desert city ; urban microclimate ; mapping methods
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2021-10-12
    Description: During the DACCIWA (Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa) field campaign ∼900 radiosondes were launched from 12 stations in southern West Africa from 15 June to 31 July 2016. Subsequently, data-denial experiments were conducted using the Integrated Forecasting System of the European Centre for Medium-range Weather Forecasts (ECMWF) to assess the radiosondes' impact on the quality of analyses and forecasts. As observational reference, satellite-based estimates of rainfall and outgoing long-wave radiation (OLR) as well as the radiosonde measurements themselves are used. With regard to the analyses, the additional observations show positive impacts on winds throughout the troposphere and lower stratosphere, while large lower-tropospheric cold and dry biases are hardly reduced. Nonetheless, downstream, that is farther inland from the radiosonde stations, we find a significant increase (decrease) in low-level night-time temperatures (monsoon winds) when incorporating the DACCIWA observations, suggesting a possible linkage via weaker cold air advection from the Gulf of Guinea. The associated lower relative humidity leads to reduced cloud cover in the DACCIWA analysis. Closer to the coast and over Benin and Togo, DACCIWA observations increase low-level specific humidity and precipitable water, possibly due to changes in advection and vertical mixing. During daytime, differences between the two analyses are generally smaller at low levels. With regard to the forecasts, the impact of the additional observations is lost after a day or less. Moderate improvements occur in low-level wind and temperature but also in rainfall over the downstream Sahel, while impacts on OLR are ambiguous. The changes in precipitation appear to also affect high-level cloud cover and the tropical easterly jet. The overall rather small observation impact suggests that model and data assimilation deficits are the main limiting factors for better forecasts in West Africa. The new observations and physical understanding from DACCIWA can hopefully contribute to reducing these issues.
    Keywords: 551.6 ; data-denial experiment ; field campaign ; radiosonde measurements ; West African monsoon
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2021-10-12
    Description: The driving factors that influence the spatial and annual variability of thunderstorms across Europe are still poorly understood. Due to a lack of long-term, reliable and consistent information about the occurrence of convective storms, a weather type classification has been developed that estimates thunderstorm probability from a combination of appropriate meteorological quantities on the mesoscale. Based on this approach, the temporal and spatial variability of convection-favouring environments is investigated between 1958 and 2014 using a high-resolution reanalysis dataset. To identify potential drivers for convective days, typical upper-level flow patterns were deduced using a multivariate approach. Our results suggest a strong link between local-scale thunderstorm activity and large-scale flow and air mass properties, such as stability, moisture, or vertical lifting. For example, while all over central Europe the most prominent pattern is given by a southwesterly flow type over the respective area, distinct regional discrepancies regarding further favourable flow types are observed. The crucial role of large-scale flow is further studied by assessing the relation between Northern Hemisphere teleconnection patterns and widespread convective activity. It is found that positive phases of the East Atlantic or Scandinavian patterns go along with a significant enhancement of convection-favouring conditions in several European regions, which can be explained by anomalies in the large-scale temperature and flow fields. Sea-surface temperature over the Bay of Biscay likewise impacts the convective environment, with the largest positive effect over the western part of the study area.
    Keywords: 551.6 ; East Atlantic pattern ; large-scale flow ; NAO ; North Atlantic Oscillation ; SCAND ; Scandinavian pattern ; teleconnection patterns ; thunderstorms ; weather classification schemes
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2021-10-12
    Description: The methods to quantify equilibrium climate sensitivity are still debated. We collect millennial-length simulations of coupled climate models and show that the global mean equilibrium warming is higher than those obtained using extrapolation methods from shorter simulations. Specifically, 27 simulations with 15 climate models forced with a range of CO2 concentrations show a median 17% larger equilibrium warming than estimated from the first 150 years of the simulations. The spatial patterns of radiative feedbacks change continuously, in most regions reducing their tendency to stabilizing the climate. In the equatorial Pacific, however, feedbacks become more stabilizing with time. The global feedback evolution is initially dominated by the tropics, with eventual substantial contributions from the mid-latitudes. Time-dependent feedbacks underscore the need of a measure of climate sensitivity that accounts for the degree of equilibration, so that models, observations, and paleo proxies can be adequately compared and aggregated to estimate future warming.
    Keywords: 551.6 ; equilibrium climate sensitivity ; climate models
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2021-10-12
    Description: The Svalbard archipelago in the Arctic North Atlantic is experiencing rapid changes in the surface climate and sea ice distribution, with impacts for the coupled climate system and the local society. This study utilizes observational data of surface air temperature (SAT) from 1980–2016 across the whole Svalbard archipelago, and sea ice extent (SIE) from operational sea ice charts to conduct a systematic assessment of climatologies, long-term changes and regional differences. The proximity to the warm water mass of the West Spitsbergen Current drives a markedly warmer climate in the western coastal regions compared to northern and eastern Svalbard. This imprints on the SIE climatology in southern and western Svalbard, where the annual maxima of 50–60% area ice coverage are substantially less than 80–90% in the northern and eastern fjords. Owing to winter-amplified warming, the local climate is shifting towards more maritime conditions, and SIE reductions of between 5 and 20% per decade in particular regions are found, such that a number of fjords in the west have been virtually ice-free in recent winters. The strongest decline comes along with SAT forcing and occurs over the most recent 1–2 decades in all regions; while in the 1980s and 1990s, enhanced northerly winds and sea ice drift can explain 30–50% of SIE variability around northern Svalbard, where they had correspondingly lead to a SIE increase. With an ongoing warming it is suggested that both the meteorological and cryospheric conditions in eastern Svalbard will become increasingly similar to what is already observed in the western fjords, namely suppressed typical Arctic climate conditions.
    Keywords: 551.6 ; Arctic warming ; climatology ; observations ; sea ice ; surface meteorology ; Svalbard
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2021-10-12
    Description: We present the new Atmospheric Raman Temperature and Humidity Sounder (ARTHUS). We demonstrate that ARTHUS measurements resolve (1) the strength of the inversion layer at the planetary boundary layer top, (2) elevated lids in the free troposphere during daytime and nighttime, and (3) turbulent fluctuations in water vapor and temperature, simultaneously, also during daytime. Very stable and reliable performance was demonstrably achieved during more than 2,500 hr of operations time experiencing a huge variety of weather conditions. ARTHUS provides temperature profiles with resolutions of 10–60 s and 7.5–100 m vertically in the lower free troposphere. During daytime, the statistical uncertainty of the water vapor mixing ratio is 〈2 % in the lower troposphere for resolutions of 5 min and 100 m. Temperature statistical uncertainty is 〈0.5 K even up to the middle troposphere. ARTHUS fulfills the stringent WMO breakthrough requirements on nowcasting and very short range forecasting.
    Keywords: 551.6 ; Water-Vapor and Temperature Raman lidar ; Atmospheric Boundary Layer ; Thermodynamic Profiler ; Turbulence ; Temperature inversion layers
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2021-10-12
    Description: The seasonal cycle of rainfall over the Greater Horn of Africa (GHA) is dominated by the latitudinal migration and activity of the tropical rain belt (TRB). The TRB exhibits high interannual variability in the GHA and the reasons for the recent dry period in the Long Rains (March–May) are poorly understood. In addition, few studies have addressed the rainfall fluctuations during the Msimu Rains (Dec.–Mar.) in the southern GHA region. Interannual variations of the seasonal cycle of the TRB between 1981 and 2018 were analysed using two statistical indices. The Rainfall Cluster Index (RCI) describes the seasonal cycle as a succession of six characteristic rainfall patterns, while the Seasonal Location Index (SLI) captures the latitudinal location of the TRB. The SLI and RCI depict the full seasonal cycle of the TRB supporting interpretations of the interannual variations and trends. The Msimu Rains are dominated by two clusters with opposite rainfall characteristics between the Congo Basin and Tanzania. The associated anomalies in moisture flux and divergence indicate variations in the location of the TRB originating from an interplay between low-level air flows from the Atlantic and Indian Oceans and tropical and subtropical teleconnections. The peak period of the Long Rains shows a complex composition of five clusters, which is tightly connected to intraseasonal and interannual variability of latitudinal locations of the TRB. A persistent location of the TRB near the equator, evidenced in a frequent occurrence of a cluster related to an anomalously weak Walker circulation, is associated with wet conditions over East Africa. Dry Long Rains are associated with strong and frequent latitudinal variations of the TRB position with a late onset and intermittent rainfall. These results offer new opportunities to understand recent variability and trends in the GHA region.
    Keywords: 551.6 ; Greater Horn of Africa ; seasonal cycle of rainfall ; ropical rain belt ; interannual variability
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2021-10-11
    Description: We present a local earthquake tomography to illuminate the crustal and uppermost mantle structure beneath the southern Puna plateau and to test the delamination hypothesis. Vp and Vp/Vs ratios were obtained using travel time variations recorded by 75 temporary seismic stations between 2007 and 2009. In the upper crust, prominent low Vp anomalies are found beneath the main volcanic centers, indicating the presence of magma and melt beneath the southern Puna plateau. Beneath the Moho at around 90-km depth, a strong high Vp anomaly is detected just west of the giant backarc Cerro Galan ignimbrite caldera. This high Vp anomaly is only resolved if earthquakes with an azimuthal gap up to 300° are included in the inversion. However, we show through data subset and synthetic tests that the anomaly is robust due to our specific station-event geometry and interpret it as a delaminated block of lower crust and uppermost mantle lithosphere under the southern Puna plateau. The low velocities in the crust are interpreted as a product of the delamination event that triggered the rise of fluids and melts into the crust and induced the high topography in this part of the plateau. The tomography also reveals the existence of low-velocity anomalies that link arc magmatism at the Ojos del Salado volcanic center with slab seismicity clusters at depths of about 100 and 150 km and support fluid transport in the mantle wedge due to dehydration reaction within the subducted slab.
    Keywords: 551 ; southern Puna plateau ; local earthquake tomography ; lithospheric delamination ; slab dehydration ; crustal melt accumulation
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2021-10-11
    Description: Geophysical and geochemical data indicate there is abundant fluid expulsion in the Nootka fault zone (NFZ) between the Juan de Fuca and Explorer plates and the Nootka continental slope. Here we combine observations from 〉20 years of investigations to demonstrate the nature of fluid-flow along the NFZ, which is the seismically most active region off Vancouver Island. Seismicity reaching down to the upper mantle is linked to near-seafloor manifestation of fluid flow through a network of faults. Along the two main fault traces, seismic reflection data imaged bright spots 100–300 m below seafloor that lie above changes in basement topography. The bright spots are conformable to sediment layering, show opposite-to-seafloor reflection polarity, and are associated with frequency reduction and velocity push-down indicating the presence of gas in the sediments. Two seafloor mounds ~15 km seaward of the Nootka slope are underlain by deep, nonconformable high-amplitude reflective zones. Measurements in the water column above one mound revealed a plume of warm water, and bottom-video observations imaged hydrothermal vent system biota. Pore fluids from a core at this mound contain predominately microbial methane (C1) with a high proportion of ethane (C2) yielding C1/C2 ratios 〈500 indicating a possible slight contribution from a deep source. We infer the reflective zones beneath the two mounds are basaltic intrusions that create hydrothermal circulation within the overlying sediments. Across the Nootka continental slope, gas hydrate-related bottom-simulating reflectors are widespread and occur at depths indicating heat flow values of 80–90 mW/m2.
    Keywords: 551 ; fluid flow ; Nootka transform fault ; gas hydrate ; intrusion ; heat flow
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2021-10-13
    Description: Earth's equilibrium climate sensitivity (ECS) is the long-term response to doubled atmospheric CO2 and likely between 1.5 and 4.5 K. Conventional general circulation models do not convincingly narrow down this range, and newly developed nonhydrostatic models with relatively fine horizontal resolutions of a few kilometers have thus far delivered diverse results. Here we use the nonhydrostatic ICON model with the physics package normally used for climate simulations at resolutions as fine as 5 km to study the response to a uniform surface warming in an aquaplanet configuration. We apply the model in two setups: one with convection parametrization employed and one with explicit convection. ICON exhibits a negative total feedback independent of convective representation, thus providing a stable climate with an ECS comparable to other general circulation models, though three interesting new results are found. First, ECS varies little across resolution for both setups but runs with explicit convection have systematically lower ECS than the parametrized case, mainly due to more negative tropical clear-sky longwave feedbacks. These are a consequence of a drier mean state of about 6% relative humidity for explicit convection and less midtropospheric moistening with global warming. Second, shortwave feedbacks switch from positive to negative with increasing resolution, originating foremost in the tropics and high latitudes. Third, the model shows no discernible high cloud area feedback (iris effect) in any configuration. It is possible that ICON's climate model parametrizations applied here are less appropriate for cloud resolving scales, and therefore, ongoing developments aim at implementing a more advanced prognostic cloud microphysics scheme.
    Keywords: 551.6 ; ICON ; climate change feedbacks ; aquaplanet ; high resolution ; explicit convection ; ECS
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2021-10-14
    Description: Climate models have substantial biases in the climatological latitude of the Southern Hemisphere eddy-driven jet and the time scale of annular mode variability and disagree on the jet response to climate change. Zonally symmetric dry dynamical cores are often used for idealized modeling of the jet response to forcing and its sensitivity to model setup changes. The limits to which these models represent the key mechanisms that control the jet in complex models or the real world have not been systematically investigated. Here we show that substantial intermodel differences in jet latitude and strength can arise from differences in dynamical cores and resolved topography. Including topography and a more realistic surface drag in a dry model substantially alters the jet response to changes in drag strength. Using real-world maps, enhanced drag over land shifts the jet poleward, whereas enhanced drag over the ocean leads to an equatorward shift. No universal relationship between annular mode time scale and forced response emerges in the dry model with topography. These results suggest that zonally symmetric models with Rayleigh drag lack important mechanisms that control the behavior of the midlatitude jet in coupled climate models. A dry model with topography and quadratic surface drag can fill this gap in the model hierarchy.
    Keywords: 551.6 ; eddy-driven jet ; dynamical core ; drag ; idealized models ; topography
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2021-10-14
    Description: This study provides a comprehensive evaluation of a great variety of state-of-the-art precipitation datasets against gauge observations over the Karun basin in southwestern Iran. In particular, we consider (a) gauge-interpolated datasets (GPCCv8, CRU TS4.01, PREC/L, and CPC-Unified), (b) multi-source products (PERSIANN-CDR, CHIRPS2.0, MSWEP V2, HydroGFD2.0, and SM2RAIN-CCI), and (c) reanalyses (ERA-Interim, ERA5, CFSR, and JRA-55). The spatiotemporal performance of each product is evaluated against monthly precipitation observations from 155 gauges distributed across the basin during the period 2000–2015. This way, we find that overall the GPCCv8 dataset agrees best with the measurements. Most datasets show significant underestimations, which are largest for the interpolated datasets. These underestimations are usually smallest at low altitudes and increase towards more mountainous areas, although there is large spread across the products. Interestingly, no overall performance difference can be found between precipitation datasets for which gauge observations from Karun basin were used, versus products that were derived without these measurements, except in the case of GPCCv8. In general, our findings highlight remarkable differences between state-of-the-art precipitation products over regions with comparatively sparse gauge density, such as Iran. Revealing the best-performing datasets and their remaining weaknesses, we provide guidance for monitoring and modelling applications which rely on high-quality precipitation input.
    Keywords: 551.6 ; evaluation ; interpolated dataset ; Karun basin ; precipitation datasets ; reanalysis dataset ; satellite rainfall estimate
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2021-10-14
    Description: Estuarine CO2 emissions are important components of regional and global carbon budgets, but assessments of this flux are plagued by uncertainties associated with gas transfer velocity (k) parameterization. We combined direct eddy covariance measurements of CO2 flux with waterside pCO2 determinations to generate more reliable k parameterizations for use in small estuaries. When all data were aggregated, k was described well by a linear relationship with wind speed (U10), in a manner consistent with prior open ocean and estuarine k parameterizations. However, k was significantly greater at night and under low wind speed, and nighttime k was best predicted by a parabolic, rather than linear, relationship with U10. We explored the effect of waterside thermal convection but found only a weak correlation between convective scale and k. Hence, while convective forcing may be important at times, it appears that factors besides waterside thermal convection were likely responsible for the bulk of the observed nighttime enhancement in k. Regardless of source, we show that these day-night differences in k should be accounted for when CO2 emissions are assessed over short time scales or when pCO2 is constant and U10 varies. On the other hand, when temporal variability in pCO2 is large, it exerts greater control over CO2 fluxes than does k parameterization. In these cases, the use of a single k value or a simple linear relationship with U10 is often sufficient. This study provides important guidance for k parameterization in shallow or microtidal estuaries, especially when diel processes are considered.
    Keywords: 551 ; air-water CO2 exchange ; gas transfer velocity ; convective ; eddy covariance ; estuary ; gas exchange
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2021-09-13
    Description: The Tajik basin archives the orogenic evolution of the Pamir hinterland. Stratigraphic-sedimentologic observations from Cretaceous-Pliocene strata along its eastern margin describe the depositional environment and basin-formation stages in reaction to hinterland exhumation and basin inversion. During the Late Cretaceous-Eocene (preorogenic stage: ~100–34 Ma), a shallow-marine to terrestrial basin extended throughout Central Asia. An alluvial plain with influx of conglomerate bodies (Baljuvon Formation) indicates a first pulse of hinterland erosion and foreland-basin formation in the late Oligocene-early Miocene (synorogenic stage Ia: ~34–23 Ma). Further hinterland exhumation deposited massive alluvial conglomerates (Khingou Formation) in the early-middle Miocene (synorogenic stage Ib: ~23–15 Ma). Westward thickening growth strata suggest transformation of the Tajik basin into the Tajik fold-thrust belt in the middle-late Miocene (synorogenic stage IIa: ~15–5 Ma). Increased water supply led to the formation of fluvial mega-fans (Tavildara Formation). Latest Miocene-Pliocene shortening constructed basin morphology that blocked sediment bypass into the central basin from the east (Karanak Formation), triggering drainage-system reorganization from transverse to longitudinal sediment transport (synorogenic stage IIb: 〈 ~5 Ma). Accelerated shortening (~27–20 Ma) and foreland-directed collapse (~23–12 Ma) of Pamir-plateau crust loaded the foreland and induced synorogenic stages Ia and Ib. Coupling of Indian and Asian cratonic lithospheres and onset of northward and westward delamination/rollback of Asian lithosphere (i.e., lithosphere of the Tajik basin) beneath the Pamir at ~12–11 Ma transformed the Tajik basin into the Tajik fold-thrust belt (synorogenic stage IIa). The timing of the sedimentologically derived basin reconfiguration matches the thermochronologically derived onset of Tajik-basin inversion at ~12 Ma.
    Keywords: 551 ; 555 ; Pamir-Tibet formation ; Tajik retro-foreland basin ; growth strata ; provenance ; deep-lithosphere trigger
    Language: English
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2021-09-15
    Description: Geophysical length scales defined from induced-polarization measurements can be used in models of permeability (k) prediction. We explore the relative merit of different induced-polarization parameters as proxies of an effective hydraulic radius (reff) that can be used to predict permeability from a modified Hagen–Poiseuille equation. Whereas geometrical measures of the hydraulic radius are good proxies of reff, the induced-polarization measures are not well correlated with reff. However, a new proxy of reff that considers both imaginary conductivity and formation factor shows an improved correlation with reff. The resulting model enables a better quality of permeability prediction compared with the other geophysical length scales, but does not reach the predictive quality of the models based on geometrical length scales. The specific polarizability defined when incorporating the effect of the formation factor on imaginary conductivity appears to be independent of pore geometry, indicating that it is the correct parameter representing the role of the surface electrochemistry on the induced-polarization effect. However, the joint dependence of induced-polarization measurements on both the pore radius and the tortuosity and porosity of the interconnected pore network is a limitation to the widely explored use of induced-polarization measurements to isolate surface properties from volumetric properties of the interconnected pore network.
    Keywords: 551 ; 622.15 ; Complex conductivity ; Hydrogeophysics ; Induced polarization ; Permeability ; Porosity
    Language: English
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2021-09-15
    Description: New marine geophysical data acquired across the partly ice-covered northern East Greenland continental margin highlight a complex interaction between tectonic and magmatic events. Breakup-related lava flows are imaged in reflection seismic data as seaward dipping reflectors, which are found to decrease in size both northward and southward from a central point at 75°N. We provide evidence that the magnetic anomaly pattern in the shelf area is related to volcanic phases and not to the presence of oceanic crust. The remnant magnetization of the individual lava flows is used to deduce a relative timing of the emplacement of the volcanic wedges. We find that the seaward dipping reflectors have been emplaced over a period of 2–4 Ma progressively from north to south and from landward to seaward. The new data indicate a major post-middle Eocene magmatic phase around the landward termination of the West Jan Mayen Fracture Zone. This post-40-Ma volcanism likely was associated with the progressive separation of the Jan Mayen microcontinent from East Greenland. The breakup of the Greenland Sea started at several isolated seafloor spreading cells whose location was controlled by rift structures and led to the present-day segmentation of the margin. The original rift basins were subsequently connected by steady-state seafloor spreading that propagated southward, from the Greenland Fracture Zone to the Jan Mayen Fracture Zone.
    Keywords: 551 ; 559 ; NE Greenland ; seismic reflection ; seaward dipping reflectors ; continent-ocean transition ; rifting ; Greenland Sea
    Language: English
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2021-09-15
    Description: We combine numerical modeling of lithospheric extension with analysis of seismic moment release and earthquake b-value in order to elucidate the mechanism for deep crustal seismicity and seismic swarms in the Main Ethiopian Rift (MER). We run 2-D numerical simulations of lithospheric deformation calibrated by appropriate rheology and extensional history of the MER to simulate migration of deformation from mid-Miocene border faults to ∼30 km wide zone of Pliocene to recent rift floor faults. While currently the highest strain rate is localized in a narrow zone within the rift axis, brittle strain has been accumulated in a wide region of the rift. The magnitude of deviatoric stress shows strong variation with depth. The uppermost crust deforms with maximum stress of 80 MPa, at 8–14 km depth stress sharply decreases to 10 MPa and then increases to a maximum of 160 MPa at ∼18 km depth. These two peaks at which the crust deforms with maximum stress of 80 MPa or above correspond to peaks in the seismic moment release. Correspondingly, the drop in stress at 8–14 km correlates to a low in seismic moment release. At this depth range, the crust is weaker and deformation is mainly accommodated in a ductile manner. We therefore see a good correlation between depths at which the crust is strong and elevated seismic deformation, while regions where the crust is weaker deform more aseismically. Overall, the bimodal depth distribution of seismic moment release is best explained by the rheology of the deforming crust.
    Keywords: 551 ; 556 ; numerical modeling ; earthquakes ; Main Ethiopian Rift ; strain rate
    Language: English
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2021-09-09
    Description: It is well established that Africa is particularly exposed to climate extremes including heat waves, droughts, and intense rainfall events. How exposed Africa is to the co-occurrence of these events is however virtually unknown. This study provides the first analysis of projected changes in the co-occurrence of five such compound climate extremes in Africa, under a low (RCP2.6) and high (RCP8.5) emissions scenario. These changes are combined with population projections for a low (SSP1) and high (SSP3) population growth scenario, in order to provide estimates of the number of people that may be exposed to such events at the end of the 21st century. We make use of an ensemble of regional climate projections from the Coordinated Output for Regional Evaluations (CORE) project embedded in the Coordinated Regional Climate Downscaling Experiment (CORDEX) framework. This ensemble comprises five different Earth System Model/Regional Climate Model (ESM/RCM) combinations with three different ESMs and two RCMs. We show that all five compound climate extremes will increase in frequency, with changes being greater under RCP8.5 than RCP2.6. Moreover, populations exposed to these changes are greater under RCP8.5/SSP3, than RCP2.6/SSP1, increasing by 47- and 12-fold, respectively, compared to the present-day. Regions of Africa that are particularly exposed are West Africa, Central-East Africa, and Northeast and Southeast Africa. Increased exposure is mainly driven by the interaction between climate and population growth, and the effect of population alone. This has important policy implications in relation to climate mitigation and adaptation.
    Keywords: 551.6 ; compound climate extremes ; population exposure ; regional climate change ; Africa ; CORDEX-CORE ; regional climate models
    Language: English
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2021-09-24
    Description: Data-driven approaches, most prominently deep learning, have become powerful tools for prediction in many domains. A natural question to ask is whether data-driven methods could also be used to predict global weather patterns days in advance. First studies show promise but the lack of a common data set and evaluation metrics make intercomparison between studies difficult. Here we present a benchmark data set for data-driven medium-range weather forecasting (specifically 3–5 days), a topic of high scientific interest for atmospheric and computer scientists alike. We provide data derived from the ERA5 archive that has been processed to facilitate the use in machine learning models. We propose simple and clear evaluation metrics which will enable a direct comparison between different methods. Further, we provide baseline scores from simple linear regression techniques, deep learning models, as well as purely physical forecasting models. The data set is publicly available at https://github.com/pangeo-data/WeatherBench and the companion code is reproducible with tutorials for getting started. We hope that this data set will accelerate research in data-driven weather forecasting.
    Keywords: 551.6 ; machine learning ; NWP ; artificial intelligence ; benchmark
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2021-09-24
    Description: Meteorological droughts have large impacts on society and the environment. A better understanding and quantification of their occurrences can be highly relevant for the development of proper climate change mitigation, adaptation and resilience strategies. Here we examine meteorological droughts from observed data covering the 1971–2000 period for the Fulda catchment in Germany by means of the Standardized Precipitation Index. The joint dependency of drought duration and severity is modelled by a copula function, which relates their univariate distributions in a functional relationship. Recurrence intervals are further calculated as a function of the joint relationship and univariate marginals. Future projections are investigated in which downscaled EURO-CORDEX Regional Climate Model (RCM) projections for the period 2021–2050 are used together with the three Representative Concentration Pathways (RCP) 2.6, 4.5, and 8.5, in order to analyse and compare future joint patterns of duration and severity of events. We find that drought duration and severity present a clear interdependency supporting the choice of a bivariate model. Results suggest substantial differences in the future joint relationship duration–severity. Depending on the RCM and RCP, drought patterns show different magnitude of changes in the future. The projected changes are different for the different returns periods. RCP8.5 shows more severe events and longer drought durations than RCP2.6 and RCP4.5. The uncertainties of the projected patterns also depend on the RCP and RCM and are larger for higher return periods.
    Keywords: 551.6 ; climate change ; copulas ; drought duration and severity ; drought events ; extremes ; Fulda catchment ; Standardized Precipitation Index
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2021-09-06
    Description: Abstract Global climate models provide only partial information on local-scale phenomenon, such as precipitation, primarily due to their coarse resolution. In this study, statistical downscaling algorithms, based on both weather regimes and past analogues, are operated for 18 Israeli rain gauges with an altitude ranging between −200 and ~1,000 m above sea level (ASL). To project seasonal precipitation over Israel and its hydrologic basins, the algorithms are applied to six Coupled Model Inter-comparison Project Phase 5 (CMIP5) models for the end of the 21st century, according to the RCP4.5 and RCP8.5 scenarios. The downscaled models can capture quite well the seasonal precipitation distribution, though with underestimation in winter and overestimation in spring. All models display a significant reduction of seasonal precipitation for the 21st century according to both scenarios. The winter reductions for the end of the century and the RCP8.5 scenario are found to be ~22 and ~37% according to the weather regimes and the analogues downscaling methods, respectively. Spring reductions are found to be ~10–20% larger than winter reductions. It is shown that the projected reduction results from a decrease in the frequency of the rain-bearing systems, as well as a decrease in the average daily precipitation intensity. The areas with the largest reductions in seasonal precipitation are found over the central mountains, the Mediterranean coastal area, and the Sea of Galilee hydrologic basins, which are the main fresh-water aquifers and reservoirs of Israel. The statistical downscaling methods applied in this study can be easily transferred to other regions where long-term data sets of observed precipitation are available. This study and others may serve as a basis for priority and policy setting toward better climate adaptation with associated uncertainties related to the methods used and nonstationary of the climate system.
    Keywords: 551.6 ; analogues downscaling ; climate change ; CMIP5 predictions ; Eastern Mediterranean ; seasonal precipitation ; synoptic classification ; weather regimes
    Language: English
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2021-10-06
    Description: Loess sediments are windblown silt deposits with, in general, a carbonate grain content of up to 30%. While regionally, loess was reported to increase weathering fluxes substantially, the influence on global weathering fluxes remains unknown. Especially on glacial-interglacial time scales, loess weathering fluxes might have contributed to land-ocean alkalinity flux variability since the loess areal extent during glacial epochs was larger. To quantify loess weathering fluxes, global maps representing the loess distribution were compiled. Water chemistry of rivers draining recent loess deposits suggests that loess contributes over-proportionally to alkalinity concentrations if compared to the mean of alkalinity concentrations of global rivers (~4,110 µeq L−1 for rivers draining loess deposits and ~1,850 µeq L−1 for the total of global rivers), showing comparable alkalinity concentration patterns in rivers as found for carbonate sedimentary rocks. Loess deposits, covering ~4% of the ice- and water-free land area, increase calculated global alkalinity fluxes to the coastal zone by 16%. The new calculations lead to estimating a 4% higher global alkalinity flux during the Last Glacial Maximum (LGM) compared to present fluxes. The effect of loess on that comparison is high. Alkalinity fluxes from silicate-dominated lithological classes were ~28% and ~30% lower during the LGM than recent (with loess and without loess, respectively), and elevated alkalinity fluxes from loess deposits compensated for this. Enhanced loess weathering dampens due to a legacy effect changes in silicate-dominated lithologies over the glacial-interglacial time scale.
    Keywords: 551 ; chemical weathering ; loess deposits
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2021-10-06
    Description: Research on improving the prediction skill of climate models requires refining the quality of observational data used for initializing and tuning the models. This is especially true in the polar regions where uncertainties about the interactions between sea ice, ocean, and atmosphere are driving ongoing monitoring efforts. The Copernicus Imaging Microwave Radiometer (CIMR) is an European Space Agency (ESA) candidate mission which promises to offer high resolution, low uncertainty observation capabilities at the 1.4, 6.9, 10.65, 18.7, and 36.5 GHz frequencies. To assess the potential impact of CIMR for sea ice parameter retrieval, a comparison is made between retrievals based on present AMSR2 observations and a retrieval using future CIMR equivalent observations over a data set of validated sea ice concentration (SIC) values. An optimal estimation retrieval method (OEM) is used which can use input from different channel combinations to retrieve seven geophysical parameters (sea ice concentration, multi-year ice fraction, ice surface temperature, columnar water vapor, liquid water path, over ocean wind speed, and sea surface temperature). An advantage of CIMR over existing radiometers is that it would provide higher spatial resolution observations at the lower frequency channels (6.9, 10.65, and 18.7 GHz) which are less sensitive to atmospheric influence. This enables the passive microwave based retrieval of SIC and other surface parameters with higher resolution and lower uncertainty than is currently possible. An information content analysis expands the comparison between AMSR2 and CIMR to all retrievable surface and atmospheric parameters. This analysis quantifies the contributions to the observed signal and highlights the differences between different input channel combinations. The higher resolution of the low frequency CIMR channels allow for unprecedented detail to be achieved in Arctic passive microwave sea ice retrievals. The presence of 1.4 GHz channels on board CIMR opens up the possibility for thin sea ice thickness (SIT) retrieval. A combination of collocated AMSR2 and SMOS observations is used to simulate a full CIMR suite of measurements, and the OEM is modified to include SIT as a retrieval parameter. The output from different retrieval configurations is compared with an operational SIT product. The CIMR instrument can provide increased accuracy for SIC retrieval at very high resolutions with a combination of the 18.7 and 36.5 GHz channels while also maintaining sensitivity for atmospheric water vapor retrieval. In combination with the 1.4 GHz channels, SIT can be added as an eighth retrieval parameter with performance on par with existing operational products.
    Keywords: 551.6 ; sea ice ; satellite semote sensing ; passive microwave ; Arctic ; optimal estimation ; information content analysis
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2021-10-01
    Description: Meteorologists in the energy industry increasingly draw upon the potential for enhanced sub-seasonal predictability of European surface weather following anomalous states of the winter stratospheric polar vortex (SPV). How the link between the SPV and the large-scale tropospheric flow translates into forecast skill for surface weather in individual countries – a spatial scale that is particularly relevant for the energy industry – remains an open question. Here we quantify the effect of anomalously strong and weak SPV states at forecast initial time on the probabilistic extended-range reforecast skill of the European Centre for Medium-Range Weather Forecasts (ECMWF) in predicting country- and month-ahead-averaged anomalies of 2 m temperature, 10 m wind speed, and precipitation. After anomalous SPV states, specific surface weather anomalies emerge, which resemble the opposing phases of the North Atlantic Oscillation. We find that forecast skill is, to first order, only enhanced for countries that are entirely affected by these anomalies. However, the model has a flow-dependent bias for 2 m temperature (T2M): it predicts the warm conditions in Western, Central and Southern Europe following strong SPV states well, but is overconfident with respect to the warm anomaly in Scandinavia. Vice versa, it predicts the cold anomaly in Scandinavia following weak SPV states well, but struggles to capture the strongly varying extent of the cold air masses into Central and Southern Europe. This tends to reduce skill (in some cases significantly) for Scandinavian countries following strong SPV states, and most pronounced, for many Central, Southern European, and Balkan countries following weak SPV states. As most of the weak SPV states are associated with sudden stratospheric warmings (SSWs), our study thus advices particular caution when interpreting sub-seasonal regional T2M forecasts following SSWs. In contrast, it suggests that the model benefits from enhanced predictability for a considerable part of Europe following strong SPV states.
    Keywords: 551.6 ; energy ; European countries ; polar vortex ; stratosphere ; sub-seasonal forecast skill ; sudden stratospheric warming ; surface weather
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2021-10-01
    Description: High-quality time series of meteorological observations are required for reliable assessments of climate trends. To analyze inhomogeneities in time series, parallel measurements can be used. Germany's national meteorological service DWD (Deutscher Wetterdienst) operates a network of climate reference stations. At these stations, manual and automatic observations have been taken in parallel. These parallel measurements therefore allow analyzing the impact of the transition on the homogeneity of time series of several meteorological parameters. Here, we present results for temperature. The differences between automatic and manual measurements are tested on breakpoints caused by instrumental defects or changes in the measurement conditions. The time series are highly correlated such that small breaks can be identified. The detected breakpoints are verified against metadata if available. In the case of no available metadata information, a procedure is suggested to identify the inhomogeneous time series (manual or automatic time series). Afterwards, the time series are homogenized. The homogenized time series are used to analyze the impact of changing the observing system from manual to automatic measurements on daily mean temperature.
    Keywords: 551.6 ; automatization ; breakpoint detection ; climate observations ; homogenization ; parallel measurements ; temperature series
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2021-10-01
    Description: The paper describes an update of the GECCO (German contribution to the Estimating the Circulation and Climate of the Ocean project) ocean synthesis, now in its version 3, and provides an evaluation of the results with assimilated and independent data. GECCO3 covers the 71-year period 1948–2018 and differs from its predecessor by returning to a single assimilation window instead of partitioning the period in 5-year-long overlapping windows which was previously necessary to yield convergence. A solution to the convergence problem is presented. GECCO3 is intended to be used for the initialization of coupled climate models and is configured for the higher-resolution version of the earth system model (MPI-ESM) developed at the Max Planck Institute for Meteorology. It uses the bathymetry and grid of the MPI-ESM with quasi-uniform resolution of 0.4°, thereby providing the first global eddy-permitting synthesis based on the adjoint method. The synthesis additionally features the estimation of various mixing parameters and can regionally choose between explicit or parametrized eddy fluxes. Except for the altimeter data in tropical regions, GECCO3 is in better agreement with the assimilated data than GECCO2. The improvements relative to the in situ data partly result from the much larger amount of Argo data, which show lower model–data differences. Global heat content changes are in good agreement with recent estimates, but show uptake almost exclusively in the top 700 m. An alternative version of GECCO3, created by starting from different first-guess control parameters, was used to evaluate the uncertainty of the estimated parameters and state due to lack of convergence. This estimate suggests a large uncertainty related to the uptake of heat into the lower layers, while estimates of mean meridional transport of heat and freshwater are not affected.
    Keywords: 551.6 ; 551.46 ; climate model initialization ; eddy-permitting ocean synthesis ; heat content change ; ocean transports
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2021-10-01
    Description: China is the world's second-largest economy, and its capital Beijing has been suffering from severe haze pollution in recent years. However, how the winter haze events in Beijing vary under different global warming scenarios is still open for debate. In order to analyse long-term winter haze characteristics in Beijing in the future, we have simulated haze events using the haze weather index (HWI) for the warming periods of 1.5 and 2.0°C, based on 20 Coupled Model Intercomparison Project Phase 5 (CMIP5) models under two representative concentration pathways (RCP4.5 and RCP8.5). Our results indicate that 16 CMIP5 models have preferable performance in simulating the spatial pattern and occurrence frequency of winter haze events in Beijing. We highlight that in the 1.5 and 2.0°C global warming period (2020s–2050s), Beijing will face a significant increasing trend (6–9% growth rate) in the occurrence of winter haze events compared with the reference period (1986–2005). The frequency of winter haze events under the RCP4.5 increases less than under the RCP8.5 in the 1.5°C warming period but is closer to RCP8.5 in the 2.0°C warming period. The increase of winter haze events with respect to natural factors in Beijing could be attributed to stronger atmospheric inversions, weaker East Asian winter monsoons, and a shallowing East Asian trough induced by global warming. Our results will provide scientific instructions for environmental departments to better face meteorological hazards, such as air pollution episodes, thereby improving the early warning mechanism system for global warming.
    Keywords: 551.6 ; 1.5°C ; 2.0°C ; China ; CMIP5 ; global warming ; haze
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2021-12-03
    Description: In contrast to seamount chains, small solitary seamounts/seamount groups have rarely been sampled despite their large number and therefore their origins remain enigmatic. Here we present new 40Ar/39Ar, trace element and Nd-Hf-Pb isotope data from the solitary Demenitskoy Seamount, the isolated Tolkien seamount group and the Krylov Seamount and Ridge in the Canary Basin, Central Atlantic Ocean. Their chemical compositions range from intraplate ocean-island-basalt (Demenitskoy) to mid-ocean-ridge-basalt (Tolkien and Krylov) types. Lavas from all three seamount groups, however, show geochemical evidence for involvement of enriched Canary/Cape Verde plume material. Seismic tomography shows that large areas around these mantle plumes consist of dispersed low-velocity material, which could represent diffusely-upwelling plume mantle. Melts from such upwelling mantle could form isolated seamounts. Diffuse upwelling of plume material is likely to be extremely widespread but has been poorly studied to date. Significance Statement A fundamental question concerns the origin of the hundreds of thousands of solitary seamounts and small isolated clusters of such seamounts on the seafloor of the world's ocean basins. Most of them do not fit into any currently accepted models (e.g. they are not associated with a linear hotspot track or plate boundary processes). Their formation could therefore represent a new kind of intraplate volcanism that in fact could be extremely widespread but has been thus far largely neglected. In this manuscript, we report geochemical data from three isolated seamount sites in the Canary Basin and propose a provocative model for their formation that can also be applied to isolated seamounts elsewhere. Our study is therefore also a plea for the long overdue systematic investigation of small seamount volcanism in the world's ocean basins. I hereby confirm that all the data and interpretations are new and have not been published elsewhere. All co-authors have been actively involved in this work, have approved the manuscript and agreed to this submission.
    Keywords: 551 ; Canary Basin ; seamounts ; isotopic compositions
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2021-11-30
    Description: The Indonesian Throughflow (ITF) operates as an important link in global thermohaline circulation, and ITF variability probably modulated Pliocene climate change. Yet, whether ITF variability accounted for oceanographic change south of Northwest Cape remains controversial. Here, we present a multiproxy oceanographic reconstruction from the Perth Basin and reconstruct the Pliocene history of the Leeuwin Current (LC). We show that the LC was active throughout the Pliocene, albeit with fluctuations in intensity and scope. Three main factors controlled LC strength. First, a tectonic ITF reorganization caused an abrupt and permanent LC reduction at 3.7 Ma. On shorter timescales, eustatic sea level and direct orbital forcing of wind patterns hampered or promoted the LC. At 3.3 Ma, for instance, LC intensity plunged in response to a eustatic ITF restriction. Site U1459 then fell outside the extent of a weakened LC, and the latitudinal sea surface temperature gradient along West Australia doubled its steepness.
    Keywords: 551 ; Perth Basin ; sediment core ; multiproxy geochemical records ; Pliocene ; Leeuwin Current (LC)
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2021-10-25
    Description: Ocean heat transport is often thought to play a secondary role for Arctic surface warming in part because warm water which flows northward is prevented from reaching the surface by a cold and stable halocline layer. However, recent observations in various regions indicate that occasionally, warm water is found directly below the surface mixed layer. Here we investigate Arctic Ocean surface energy fluxes and the cold halocline layer in climate model simulations from the Coupled Model Intercomparison Project Phase 5. An ensemble of 15 models shows decreased sea ice formation and increased ocean energy release during fall, winter, and spring for a high-emission future scenario. Along the main pathways for warm water advection, this increased energy release is not locally balanced by increased Arctic Ocean energy uptake in summer. Because during Arctic winter, the ocean mixed layer is mainly heated from below, we analyze changes of the cold halocline layer in the monthly mean Coupled Model Intercomparison Project Phase 5 data. Fresh water acts to stabilize the upper ocean as expected based on previous studies. We find that in spite of this stabilizing effect, periods in which warm water is found directly or almost directly below the mixed layer and which occur mainly in winter and spring become more frequent in high-emission future scenario simulations, especially along the main pathways for warm water advection. This could reduce sea ice formation and surface albedo.
    Keywords: 551.46 ; 551.6 ; Arctic ; climate change ; cold halocline ; climate modeling
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2021-10-25
    Description: The Northern Hemisphere mid-latitudes will be exposed to hydroclimatic risk in next coming decades because the subtropical expansion. However, it is not clear when the anthropogenic signal will emerge from the internal climate variability. For this purpose, we investigate the time of emergence (ToE) of the hemispheric and regional shift of northern subtropical margins in the Max Planck Institute Grand Ensemble. For several indicators, the ToE of the poleward shift of Northern subtropical margin will not occur by the end of the 21st century, neither at regional nor at hemispheric scale. The exceptions are the Mediterranean/Middle East and, to a lesser degree, Western Pacific, where the ToE would occur earlier. According to our results, given the fundamental role played by internal variability, trends of Northern Hemisphere subtropical poleward shift that have been identified over last decades in reanalyses cannot be considered as robust signals of anthropogenic climate change.
    Keywords: 551.6 ; Northern Hemisphere subtropics ; poleward shift ; MPI-ESM Grand Ensemble ; forced response ; natural variability ; time of emergence
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2021-10-25
    Description: Estimates of flood susceptibility and land loss in the world's coastal regions depend on our knowledge of sea level rise (SLR) from increases in ocean mass and volume, as well as knowledge of vertical land motion. Conventional approaches to the latter include tide-gauge and Global Positioning System (GPS) measurements relative to well-anchored monuments few meters below the surface. However, in regions of rapid Holocene sedimentation, compaction of this material can add a significant component to the surface lowering. Unfortunately, this process has been difficult to quantify, especially for the shallowest material above the monument. Here we use a new technique, GPS interferometric reflectometry, to estimate the rate of this process in the Mississippi Delta and the eastern margin of the North Sea. We show that the rate of shallow compaction is comparable to or larger than the rate of global SLR, adding 35% and 65%, respectively, to the rate of relative SLR by 2100.
    Keywords: 526.3 ; 551 ; GPS ; interferometric reflectometry ; tide gauge ; coastal subsidence ; shallow subsidence ; Holocene sediment compaction
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2021-10-25
    Description: Nonrainy days have rather different hydrologic and radiative conditions than rainy days, but few investigations considered how these different conditions contribute to the observed global warming. Here, we show that global warming is considerably stronger on nonrainy days using observations from China. We find that trends in mean temperature on nonrainy days are about 0.1 ° C/10 yr higher than on rainy days, and that about 80% of the total temperature increase is contributed by nonrainy days. The main reason is likely to be a stronger sensitivity of downwelling longwave radiation to greenhouse forcing on nonrainy days due to fewer clouds and water vapor compared with rainy days, which is not a hydrological effect but mainly a radiative effect. Our findings are consistent with the stronger mean temperature trends in drier regions and imply that the different temperature sensitivities on nonrainy and rainy days may have profound effects on natural and social systems.
    Keywords: 551.6 ; global warming ; rainy day ; temperature trend
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2021-10-26
    Description: The relationship between River Ammer flood frequency variability, extreme summer climate over Europe, and solar forcing is investigated. First, we used observational data to evaluate extreme weather and climate anomaly patterns associated with flood and solar forcing as well as the possible dynamical mechanisms behind them. Then, the annual resolution flood layer record from the Lake Ammer sediments is analysed to evaluate millennial-scale variability of floods and possible related extreme climate patterns back to 5,500 years BP. A composite analysis reveals that observed River Ammer flood frequency variability at interannual to multidecadal time scales is connected to large-scale extreme precipitation and temperature patterns. From a synoptic-scale perspective, the extreme precipitation pattern associated with floods is related to an increase in the frequency of high upper-level potential vorticity (PV) events over western Europe and a decrease over eastern Europe and western Russia. Increased (decreased) frequency of upper-level high PV events is related to more (less) surface extreme precipitation occurrence. Furthermore, we show that increased frequency of upper-level high PV events over western Europe is associated with enhanced blocking activity over eastern Europe. Therefore, the out of phase interannual to millennial-scale variations of River Ammer flood frequency and solar irradiance, as presented in previous studies, can be explained by a solar modulation of eastern European-western Russia summer blocking and associated upstream upper-level wave breaking activity. In addition, we identify two distinct quasi-periodic signals in both frequency of Lake Ammer flood layer and solar irradiance records with periods of ~900 years and ~2,300 years. We argue that similar cycles should dominate millennial-scale variations of blocking activity in eastern Europe-western Russia as well as extreme precipitation and flood frequency variability over central and western Europe during the last ~5,500 years.
    Keywords: 551.6 ; floods ; extreme precipitation ; potential vorticity ; solar forcing
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2021-10-26
    Description: Opportunistic constant target matching is a new method for satellite intercalibration. It solves a long-standing issue with the traditional simultaneous nadir overpass (SNO) method, namely, that it typically provides only data points with cold brightness temperatures for humidity sounding instruments on sun-synchronous satellites. In the new method, a geostationary infrared sensor (SEVIRI) is used to select constant target matches for two different microwave sensors (MHS on NOAA 18 and Metop A). We discuss the main assumptions and limitations of the method and explore its statistical properties with a simple Monte Carlo simulation. The method was tested in a simple case study with real observations for this combination of satellites for MHS Channel 3 at 183 ± 1 GHz, the upper tropospheric humidity channel. For the studied 3-month test period, real observations are found to behave consistently with the simulations, increasing our confidence that the method can be a valuable tool for intercalibration efforts. For the selected case study, the new method confirms that the bias between NOAA 18 and Metop A MHS Channel 3 is very small, with absolute value below 0.05 K.
    Keywords: 551.6 ; satellite ; calibration ; collocation ; microwave ; infrared
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...