ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04.08. Volcanology  (4)
  • Società Geologica Italiana  (3)
  • American Chemical Society
  • Molecular Diversity Preservation International
  • Oxford University Press
  • 2020-2023
  • 2020-2022  (4)
  • 1980-1984
  • 1965-1969
  • 1
    Publication Date: 2021-06-21
    Description: Sulphur behaviour and variations in redox conditions during magma differentiation and degassing in the Mt Etna (Italy) volcanic system have been explored by integrating the study of olivine-hosted melt inclusions (MIs) with an experimental survey of sulphur solubility in hydrous basaltic magmas. Sulphur solubility experiments were performed at conditions relevant to the Etnean plumbing system (1200 C, 200MPa and oxygen fugacity between NNOþ0 2 and NNOþ1 7, with NNO being the nickel–nickel oxide buffer), and their results confirm the important control of oxygen fugacity (fO2) on S abundance in mafic magmas and on S partitioning between fluid and melt phases (DSfluid/melt). The observed DSfluid/melt value increases from 5164 to 14666 when fO2 decreases from NNOþ1 760 5 to NNOþ0 3. Based on the calculated DSfluid/melt and a careful selection of previously published data, an empirical model is proposed for basaltic magmas to predict the variation of DSfluid/melt values with variations in P (25–300 MPa), T (1030–1200 C) and fO2 (between NNO– 0 8 and NNOþ2 4). Olivine-hosted melt inclusions (Fo89-91) from tephra of the prehistoric (4 ka BP) sub-plinian picritic eruption, named FS (‘Fall Stratified’), have been investigated for their major element compositions, volatile contents and iron speciation (expressed as Fe3þ/PFe ratio). These primitive MIs present S content from 235677 to 34456168 ppm, and oxygen fugacity values, estimated from Fe3þ/PFe ratios, range from NNOþ0 760 2 to NNOþ1 660 2. Iron speciation has also been investigated in more evolved and volatile-poorer Etnean MIs. The only primitive melt inclusion from the Mt Spagnolo eruption (4–15 ka BP) presents a S content of 1515649ppm and an estimated fO2 of NNOþ1 460 1. The more evolved MIs (from 2002–2003, 2006, 2008–2009 and 2013 eruptions) have S content lower than 500 ppm, and their Fe3þ/RFe ratios result in fO2 between NNO– 0 960 1 and NNOþ0 460 1. Redox conditions and S behaviour in Etnean magmas during degassing and fractional crystallization were modelled coupling MELTS code with our empirical DSfluid/melt model. Starting from an FS-type magma composition and upon decrease of T and P, fractional crystallization of olivine, clinopyroxene, spinel and plagioclase causes a significant fO2 decrease. The fO2 reduction, in turn, causes a decrease in sulphur solubility and an increase in DSfluid/melt, promoting S exsolution during magma ascent, which further enhances the reduction of fO2. For the evolved MIs of 2002–2013 eruptions, magma differentiation may therefore have played a crucial role in decreasing redox conditions and favouring efficient S degassing. Differently, during the unusual FS eruption, only limited melt evolution is observed and S exsolution seems to have been triggered by a major pressure decrease accompanied by H2O and CO2 exsolution during fast magmatic ascent.
    Description: Published
    Description: egaa095
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: melt inclusions ; sulphur solubility experiments ; XANES ; Mt. Etna ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-14
    Description: The eruption of Mt. Etna which occurred on December 24th 2018 was characterized by strombolian activity and fire fountains, emitted by the New South-East Crater and along a fissure that propagated towards the SE. The influence of volcanic emissions on atmospheric deposition was clearly detectable at several kilometres from the source. Wet and dry (bulk) deposition samples were collected each month, through a network of eleven collectors, in the areas of Milazzo, and Priolo between June 2018 and June 2019. They were analysed for major ions and trace elements concentrations. The pH values range from 3.9 to 8.3, while the EC values range from 7 to 396 μS cm-1. An extensive neutralization of the acidity has been recognised mainly due to the suspended alkaline dust particles, which have a buffering role in rainwater. A high load of Na+ and Cl- was observed at all sites, related to the closeness of the study areas to the coast, showing a high positive correlation (R2 = 0.989) along the line of Na+/Cl- ratio in seawater. During the eruption, the volcanic plume was carried by the winds for long distance (more than 300 km) affecting the area of Priolo but not that of Milazzo, which was upwind with respect to Mt. Etna. The impact of volcanic HF was clearly recognised in the samples collected after the eruption. Volcanic SO2 and HCl had a lower impact due to the overwhelming input of anthropogenic sulfate and marine chloride. On the contrary, the signature of the Mt. Etna eruption can be well recognised in the high concentrations of certain trace elements in the samples collected immediately after the eruption. The strongest contrast between affected and non-affected samples was recognised in Al, Cd, and especially in the volatile elements Tl and Te, which are typically enriched in volcanic emissions. The results showed that volcanic eruptions might have a relevant effect on the atmospheric chemistry and on the composition of rainwater up to distances of 80 km from the emission vents.
    Description: Published
    Description: 341-358
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: rainwater ; fluoride ; trace elements ; volcanic emissions ; 01. Atmosphere ; 03. Hydrosphere ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-09
    Description: The Pico do Fogo volcano, in the Cape Verde Archipelago off the western coasts of Africa, has been the most active volcano in the Macaronesia region in the Central Atlantic, with at least 27 eruptions during the last 500 years. Between eruptions fumarolic activity has been persisting in its summit crater, but limited information exists for the chemistry and output of these gas emissions. Here, we use the results acquired during a field survey in February 2019 to quantify the quiescent summit fumaroles’ volatile output for the first time. By combining measurements of the fumarole compositions (using both a portable Multi-GAS and direct sampling of the hottest fumarole) and of the SO2 flux (using near-vent UV Camera recording), we quantify a daily output of 1060±340 tons CO2, 780±320 tons H2O, 6.2±2.4 tons H2S, 1.4±0.4 tons SO2 and 0.05±0.022 tons H2. We show that the fumarolic CO2 output from Pico do Fogo exceeds (i) the time-averaged CO2 release during 2015-type recurrent eruptions and (ii) is larger than current diffuse soil degassing of CO2 on Fogo Island. When compared to worldwide volcanoes in quiescent hydrothermal-stage, Pico do Fogo is found to rank among the strongest CO2 emitters. Its substantial CO2 discharge implies a continuous deep supply of magmatic gas from the volcano’s plumbing system (verified by the low but measurable SO2 flux), that becomes partially affected by water condensation and sulphur scrubbing in fumarolic conduits prior to gas exit. Variable removal of magmatic H2O and S accounts for both spatial chemical heterogeneities in the fumarolic field and its CO2-enriched mean composition, that we infer at 64.1±9.2 mol. % H2O, 35.6±9.1 mol. % CO2, 0.26±0.14 mol. % total Sulfur (St), and 0.04±0.02 mol. % H2.
    Description: Published
    Description: 325-340
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: Pico do Fogo volcano ; Cape Verde ; Volcanic gases ; CO2 output ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-11-09
    Description: This work presents chemical and isotopic (δ13C-CO2, δ13C-CH4, 3He, 4He, 20Ne, 40Ar, 36Ar, δ18O and δD) data on fluid discharges from the Colpitas-Taapaca volcanic-hydrothermal system, located close to the Taapaca Volcanic Complex, with the aim to investigate the physical-chemical conditions of the fluid source and to provide a preliminary evaluation of the geothermic potential of the study area. Colpitas thermal springs (to 56 °C) and part of the cold springs (≤18°C) from this area have a Na+-Cl- composition and Total Dissolved Solids (TDS) values (from 6,059 to 19,118 mg/L). Putre springs also show a Na+-Cl- composition, TDS values up to 7,887 mg/L, and outlet temperatures from 21 to 31 °C. Colpitas cold springs, with a Ca2+-SO4 2- composition and relatively low TDS values (≤1,350 mg/L), are likely produced by interaction of shallow water with uprising H2S-rich hydrothermal gases. This process is likely also controlling the chemistry of Jurase thermal springs, which have the highest outlet temperatures of the study area (up to 68 °C), a Ca2+-SO4 2- composition and TDS values ≤2,355 mg/L. Eventually, Las Cuevas springs have temperatures up to 36 °C, a Na+-HCO3 - composition and low TDS values (≤1,067 mg/L), typical features of springs related to a shallow aquifer. The δ18OH 2O and δD-H2O values indicate that all waters have a dominant meteoric origin. Enrichments in 18O and D shown by Colpitas and Putre thermal waters are likely due to steam loss and waterrock interaction, masking a possible direct steam contribution from magmatic degassing. Gas emissions from Colpitas bubbling pools are dominated by CO2, with significant concentrations of CH4, H2S and H2. The Rc/Ra values (up to 2.04) of Colpitas gases indicate a significant contribution of magmatic to mantle He, whereas the high CO2/3He ratios, combined with δ13C-CO2 values ranging from -7.66 to -5.63 ‰ vs. PDB, imply a dominant crustal CO2 source, mostly involving limestone. Estimated temperatures based on the composition of waters and gases from Colpitas are up to 215 °C. Higher temperatures (240 °C) are estimated for Putre thermal waters, although these waters, as well as those from Jurase and Las Cuevas, are too immature for a reliable application of geothermometric techniques. Based on the theoretical reservoir temperature and the measured Cl total output, the thermal energy released from Colpitas thermal area is estimated at up to 13.9 Mw. Such results suggest the occurrence of a promising heat source, possibly related to Taapaca volcanic complex, and encourage the development of future research based on combined geophysical and geochemical approaches, in order to provide a reliable evaluation of the geothermal potential of the whole area.
    Description: Published
    Description: 359-373
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: Colpitas-Taapaca geothermal system ; Fluid geochemistry ; volcanic-hydrothermal system ; geothermal potential ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...