ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Climate change  (48)
  • American Geophysical Union  (19)
  • Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu  (18)
  • Frontiers Media  (11)
  • Institute of Physics
Collection
Publisher
Years
  • 1
    Publication Date: 2022-12-23
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 49(12), (2022): e2021GL097598, https://doi.org/10.1029/2021GL097598.
    Description: The ocean is inhomogeneous in hydrographic properties with diverse water masses. Yet, how this inhomogeneity has evolved in a rapidly changing climate has not been investigated. Using multiple observational and reanalysis datasets, we show that the spatial standard deviation (SSD) of the global ocean has increased by 1.4 ± 0.1% in temperature and 1.5 ± 0.1% in salinity since 1960. A newly defined thermohaline inhomogeneity index, a holistic measure of both temperature and salinity changes, has increased by 2.4 ± 0.1%. Climate model simulations suggest that the observed ocean inhomogeneity increase is dominated by anthropogenic forcing and projected to accelerate by 200%–300% during 2015–2100. Geographically, the rapid upper-ocean warming at mid-to-low latitudes dominates the temperature inhomogeneity increase, while the increasing salinity inhomogeneity is mainly due to the amplified salinity contrast between the subtropical and subpolar latitudes.
    Description: This work is supported by the Strategic Priority Research Program of Chinese Academy of Sciences (grant XDB42000000 and XDB40000000), the National Key R&D Program of China (2017YFA0603200), and the Shandong Provincial Natural Science Foundation (ZR2020JQ17), and the U.S. National Science Foundation Physical Oceanography Program (OCE- 2048336).
    Description: 2022-12-23
    Keywords: Global ocean ; Temperature ; Salinity ; Spatial inhomogeneity ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: Water temperature
    Description: Water temperature during coral calcification experiments conducted on Oahu, Hawaii from November of 2014 to November of 2015 For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/708280
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1514859, NSF Division of Ocean Sciences (NSF OCE) OCE-1514861
    Keywords: Ocean acidification ; Climate change ; Coral bleaching ; Kaneohe Bay ; Montipora capitata ; Porites compressa
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: Ehux growth rates under thermal variation
    Description: This dataset includes the growth rates under low and high temperatures for E. huxleyi in constant and fluctuating thermal environments. Global warming will be combined with predicted increases in thermal variability in the future surface ocean, but how temperature dynamics will affect phytoplankton biology and biogeochemistry is largely unknown. Here, we examine the responses of the globally important marine coccolithophore Emiliania huxleyi to thermal variations at two frequencies (1 d and 2 d) at low (18.5 °C) and high (25.5 °C) mean temperatures. Elevated temperature and thermal variation decreased growth, calcification and physiological rates, both individually and interactively. The 1 d thermal variation frequencies were less inhibitory than 2 d variations under high temperatures, indicating that high-frequency thermal fluctuations may reduce heat-induced mortality and mitigate some impacts of extreme high-temperature events. Cellular elemental composition and calcification was significantly affected by both thermal variation treatments relative to each other and to the constant temperature controls. The negative effects of thermal variation on E. huxleyi growth rate and physiology are especially pronounced at high temperatures. These responses of the key marine calcifier E. huxleyi to warmer, more variable temperature regimes have potentially large implications for ocean productivity and marine biogeochemical cycles under a future changing climate. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/782888
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1538525
    Keywords: Thermal Performance Curves ; Growth Rates ; Emiliania huxleyi ; Climate change ; Calcification ; Elemental quotas
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-31
    Description: Dataset: Symbiodiniaceae communities in corals with ITS-2 rDNA amplicon sequencing
    Description: Symbiodiniaceae communities were investigated at three locations on the Great Barrier Reef in October 2014. Acropora millepora samples from Davies Reef lagoon (18°30′3.96′′S, 147°22′48′′E), Rib Reef (18°28′53.4′′S, 146°52′24.96′′E), and Pandora Island (18°48′45′′S, 146°25′59.16′′E), were exposed to various stressors including pCO2, heat, bacteria, all of these, or none of these (control). This dataset lists accessions and collection information for ITS-2 rDNA amplicon data that are available at the National Center for Biotechnology Information (NCBI) under BioProject PRJNA596498. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/844431
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1635798
    Keywords: Acropora millepora ; Alpha diversity ; Beta diversity ; Climate change ; Coral ; Symbiodiniaceae
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: Experimental coral treatments
    Description: Coral samples from reefs in Mo'orea, French Polynesia were exposed to various experimental treatments to quantify how different environmental stressors impact the coral health and microbial community structure of the corals. Environmental stressors included increased temperature and nutrients as well as exudate released from corals when they bleach. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/843188
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1635798, NSF Division of Ocean Sciences (NSF OCE) OCE-1635913
    Keywords: Coral reef ; Holobiont ; Coral microbiome ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: rocky intertidal biomimic
    Description: At a proximal level, the physiological impacts of global climate change on ectothermic organisms are manifest as changes in body temperatures. Especially for plants and animals exposed to direct solar radiation, body temperatures can be substantially different from air temperatures. We deployed biomimetic sensors that mimic the thermal characteristics of intertidal mussels at 66 sites worldwide, from 1998-present. Loggers recorded temperatures at 10-15 minute intervals nearly continuously at multiple intertidal elevations. Comparisons against direct measurements of mussel tissue temperature suggest errors of ~2.0-2.5°C, during daily fluctuations that often exceed 15°-20°C. Geographic patterns in thermal stress based on biomimetic logger measurements were generally far more complex than anticipated based only on “habitat” level measurements, and show that animals are reaching temperatures far above air temperature on sunny days. This unique data set provides a means of assessing spatial and temporal variability in intertidal thermal stress, and links physiological measurements to field patterns. For a complete list of measurements, refer to the supplemental document 'Field_names.pdf', and a full dataset description is included in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: http://www.bco-dmo.org/dataset/555780
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-0926581
    Keywords: Ecosystem ; Climate change ; Rocky intertidal ; Time series ; Water temperature ; Water depth ; Wind speed ; Wind direction ; Air temperature ; Air pressure ; Precipitation ; Relative humidity ; Solar radiation ; Body temperature ; Thermal stress
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: Ehux physiology under thermal variation
    Description: Intracellular elemental quotas under low and high temperatures for E. huxleyi in constant and fluctuating thermal environments. This dataset includes the growth rates under low and high temperatures for E. huxleyi in constant and fluctuating thermal environments. Global warming will be combined with predicted increases in thermal variability in the future surface ocean, but how temperature dynamics will affect phytoplankton biology and biogeochemistry is largely unknown. Here, we examine the responses of the globally important marine coccolithophore Emiliania huxleyi to thermal variations at two frequencies (1 d and 2 d) at low (18.5 °C) and high (25.5 °C) mean temperatures. Elevated temperature and thermal variation decreased growth, calcification and physiological rates, both individually and interactively. The 1 d thermal variation frequencies were less inhibitory than 2 d variations under high temperatures, indicating that high-frequency thermal fluctuations may reduce heat-induced mortality and mitigate some impacts of extreme high-temperature events. Cellular elemental composition and calcification was significantly affected by both thermal variation treatments relative to each other and to the constant temperature controls. The negative effects of thermal variation on E. huxleyi growth rate and physiology are especially pronounced at high temperatures. These responses of the key marine calcifier E. huxleyi to warmer, more variable temperature regimes have potentially large implications for ocean productivity and marine biogeochemical cycles under a future changing climate. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/782901
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1538525
    Keywords: Thermal Performance Curves ; Growth Rates ; Emiliania huxleyi ; Climate change ; Calcification ; Elemental quotas
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: Thalassiosira pseudonana CCMP1335 in nitrate-limited and nutrient-replete cultures
    Description: The marine diatom Thalassiosira pseudonana clone CCMP 1335 was grown in a continuous culture system on a 14:10 light-dark cycle under either nitrate-limited or nutrient-replete conditions, a photoperiod irradiance of either 50 or 300 micro-mol photons per square meter per second, partial pressures of either 400 or 1000 ppm CO2, and temperatures ranging from 5 to 32 degrees Celsius. Growth rates, photosynthetic rates, respiration rates, C:N ratios, C:Chlorophyll-a ratios, productivity indices, Fv/Fm ratios, and the initial slope and light-saturated asymptote of short-term photosynthesis-irradiance curves are reported. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/779368
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1536581
    Keywords: Climate change ; Phytoplankton ; Light ; Temperature ; CO2 partial pressure ; Acclimation
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: Coral calcification rates
    Description: Coral calcification rates from experiments conducted on Oahu, Hawaii from December of 2014 to November of 2015 For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/708338
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1514859, NSF Division of Ocean Sciences (NSF OCE) OCE-1514861
    Keywords: Ocean acidification ; Climate change ; Coral bleaching ; Kaneohe Bay ; Montipora capitata ; Porites compressa
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: Ehux growth rates for thermal response curve
    Description: This dataset presents growth rates for Emiliania huxleyi thermal response curve across 12 temperatures from 8.5-28.6C.Global warming will be combined with predicted increases in thermal variability in the future surface ocean, but how temperature dynamics will affect phytoplankton biology and biogeochemistry is largely unknown. Here, we examine the responses of the globally important marine coccolithophore Emiliania huxleyi to thermal variations at two frequencies (1 d and 2 d) at low (18.5 °C) and high (25.5 °C) mean temperatures. Elevated temperature and thermal variation decreased growth, calcification and physiological rates, both individually and interactively. The 1 d thermal variation frequencies were less inhibitory than 2 d variations under high temperatures, indicating that high-frequency thermal fluctuations may reduce heat-induced mortality and mitigate some impacts of extreme high-temperature events. Cellular elemental composition and calcification was significantly affected by both thermal variation treatments relative to each other and to the constant temperature controls. The negative effects of thermal variation on E. huxleyi growth rate and physiology are especially pronounced at high temperatures. These responses of the key marine calcifier E. huxleyi to warmer, more variable temperature regimes have potentially large implications for ocean productivity and marine biogeochemical cycles under a future changing climate. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/782911
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1538525
    Keywords: Thermal Performance Curves ; Growth Rates ; Emiliania huxleyi ; Climate change ; Calcification ; Elemental quotas
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...