ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (8)
  • 2000-2004  (13)
  • 1965-1969  (138,858)
  • 1945-1949  (20,890)
  • 1969  (138,856)
  • 1946  (20,881)
Collection
Language
Years
Year
  • 1
    Publication Date: 2024-06-26
    Description: In the summer of 1966 (1966-06-20 to 1966-07-08), during approximately one month, research vessels from Finland, Germany, Norway, Sweden and UK-Scotland made hydrographical investigations in the Skagerrak, parts of the NE North Sea Proper and N Kattegat. Germany also deployed recording current meters, 16 instruments at 10 positions, with some 20 days' data collection. Finally, there were current measurements from research vessels drifting or at anchor. One of the aims was to estimate the average water transport and its origin. The data has been quality controlled.
    Keywords: AL01_01; AL01_02; AL01_03; AL01_04; AL01_05; AL01_06; AL01_07; AL01_08; AL01_09; AL01_10; AL01_11; AL01_12; AL01_13; AL01_14; AL01_15; AL01_16; AL01_17; AL01_18; AL01_19; AL01_20; AL01_21; AL01_22; AL01_23; Alkor (1965); Alkor66; Aranda (1989); Aranda66/1; Aranda66/1_131; Aranda66/1_132; Aranda66/1_133; Aranda66/1_134; Aranda66/1_135; Aranda66/1_136; Aranda66/1_137; Aranda66/1_138; Aranda66/1_139; Aranda66/1_140; Aranda66/1_141; Aranda66/1_142; Aranda66/1_143; Aranda66/1_144; Aranda66/1_145; Aranda66/1_146; Aranda66/1_147; Aranda66/1_148; Aranda66/1_149; Aranda66/1_150; Aranda66/1_151; Aranda66/1_152; Aranda66/1_153; Aranda66/1_154; Aranda66/1_155; Aranda66/1_156; Aranda66/1_157; Aranda66/1_158; Aranda66/1_159; Aranda66/1_160; Aranda66/1_161; Aranda66/1_162; Aranda66/1_163; Aranda66/1_164; Aranda66/1_165; Aranda66/1_166; Aranda66/1_167; Aranda66/1_168; Aranda66/1_169; Aranda66/1_170; Aranda66/1_171; Aranda66/1_172; Aranda66/1_173; Aranda66/1_174; Aranda66/1_175; Aranda66/1_176; Aranda66/1_177; Aranda66/1_178; Aranda66/1_179; Aranda66/1_180; Aranda66/1_181; Aranda66/1_182; Aranda66/1_183; Aranda66/1_184; Aranda66/1_185; Aranda66/1_186; Aranda66/1_187; Aranda66/1_188; Aranda66/1_189; Aranda66/1_190; Aranda66/1_191; Aranda66/1_192; Aranda66/1_193; Aranda66/1_194; Aranda66/1_195; Aranda66/1_196; Aranda66/1_197; Aranda66/1_198; Aranda66/1_199; Aranda66/1_200; Aranda66/1_201; Aranda66/1_202; Aranda66/1_203; CTD/Rosette; CTD-RO; Dannevig; G. O. Sars (1950); GMD66; GMD66_119; GMD66_120; GMD66_121; GMD66_122; GMD66_123; GMD66_124; GMD66_125; GMD66_126; GMD66_127; GMD66_128; GMD66_129; GS66; GS66_405; GS66_406; GS66_407; GS66_408; GS66_409; GS66_410; GS66_411; GS66_412; GS66_413; GS66_414; GS66_415; GS66_416; GS66_417; GS66_418; GS66_419; GS66_420; GS66_421; GS66_422; GS66_423; GS66_424; GS66_425; GS66_426; GS66_427; GS66_428; GS66_429; GS66_430; GS66_431; GS66_432; GS66_433; GS66_434; GS66_435; GS66_436; GS66_437; GS66_438; GS66_439; GS66_440; GS66_441; GS66_442; GS66_443; GS66_444; GS66_445; GS66_446; GS66_447; GS66_448; GS66_449; GS66_450; GS66_451; GS66_452; GS66_453; GS66_454; GS66_455; GS66_456; GS66_457; GS66_458; GS66_459; GS66_460; GS66_461; GS66_462; GS66_463; GS66_464; GS66_465; GS66_466; GS66_467; GS66_468; GS66_469; GS66_470; GS66_471; GS66_472; GS66_473; GS66_474; GS66_475; GS66_476; GS66_477; GS66_478; GS66_479; GS66_480; GS66_481; GS66_482; GS66_483; GS66_484; GS66_485; GS66_486; GS66_487; GS66_488; GS66_489; GS66_490; GS66_491; GS66_492; GS66_493; GS66_494; GS66_495; GS66_496; GS66_497; GS66_498; GS66_499; GS66_500; GS66_501; GS66_502; GS66_503; GS66_504; GS66_505; GS66_506; GS66_507; GS66_508; GS66_509; GS66_510; GS66_511; GS66_512; GS66_513; GS66_514; GS66_515; GS66_516; GS66_517; GS66_518; GS66_519; GS66_520; GS66_521; GS66_522; GS66_523; GS66_524; GS66_525; GS66_526; GS66_527; GS66_528; GS66_529; GS66_530; GS66_531; GS66_532; GS66_533; GS66_534; GS66_535; GS66_536; GS66_537; GS66_538; GS66_539; GS66_540; GS66_541; GS66_542; GS66_543; GS66_544; GS66_545; GS66_546; GS66_547; GS66_548; GS66_549; GS66_550; GS66_551; GS66_552; GS66_553; GS66_554; GS66_555; GS66_556; GS66_557; GS66_558; GS66_559; GS66_560; GS66_561; GS66_562; GS66_563; GS66_564; GS66_565; GS66_566; GS66_567; GS66_568; GS66_569; GS66_570; GS66_571; GS66_572; GS66_573; GS66_574; GS66_575; GS66_576; GS66_577; GS66_578; GS66_579; GS66_580; GS66_581; GS66_582; GS66_583; GS66_584; GS66_586; GS66_588; GS66_590; GS66_592; GS66_594; GS66_596; GS66_598; GS66_600; GS66_602; GS66_604; GS66_606; GS66_608; GS66_610; GS66_612; GS66_614; GS66_617; GS66_619; GS66_621; GS66_623; GS66_625; GS66_627; GS66_631; GS66_633; GS66_635; GS66_637; GS66_639; GS66_641; GS66_643; GS66_645; GS66_647; GS66_649; GS66_651; GS66_654; GS66_656; GS66_658; GS66_660; GS66_662; GS66_664; GS66_666; GS66_668; GS66_670; GS66_672; GS66_674; GS66_676; GS66_678; GS66_680; GS66_682; GS66_684; GS66_686; GS66_688; GS66_689; GS66_690; GS66_691; GS66_692; GS66_693; GS66_694; GS66_695; GS66_696; GS66_697; GS66_698; GS66_699; GS66_700; GS66_701; GS66_702; GS66_703; GS66_704; GS66_705; GS66_706; GS66_707; GS66_708; GS66_709; GS66_710; GS66_711; Kattegat; M5; M5_032; M5_033; M5_034; M5_035; M5_036; M5_037; M5_038; M5_039; M5_040; M5_041; M5_042; M5_043; M5_044; M5_045; M5_046; M5_047; M5_048; M5_049; M5_050; M5_051; M5_052; M5_053; M5_054; M5_055; M5_056; M5_057; M5_058; M5_059; M5_060; M5_061; M5_062; M5_063; M5_064; M5_065; M5_066; M5_067; M5_068; M5_069; M5_070; M5_071; M5_072; M5_073; M5_074; M5_075; M5_076; M5_077; M5_078; M5_079; M5_080; M5_081; M5_082; M5_083; M5_084; M5_085; M5_086; M5_087; M5_088; M5_089; M5_090; M5_091; M5_092; M5_093; M5_094; M5_095; M5_096; M5_097; M5_098; M5_099; M5_100; M5_101; M5_102; M5_103; M5_104; M5_105; M5_106; M5_107; M5_108; M5_109; M5_110; M5_111; M5_112; M5_113; M5_114; M5_115; M5_116; M5_117; M5_118; M5_119; M5_120; M5_121; M5_122; M5_123; M5_124; M5_125; M5_126; M5_127; M5_128; M5_129; M5_130; M5_131; M5_132; M5_133; M5_134; M5_135; M5_136; M5_137; M5_138; M5_139; M5_140; M5_141; M5_142; M5_143; M5_144; M5_145; M5_146; M5_147; M5_148; M5_149; M5_150; M5_151; M5_152; M5_153; M5_154; M5_155; M5_156; M5_157; M5_158; M5_159; M5_160; M5_161; M5_162; M5_163; M5_164; M5_165; M5_166; M5_167; M5_168; M5_169; M5_170; M5_171; M5_172; M5_173; M5_174; Meteor (1964); North Sea; Norwegian Sea; Scotia; Scotia66; Scotia66_097; Scotia66_098; Scotia66_099; Scotia66_100; Scotia66_101; Scotia66_102; Scotia66_103; Scotia66_104; Scotia66_105; Scotia66_106; Scotia66_107; Scotia66_108; Scotia66_109; Scotia66_110; Scotia66_111; Scotia66_112; Scotia66_113; Scotia66_114; Scotia66_115; Scotia66_116; Scotia66_117; Scotia66_118; Scotia66_119; Scotia66_120; Scotia66_121; Scotia66_122; Scotia66_123; Scotia66_124; Scotia66_125; Scotia66_126; Scotia66_127; Scotia66_128; Scotia66_129; Scotia66_130; Scotia66_131; Scotia66_132; Scotia66_133; Scotia66_134; Scotia66_135; Scotia66_136; Scotia66_137; Scotia66_138; Scotia66_139; Scotia66_140; Scotia66_141; Scotia66_142; Scotia66_143; Scotia66_144; Scotia66_145; Scotia66_146; Scotia66_147; Scotia66_148; Scotia66_149; Scotia66_150; Scotia66_151; Scotia66_152; Scotia66_153; Scotia66_154; Skagerrak; Skagerrak66; Skagerrak66_071; Skagerrak66_072; Skagerrak66_073; Skagerrak66_074; Skagerrak66_075; Skagerrak66_076; Skagerrak66_077; Skagerrak66_078; Skagerrak66_079; Skagerrak66_080; Skagerrak66_081; Skagerrak66_082; Skagerrak66_083; Skagerrak66_084; Skagerrak66_085; Skagerrak66_086; Skagerrak66_087; Skagerrak66_088; Skagerrak66_089; Skagerrak66_090; Skagerrak66_091; Skagerrak66_092; Skagerrak66_093; Skagerrak66_094; Skagerrak66_095; Skagerrak66_096; Skagerrak66_097; Skagerrak66_098; Skagerrak66_099; Skagerrak66_100; Skagerrak66_101; Skagerrak66_102; Skagerrak66_103; Skagerrak66_104; Skagerrak66_105; Skagerrak66_106; Skagerrak66_107; Skagerrak66_108; Skagerrak66_109; Skagerrak66_110; Skagerrak66_111; Skagerrak66_112; Skagerrak66_113; Skagerrak66_114; Skagerrak66_115; Skagerrak66_116; Skagerrak66_117; Skagerrak66_118; Skagerrak66_119; Skagerrak66_120; Skagerrak66_121; Skagerrak66_122; Skagerrak66_123; Skagerrak66_124; Skagerrak66_125; Skagerrak66_126; Skagerrak66_127; Skagerrak66_128; Skagerrak66_129; Skagerrak66_130; Skagerrak66_131; Skagerrak66_132; Skagerrak66_133; Skagerrak66_134; Skagerrak66_135; Skagerrak66_136; Skagerrak66_137; Skagerrak66_138; Skagerrak66_139; Skagerrak66_140; Skagerrak66_141; Skagerrak66_142; Skagerrak66_143; Skagerrak66_144; Skagerrak66_145; Skagerrak66_146; Skagerrak66_147; Skagerrak66_148; Skagerrak66_149; Skagerrak66_150; Skagerrak66_151; Skagerrak66_152; Skagerrak66_153; Skagerrak66_154; Skagerrak66_155; Skagerrak66_156; Skagerrak66_157; Skagerrak66_158; Skagerrak66_159; Skagerrak66_160; Skagerrak66_161; Skagerrak66_162; Skagerrak66_163; Skagerrak66_164; Skagerrak66_165; Skagerrak66_166; Skagerrak66_167; Skagerrak66_168; Skagerrak66_169; Skagerrak66_170; Skagerrak66_171; Skagerrak66_172; Skagerrak66_173; Skagerrak66_174; Skagerrak66_175; Skagerrak66_176;
    Type: Dataset
    Format: application/zip, 9 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-06-26
    Description: The dredges described in this report were taken on the PR II, CORPUS 4 Expedition in January 1969 by the USGS Woods Hole Coastal and Marine Science Center from the R/V Atlantic Twin. Dredges recovered and are available at USGS Woods Hole Coastal and Marine Science Center for sampling and study.
    Keywords: 1969-001-FA; Atlantic Twin; ATTW PR II; CORPUS 4; ATWPRII-2D; Deposit type; DEPTH, sediment/rock; Description; Dredge; DRG; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; Position; Puerto Rico; Quantity of deposit; Sample ID; Size; Substrate type
    Type: Dataset
    Format: text/tab-separated-values, 7 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Cronan, David S; Tooms, J S (1969): The geochemistry of manganese nodules and associated pelagic deposits from the Pacific and Indian Oceans. Deep Sea Research and Oceanographic Abstracts, 16(4), 335-359, https://doi.org/10.1016/0011-7471(69)90003-5
    Publication Date: 2024-06-26
    Description: Chemical and mineralogical analyses of manganese nodules from a large number of widely spaced localities in the Pacific and Indian Oceans have shown that their mineralogy and chemical composition varies both areally and with depth of formation. This is considered to result from a number of factors, important among which are: (a) their proximity to continental or volcanic sources of elements; (b) the chemical environment of deposition, including the degree of oxygenation; and (c) local factors such as the upward migration of reduced manganese in sediments from certain areas. Sub-surface nodules appear to share the chemical characteristics of their surface counterparts, especially those from volcanic areas where sub-surface sources of elements are probably important.
    Keywords: 2P-50; 2P-52; AMP3P; AMPH-009D; AMPH01AR; AMPH02AR-009D; AMPH03AR-080G; AMPH03AR-085P; AMPH03AR-086G; AMPH03AR-100G; AMPH03AR-124C; AMPH03AR-125PG; AMPH-080G; AMPH-085P; AMPH-086G; AMPH-100G; AMPH-116P; AMPH-124C; AMPH-125PG; AMPHITRITE; Argo; Barium; CAP-24HG; CAPH0BHO-024G; CAPRICORN-H; Central Pacific; CHA-160; CHA-289; CHA-297; Challenger1872; Chromium; Cobalt; Copper; Core; CORE; D2; D5106; D5123; D5175; Date/Time of event; Deposit type; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Discovery (1962); DNWB0ABD; DNWB0ABD-007G; DNWB0BBD; DNWB0BBD-046G; DNWH0BHO-031G; DODO; DODO-020C; DODO-025PG; DODO-027P; DODO-060P; DODO-062D; DODO-066DA; DODO-075P; DODO-084G; DODO-110P; DODO-113D; DODO-125D; DODO-127D; DODO-130G; DODO-132P; DODO-232D; DOWNWIND-B1; DOWNWIND-B2; DOWNWIND-H; Dredge; Dredge, chain bag; Dredge, rock; DRG; DRG_C; DRG_R; DWBD1; DWBD4; DWBG46; DWBG-59; DWBG7; DWH48; DWHD15; DWHD16; DWHG31; Elevation of event; Event label; FANB01BD; FANBD-20D; FANFARE-B; GC; Grab; GRAB; Gravity corer; H.M.S. Challenger (1872); HILO; HILO01ST-004G; HILO01ST-005G; HILO-04G; HILO-05G; Horizon; Indian Ocean; Iron; JAPANYON; John_Murray_Expedition; JPYN02BD-009G; JPYN04BD-011G; JPYN05BD-013G; JPYN05BD-015P; JPYN05BD-017G; JPYN05BD-031PG; JPYN05BD-048PG; JPYN05BD-050PG; JYN2; JYN2-008G; JYN2-009G; JYN4-011G; JYN5-013G; JYN5-015P; JYN5-015PG; JYN5-017G; JYN5-031PG; JYN5-048PG; JYN5-050PG; Latitude of event; Lead; Longitude of event; Loss on ignition; LSDA; LSDA-122G; LSDA-126G; LSDH; LSDH-045G; LSDH-087P; LSDH-089PG; LSDH-090P; LSDH-090PG; LSDH-093PG; LUSIAD-A; LUSIAD-H; MABAH-166; Mabahiss (1933); Mag_Bay; MAGBAY-A35; Magdalena_Bay; Manganese; Marine_Vertebrates_65-1; MDPC02HO-MP-025F-1; MDPC02HO-MP-026A-3; MDPC02HO-MP-033K; MDPC02HO-MP-037C; MDPC03HO-MP-043A; MIDPAC; Molybdenum; Monegasque Trawl; MONS01AR-MONS08AR; MONSOON; MPC-25F-1; MPC-26A-3; MPC-33K; MPC-37C; MPC-43A; MSN-128G; MTRW; MV65-1; MV65-1-38; MV65-1-41; Nickel; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; North-East Pacific Ocean; Optical spectrographic analysis; Pacific Ocean; Page(s); PC; Piston corer; PROA; PROA-011PG; PROA-079P; PROA-101G; PROA-105G; PROA-108P; PROA-108PG; PROA-113P; PROA-113PG; PROA-116P; PROA-137G; PROA-139G; PROA-147G; PROA-148G; PROA-151G; PROA-156G; PROA-157G; PROA-159G; PROA-160G; PROA-161G; PROA-162G; PROA-169G; Prospector; Prospector-63; RISEPAC; RISP-14V; RISP-45V; RISP-5V; RISP-8V; Sample comment; Sample ID; Sediment type; Size; SOB; SOB-010D; SOB-013D; SOB-020D; SOB-025D; SOB-027D; SOBO03BD-010D; SOBO03BD-013D; SOBO04BD-020D; SOBO04BD-025D; SOBO04BD-027D; Southern Borderland; Spencer F. Baird; Stranger; TC; TET-27G-B-CC; TETH02BD; TETH02BD-027G-B-CC; TETHYS_2; Titanium; Trigger corer; Vanadium; Vit 5200; Vit 5202; Vit 5270; Vityaz (ex-Mars); Vityaz-35; VITYAZ5193; VITYAZ5200; VITYAZ5202; VITYAZ5270; Volumetric; WAH-24FF8; WAH-2P; WAH-2PG; WAH-4P; WAH-4PG; WAHI01BD; WAHINE
    Type: Dataset
    Format: text/tab-separated-values, 2463 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-06-26
    Keywords: AL01_01; AL01_02; AL01_03; AL01_04; AL01_05; AL01_06; AL01_07; AL01_08; AL01_09; AL01_10; AL01_11; AL01_12; AL01_13; AL01_14; AL01_15; AL01_16; AL01_17; AL01_18; AL01_19; AL01_20; AL01_21; AL01_22; AL01_23; Alkor (1965); Alkor66; CTD/Rosette; CTD-RO; Date/Time of event; Density, sigma, in situ; Density, sigma-theta (0); DEPTH, water; Elevation of event; Event label; Latitude of event; Longitude of event; Salinity; Skagerrak; Temperature, water; Temperature, water, potential
    Type: Dataset
    Format: text/tab-separated-values, 785 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-06-06
    Description: If ground‐water levels of a confined aquifer fluctuate with sea tides, individual values of hydraulic conductivity and specific storage can then be determined. Apparent tidal efficiency and time lag are first calculated from the water level data recorded at an observational device situated inland from the sea, taking into account the response characteristics of the observational device according to criteria established by Hvorslev [1951]. The true tidal efficiency of the aquifer at the seacoast is then determined from the apparent tidal efficiency and used to obtain the specific storage. This and the tidal time lag are utilized to calculate the hydraulic conductivity. The method was tested in Prince Edward Island, Canada, and yielded results compatible with pump test data. This is a simple and inexpensive way to test a confined aquifer in the coastal environment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Universität Göttingen,Abteilung Bodenphysik
    In:  Universität Göttingen
    Publication Date: 2024-03-03
    Description: research
    Keywords: Die divergierende Humus-Metabolik benachbarter Sauer-Braunerden und Rendsinen unter Wald im Licht organischer Stoffgruppen-Untersuchungen
    Language: German
    Type: doc-type:book
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Universität Göttingen,Abteilung Bodenphysik
    In:  Universität Göttingen
    Publication Date: 2024-03-03
    Description: Voruntersuchungen zu dieser Arbeit befaßten sieb mit der stoffgruppen-chemischen Auftrennung der organischen Substanz in den organo-mineralischen A -Horizonten von benachbarten und typischen Rendsinen und Sauer-Braunerden unter Laub und Coniferen-Forsten der mitteldeutschen Berg- und RUgel-Landschaften. Die Untersuchungen ergaben: Bei gleichen Baumbeständen und in einer Distanz von nur wenigen Metern war der Gleichgewichts-Humusspiegel in den Ab-Horizonten (0 - 25 cm) der Rendsinen ca. 4-mal so hoch wre der mittlere Humus-Gehalt in den oberen 15 cm der Sauer-Braunerden. Die organische Substanz der eutrophen, kalkhaltigen Rendsinen bestand zu hohen Anteilen aus höher-polymeren Huminstoffen (Huminsäuren und lluminen), während bei den stark sauren Braunerden die Fraktionen der niedermolekularen Fulvosäuren und Streustoffe den Hauptanteil der organischen Komponente bildeten. Für die Sauer-Braunerden konnte anband der Verteilung von aggres- siven Fulvosäuren, organischen Säuren (z.B. Uronsäuren) und Kohlenhydraten nachgewiesen werden, daß die Humus- Zufuhr zum Mineralkörper des Bodens zu erheblichen Teilen durch Infiltration bewerkstelligt wird. Bei den Rendsinen erfolgt dagegen die Inkorporation durch intensive biolo- gisch-mechanische Beimischung. Während bei den Rendsinen der Umsatz der organischen Sub- stanz überwiegend im oberen Abschnitt des Solums abläuft und eine Auflage-Humus-Decke fehlt, spielt sich bei den Sauer-Braunerden der Umsatz hauptsächlich in der Humus- Auflage ab. Die Mengen und das Spektrum der organischen Substanzen, die infiltrativ in das mineralische Substrat gelangen und dort fixiert oder abgebaut werden, sind im Vergleich zu den Rendsinen gering. Sie scheinen durch eine selektiv abbau-wirksame biologische (Pilz-) Sperre in der Auflage-Decke oder an deren Untergrenze bestimmt zu werden. Als Fazit dieser Untersuchungen wurde empfohlen, zur Klä- rung der unterschiedlichen Humus-Metabolik mit Hilfe standorts-biologischer Methoden das Gewicht auf die Klärung folgender beiden Fragen zu legen:
    Description: research
    Keywords: Bodenbildung ; Bodenchemie ; Humusboden ; Metabolit ; Geoökosystem
    Language: German
    Type: doc-type:book
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Universität Göttingen,Abteilung Bodenphysik
    In:  Universität Göttingen
    Publication Date: 2024-03-03
    Description: research
    Keywords: Nigeria ; Hangentwicklung
    Language: German
    Type: doc-type:book
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Universität Göttingen,Abteilung Bodenphysik
    In:  Universität Göttingen
    Publication Date: 2024-03-03
    Description: Die Fragestellung, die den hier mitgeteilten Untersuchungen zugrunde liegt, hat sich aus Forschungsarbeiten ergeben, die einem ganz anderen Problemkreis gewidmet waren: Es handelte sich dabei um die Frage nach den Entwicklungsprozessen und dem Entwicklungsstand der Bodenbildung im Alleröd, Es ist dies die bedeutendste der kurzen vorholozänen Bodenbildungs-Phasen, in der aus den spätglazialen Periglazial-Ablagerungen, dem im bodenkundliehen Sinne "frischen Ausgangs-Material", wie Löß, Frost-Wanderschutt, Flugsand etc., die ersten schwach entwickelten "Böden" hervorgingen. Die Kenntnis der allerödzeitlichen Bodenbildung ist insofern von Bedeutung, als die Böden in der auf das Alleröd folgenden jüngeren Tundrenzeit meist nur noch in geringem Maße zerstört wurden und als "präforma-tive Bodenentwicklungsphasen den Ablauf der später ein- setzenden holozänen Bodenentwicklung beeinflußt oder vorgezeichnet haben können. Als geeignetes Studienobjekt bieten sich die begrabenen Alleröd-Böden im Bereich und in der Umrandung der Rheinischen Masse an, deren zeitliche Begrenzung nach "oben" an vielen Stellen durch die mächtige Sediment-Decke der trachytischen Asche der Laacher-See-Eruptionen festgelegt ist. Wir nahmen zunächst an, daß die unter den mehrere Meter mächtigen Bims-Decken begrabenen Böden und Sedimente ohne nachträgliche holozäne Veränderungen konserviert worden seien. Im Laufe der angestellten Untersuchungen an den Alleröd-Böden und ihren Ausgangs-Sedimenten wurden wir jedoch belehrt, daß dies nicht der Fall ist. Die in den Bims-Decken ablaufenden V erwitterungs- und Stoff-Abfuhr-Prozesse wirken sich gravierend auf die Unterlage aus, so daß von einer "Fossilierung" im engeren Sinne nicht gesprochen werden kann. Diese Feststellung machte es erforderlich, sich mit den V erwitterungs-Prozessen der Laacher Bims-Ablagerungen auseinanderzusetzen, was in der vorliegenden Arbeit geschehen soll. Die Kenntnis dieser Verwitterungs-Abläufe im Tuff ist darüber hinaus für bodengenetische Betrachtungen im westdeutschen Raum von genereller Bedeutung. Ein erheblicher Teil der allerödzeitlichen Landoberfläche dieses Raumes hat eine m.o.w. starke Beimengung vulkanischer Asche erfahren, die sich bei bodengenetischen Bilanz -Untersuchungen schwer einkalkulieren läßt. Die Ansprache bestimmter Mineral-Neubildungen (wie z.B. Kaolinit, Allophan) als "aschenbürtig" könnte hierbei wichtige Hinweise liefern.
    Description: research
    Keywords: Bodenfeuchte ; Grundwasserstand ; Grundwasserspiegel ; Lössboden ; Würmeiszeit ; Bodenchemie Niedersachsen ; Chemische Verwitterung ; Bimsstein ; Tuff ; Trachyt ; Laacher See
    Language: German
    Type: doc-type:book
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Johnson, C E; Glasby, Geoffrey P (1969): Mössbauer Effect determination of particle size in microcrystalline iron-manganese nodules. Nature, 222(5191), 376-377, https://doi.org/10.1038/222376a0
    Publication Date: 2024-03-01
    Description: Iron-manganese nodules from the ocean floor have been extensively studied. But, because of the fine grain size of the particles of the nodules, structural identification by X-ray and electron diffraction techniques is difficult and the mineralogy of the iron oxide phase has not been well characterized. The observation of the Mössbauer spectrum-in which each nucleus absorbs gamma-rays independently-is not limited by particle size in the same way as is the observation of Bragg peaks in diffraction measurements, in which radiation must be scattered coherently from a large number of atoms. The magnetic hyperfine splitting in the Mössbauer spectrum of magnetic materials is affected, however, when the particles are so small that they become superparamagnetic. We describe here an investigation using the 57Fe Mössbauer effect of two iron-manganese nodules in which the iron oxide phase could not be detected by X-ray or electron diffraction.
    Keywords: Chromium; Cobalt; Copper; D16; D6243; D6273; Description; Discovery (1962); Dredge, rock; DRG_R; Event label; Gulf of Aden; Indian Ocean, Carlsberg Ridge; Iron; Lead; Manganese; Minerals, surface area; Molybdenum; Mössbauer spectroscopy; Nickel; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; Sample ID; Silicon dioxide; Titanium; Vanadium; Zinc; Zirconium
    Type: Dataset
    Format: text/tab-separated-values, 31 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...