ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-03-30
    Description: In this article, the first spatially resolved millennium-long summer (June–August) temperature reconstruction over the Arctic and Subarctic domain (north of 60° N) is presented. It is based on a set of 54 annually dated temperature sensitive proxy archives of various types, mainly from the updated and revised PAGES2k database supplemented with 6 new recently published proxy records. As a major novelty, an extension of the Bayesian BARCAST climate field (CF) reconstruction technique provides a means to treat climate archives with dating uncertainties. In total 1400 realisations of the temperature CF were generated, enabling further analyses to be carried out in a probabilistic framework. The new seasonal CF reconstruction for the Arctic region can be shown to be skilful for the majority of the terrestrial nodes. The decrease in the proxy data density back in time however limits the analyses in the spatial domain to the period after 750 CE, while the spatially averaged reconstruction covers the entire time interval of 1–2002 CE. The analysis of basic features of the reconstructed seasonal CF focuses on the regional expression of past major climate anomalies in order to uncover the potential of the new product for studying Common Era temperature variability in the region. The long-term, centennial to millennial, evolution of the reconstructed temperature is in good agreement with a general pattern that was inferred in recent studies for the Arctic and its sub-regions. On the pan-Arctic scale the reconstruction shows a cooling trend which is, however, statistically insignificant and the estimated magnitude of the millennial scale cooling is three times smaller than inferred in the previous studies. The trend is spatially heterogeneous and for some regions such as Greenland the reconstruction demonstrates a tendency to the warming instead. The reconstruction shows a pronounced Medieval Climate Anomaly (MCA, here, ca. ~ 960–1060 CE), which was characterised by a sequence of extremely warm decades over the whole domain. The medieval warming was followed by a gradual cooling into the Little Ice Age (LIA), with 1580–1680 CE as the longest centennial-scale cold period, culminating around 1812–1822 CE for most of the target region. At the same time there is evidence for a drastic reduction in sea-ice on the Greenland shelf, which is reflected by rather high summer temperatures over Greenland and Baffin Island during that decade. During the MCA, the contrast between reconstructed summer temperatures over mid- and high-latitudes in Europe and the European/North Atlantic sector of the Arctic shows a very dynamic expression of the Arctic amplification, with leads and lags between continental and more marine and extreme latitude settings. While our analysis shows that the peak MCA summer temperatures were as high as in the late 20th and early 21st century, the spatial coherence of extreme years over the last decades seems unprecedented at least back until 750 CE. However, statistical testing could not provide conclusive support of the contemporary warming to supersede the peak of the MCA in terms of the pan-Arctic mean summer temperatures.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-04-28
    Description: The concept of multiple scaling regimes in temperature time series is examined, with emphasis on the question whether or not a monoscaling model with one single scaling regime can be rejected from observation data from the Holocene. A model for internal variability with only one regime is simpler and allows more certain predictions on timescales of centuries when combined with existing knowledge of radiative forcing. Our analysis of spectra from stable isotope ratios from Greenland and Antarctica ice cores shows that a scale break around centennial timescales is evident for the last glacial period, but not for the Holocene. Spectra from a number of late Holocene multiproxy temperature reconstructions, and one from the entire Holocene, have also been analysed, without identifying a significant scale break. Our results indicate that a single-regime scaling climate noise, with some non-scaling fluctuations on a millennial timescale superposed, cannot be rejected as a null model for the Holocene climate. The scale break observed from the glacial time ice-core records is likely caused by the influence of Dansgaard–Oeschger events and teleconnections to the Southern Hemisphere on centennial timescales. From our analysis we conclude that the two-regime model is not sufficiently justified for the Holocene to be used for temperature prediction on centennial timescales.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-04-24
    Description: In this article, the first spatially resolved and millennium-length summer (June–August) temperature reconstruction over the Arctic and sub-Arctic domain (north of 60° N) is presented. It is based on a set of 44 annually dated temperature-sensitive proxy archives of various types from the revised PAGES2k database supplemented with six new recently updated proxy records. As a major advance, an extension of the Bayesian BARCAST climate field (CF) reconstruction technique provides a means to treat climate archives with dating uncertainties. This results not only in a more precise reconstruction but additionally enables joint probabilistic constraints to be imposed on the chronologies of the used archives. The new seasonal CF reconstruction for the Arctic region can be shown to be skilful for the majority of the terrestrial nodes. The decrease in the proxy data density back in time, however, limits the analyses in the spatial domain to the period after 750 CE, while the spatially averaged reconstruction covers the entire time interval of 1–2002 CE.The centennial to millennial evolution of the reconstructed temperature is in good agreement with a general pattern that was inferred in recent studies for the Arctic and its subregions. In particular, the reconstruction shows a pronounced Medieval Climate Anomaly (MCA; here ca. 920–1060 CE), which was characterised by a sequence of extremely warm decades over the whole domain. The medieval warming was followed by a gradual cooling into the Little Ice Age (LIA), with 1766–1865 CE as the longest centennial-scale cold period, culminating around 1811–1820 CE for most of the target region.In total over 600 independent realisations of the temperature CF were generated. As showcased for local and regional trends and temperature anomalies, operating in a probabilistic framework directly results in comprehensive uncertainty estimates, even for complex analyses. For the presented multi-scale trend analysis, for example, the spread in different paths across the reconstruction ensemble prevents a robust analysis of features at timescales shorter than ca. 30 years. For the spatial reconstruction, the benefit of using the spatially resolved reconstruction ensemble is demonstrated by focusing on the regional expression of the recent warming and the MCA. While our analysis shows that the peak MCA summer temperatures were as high as in the late 20th and early 21st centuries, the spatial coherence of extreme years over the last decades of the reconstruction (1980s onwards) seems unprecedented at least back until 750 CE. However, statistical testing could not provide conclusive support of the contemporary warming to exceed the peak of the MCA in terms of the pan-Arctic mean summer temperatures: the reconstruction cannot be extended reliably past 2002 CE due to lack of proxy data and thus the most recent warming is not captured.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-29
    Description: The skill of the state-of-the-art climate field reconstruction technique BARCAST (Bayesian Algorithm for Reconstructing Climate Anomalies in Space and Time) to reconstruct temperature with pronounced long-range memory (LRM) characteristics is tested. A novel technique for generating fields of target data has been developed and is used to provide ensembles of LRM stochastic processes with a prescribed spatial covariance structure. Based on different parameter setups, hypothesis testing in the spectral domain is used to investigate if the field and spatial mean reconstructions are consistent with either the fractional Gaussian noise (fGn) process null hypothesis used for generating the target data, or the autoregressive model of order 1 (AR(1)) process null hypothesis which is the assumed temporal evolution model for the reconstruction technique. The study reveals that the resulting field and spatial mean reconstructions are consistent with the fGn process hypothesis for some of the tested parameter configurations, while others are in better agreement with the AR(1) model. There are local differences in reconstruction skill and reconstructed scaling characteristics between individual grid cells, and the agreement with the fGn model is generally better for the spatial mean reconstruction than at individual locations. Our results demonstrate that the use of target data with a different spatiotemporal covariance structure than the BARCAST model assumption can lead to a potentially biased climate field reconstruction (CFR) and associated confidence intervals.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-03-13
    Description: The Bayesian hierarchical model BARCAST (Bayesian Algorithm for Reconstructing Climate Anomalies in Space and Time) climate field reconstruction (CFR) technique, and idealized input data are used in the pseudoproxy experiments of this study. Ensembles of targets are generated from fields of long-range memory stochastic processes using a novel approach. The range of experiment setups include input data with different levels of persistence and levels of proxy noise, but without any form of external forcing. The input data are thereby a simplistic alternative to standard target data extracted from general circulation model (GCM) simulations. Ensemble-based temperature reconstructions are generated, representing the European landmass for a millennial time period. Hypothesis testing in the spectral domain is then used to investigate if the field and spatial mean reconstructions are consistent with either the fractional Gaussian noise (fGn) null hypothesis used for generating the target data, or the autoregressive model of order one (AR(1)) null hypothesis which is the assumed temperature model for this reconstruction technique. The study reveals that the resulting field and spatial mean reconstructions are consistent with the fGn hypothesis for most of the parameter configurations. There are local differences in reconstructed scaling characteristics between individual grid cells, and a generally better agreement with the fGn model for the spatial mean reconstruction than at individual locations. The discrepancy from an fGn is most evident for the high-frequency part of the reconstructed signal, while the long-range memory is better preserved at frequencies corresponding to decadal time scales and longer. Selected experiment setups were found to give reconstructions consistent with the AR(1) model. Reconstruction skill is measured on an ensemble member basis using selected validation metrics. Despite the mismatch between the BARCAST temporal covariance model and the model of the target, the ensemble mean was in general found to be consistent with the target data, while the estimated confidence intervals are more affected by this discrepancy. Our results show that the use of target data with a different spatiotemporal covariance structure than the BARCAST model assumption can lead to a potentially biased CFR reconstruction and associated confidence intervals, because of the wrong model assumptions.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Publication Date: 2021-08-01
    Print ISSN: 0277-3791
    Electronic ISSN: 1873-457X
    Topics: Geography , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-04-22
    Description: One of the most intriguing facets of the climate system is that it exhibits variability across all temporal and spatial scales; pronounced examples are temperature and precipitation. The structure of this variability, however, is not arbitrary. Over certain spatial and temporal ranges, it can be described by scaling relationships in the form of power laws in probability density distributions and autocorrelation functions. These scaling relationships can be quantified by scaling exponents which measure how the variability changes across scales and how the intensity changes with frequency of occurrence. Scaling determines the relative magnitudes and persistence of natural climate fluctuations. Here, we review various scaling mechanisms and their relevance for the climate system. We show observational evidence of scaling and discuss the application of scaling properties and methods in trend detection, climate sensitivity analyses, and climate prediction.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-10-07
    Description: Abstract One of the most intriguing facets of the climate system is that it exhibits variability across all temporal and spatial scales; pronounced examples are temperature and precipitation. The structure of this variability, however, is not arbitrary. Over certain spatial and temporal ranges, it can be described by scaling relationships in the form of power laws in probability density distributions and autocorrelation functions. These scaling relationships can be quantified by scaling exponents which measure how the variability changes across scales and how the intensity changes with frequency of occurrence. Scaling determines the relative magnitudes and persistence of natural climate fluctuations. Here, we review various scaling mechanisms and their relevance for the climate system. We show observational evidence of scaling and discuss the application of scaling properties and methods in trend detection, climate sensitivity analyses, and climate prediction.
    Keywords: 551.6 ; scaling ; climate variability ; memory ; scaling mechanisms ; paleoclimate ; power law
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-12-20
    Description: The objective of the Twelfth Workshop on the Development of Quantitative Assessment Methodologies based on Life-history traits, exploitation characteristics, and other relevant parameters for data-limited stocks (WKLIFE XII) was to further develop methods for stock assessment, stock status, and catch advice for stocks in ICES Categories 2–6, focusing on the provision of sound advice rules adhering to the ICES advisory framework and principles for fisheries management. This report addresses (i) questions from different ICES assessment working groups and stakeholders regarding the applicability of the data-limited technical guidelines, (ii) the prioritisation of future tasks regarding the ICES data-limited framework, (iii) further development and testing of data-limited methodologies with specific focus on the review of the current ICES advice framework for stock Categories 4-6, spatial indicators, and reference points for surplus production models, and (iv) other relevant data-limited topics. A survey of participants resulted in a high prioritisation score of four topics of the ICES data-limited roadmap: (1) risk equivalence, best available science, guidelines and communication of data-limited methods, (2) value of information of different data-types and data preparation, (3) better advice for slow-growing species, and (4) observation and parameter uncertainty in empirical harvest control rules and length-based approaches. The current ICES approach for Category 5 and 6 stocks, with an advice for constant annual catch and a periodic reduction with a precautionary buffer, is a form of non-adaptive management and an initial review revealed that it may not be precautionary if a stock is overfished but also overly precautionary in other situations. An exploration of spatial indicators showed that these have the potential to inform on stock status. A stochastic definition of MSY Btrigger for surplus production models takes uncertainty into account and leads to higher reference values than the current definition for stocks with low and intermediate biomass variability.
    Description: Published
    Description: Refereed
    Keywords: MSE ; MSY ; Fishery management ; Stock Assessment ; Data-limited
    Repository Name: AquaDocs
    Type: Report
    Format: 118pp
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...