ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Chemical Society  (55,090)
  • American Geophysical Union
  • 2025-2025
  • 2020-2022
  • 2015-2019  (62,407)
  • 2018  (62,407)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Eos 86 (2005): 90, doi:10.1029/2005EO090004.
    Description: RayGUI 2.0 is a new version of RayGUI, a graphical user interface (GUI) to the seismic travel time modeling program of Zelt and Smith [1992]. It represents a significant improvement over the previous version of RayGUI (RayGUI 1.04; Loss et al.[1998a,1998b]).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Chemical Society, 2018. This is an open access article published under an ACS AuthorChoice License. The definitive version was published in Environmental Science and Technology Letters 5 (2018): 226–231, doi:10.1021/acs.estlett.8b00084.
    Description: Chemical dispersants are one of many tools used to mitigate the overall environmental impact of oil spills. In principle, dispersants break up floating oil into small droplets that disperse into the water column where they are subject to multiple fate and transport processes. The effectiveness of dispersants typically decreases as oil weathers in the environment. This decrease in effectiveness is often attributed to evaporation and emulsification, with the contribution of photochemical weathering assumed to be negligible. Here, we aim to test this assumption using Macondo well oil released during the Deepwater Horizon spill as a case study. Our results indicate that the effects of photochemical weathering on Deepwater Horizon oil properties and dispersant effectiveness can greatly outweigh the effects of evaporative weathering. The decrease in dispersant effectiveness after light exposure was principally driven by the decreased solubility of photo-oxidized crude oil residues in the solvent system that comprises COREXIT EC9500A. Kinetic modeling combined with geospatial analysis demonstrated that a considerable fraction of aerial applications targeting Deepwater Horizon surface oil had low dispersant effectiveness. Collectively, the results of this study challenge the paradigm that photochemical weathering has a negligible impact on the effectiveness of oil spill response and provide critical insights into the “window of opportunity” to apply chemical dispersants in response to oil spills in sunlit waters.
    Description: This work was supported, in part, by National Science Foundation Grant OCE-1333148, Gulf of Mexico Research Initiative Grants 015, SA 16-30, the DEEP-C consortium, and the Clark Family Foundation, Inc. EPA funding was provided to R.N.C. from the Oil Spill Liability Trust Fund.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2000. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 105 (2000): 5835-5857, doi:10.1029/1999JB900318.
    Description: We use new seismic and gravity data collected during the 1994 Los Angeles Region Seismic Experiment (LARSE) to discuss the origin of the California Inner Continental Borderland (ICB) as an extended terrain possibly in a metamorphic core complex mode. The data provide detailed crustal structure of the Borderland and its transition to mainland southern California. Using tomographic inversion as well as traditional forward ray tracing to model the wide-angle seismic data, we find little or no sediments, low (#6.6 km/s) P wave velocity extending down to the crust-mantle boundary, and a thin crust (19 to 23 km thick). Coincident multichannel seismic reflection data show a reflective lower crust under Catalina Ridge. Contrary to other parts of coastal California, we do not find evidence for an underplated fossil oceanic layer at the base of the crust. Coincident gravity data suggest an abrupt increase in crustal thickness under the shelf edge, which represents the transition to the western Transverse Ranges. On the shelf the Palos Verdes Fault merges downward into a landward dipping surface which separates “basement” from low-velocity sediments, but interpretation of this surface as a detachment fault is inconclusive. The seismic velocity structure is interpreted to represent Catalina Schist rocks extending from top to bottom of the crust. This interpretation is compatible with a model for the origin of the ICB as an autochthonous formerly hot highly extended region that was filled with the exhumed metamorphic rocks. The basin and ridge topography and the protracted volcanism probably represent continued extension as a wide rift until ;13 m.y. ago. Subduction of the young and hot Monterey and Arguello microplates under the Continental Borderland, followed by rotation and translation of the western Transverse Ranges, may have provided the necessary thermomechanical conditions for this extension and crustal inflow.
    Description: The LARSE experiment was funded by NSF EAR-9416774, the U.S. Geological Survey’s Earthquake Hazards and Coastal and Marine Programs, and by the Southern California Earthquake Center (SCEC).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 40 (2013): 4244-4248, doi:10.1002/grl.50830.
    Description: Active tectonic regions where plate boundaries transition from subduction to strike slip can take several forms, such as triple junctions, acute, and obtuse corners. Well‐documented slab tears that are associated with high rates of intermediate‐depth seismicity are considered here: Gibraltar arc, the southern and northern ends of the Lesser Antilles arc, and the northern end of Tonga trench. Seismicity at each of these locations occurs, at times, in the form of swarms or clusters, and various authors have proposed that each marks an active locus of tear propagation. The swarms and clusters start at the top of the slab below the asthenospheric wedge and extend 30–60 km vertically downward within the slab. We propose that these swarms and clusters are generated by fluid‐related embrittlement of mantle rocks. Focal mechanisms of these swarms generally fit the shear motion that is thought to be associated with the tearing process.
    Keywords: Slab tear ; Intermediate seismicity ; Subduction corner
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 105 (2013): 2915-2923, doi:10.1002/jgrb.50227.
    Description: The fore‐arc region of the northeast Caribbean plate north of Puerto Rico and the Virgin Islands has been the site of numerous seismic swarms since at least 1976. A 6 month deployment of five ocean bottom seismographs recorded two such tightly clustered swarms, along with additional events. Joint analyses of the ocean bottom seismographs and land‐based seismic data reveal that the swarms are located at depths of 50–150 km. Focal mechanism solutions, found by jointly fitting P wave first‐motion polarities and S/P amplitude ratios, indicate that the broadly distributed events outside the swarm generally have strike‐ and dip‐slip mechanisms at depths of 50–100 km, while events at depths of 100–150 km have oblique mechanisms. A stress inversion reveals two distinct stress regimes: The slab segment east of 65°W longitude is dominated by trench‐normal tensile stresses at shallower depths (50–100 km) and by trench‐parallel tensile stresses at deeper depths (100–150 km), whereas the slab segment west of 65°W longitude has tensile stresses that are consistently trench normal throughout the depth range at which events were observed (50–100 km). The simple stress pattern in the western segment implies relatively straightforward subduction of an unimpeded slab, while the stress pattern observed in the eastern segment, shallow trench‐normal tension and deeper trench‐normal compression, is consistent with flexure of the slab due to rollback. These results support the hypothesis that the subducting North American plate is tearing at or near these swarms. The 35 year record of seismic swarms at this location and the recent increase in seismicity suggest that the tear is still propagating.
    Keywords: Subduction ; Slab‐tear ; Caribbean ; Focal mechanism ; Stress inversion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Eos 85 (2004): 349,354, doi:10.1029/2004EO370001 .
    Description: The Puerto Rico Trench, the deepest part of the Atlantic Ocean, is located where the North American (NOAM) plate is subducting under the Caribbean plate (Figure l). The trench region may pose significant seismic and tsunami hazards to Puerto Rico and the U.S.Virgin Islands, where 4 million U.S. citizens reside. Widespread damage in Puerto Rico and Hispaniola from an earthquake in 1787 was estimated to be the result of a magnitude 8 earthquake north of the islands [McCann et al., 2004]. A tsunami killed 40 people in NW Puerto Rico following a magnitude 7.3 earthquake in 1918 [Mercado and McCann, 1998]. Large landslide escarpments have been mapped on the seafloor north of Puerto Rico [Mercado et al., 2002; Schwab et al., 1991],although their ages are unknown.
    Description: Funding was provided by the NOAA Office of Ocean Exploration and the USGS Coastal and Marine Program
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Chemical Society
    In:  Energy & Fuels, 32 (8). pp. 8167-8174.
    Publication Date: 2020-07-31
    Description: Methane recovery from artificial hydrate-bearing sandstones by simulated flue gas swapping was tested using a core flooding experimental setup. Seven groups of experiments were conducted to investigate the effect of hydrate saturation as well as the initial porosity and permeability of sandstones on methane production and carbon dioxide capture. The results show that the CH4 recovery efficiency and the amount of CO2 captured increase with the increase of hydrate saturation at the same initial porosity and permeability of sandstone. The highest CH4 recovery obtained is 51.6% and 99.4% of CO2 in simulated flue gas is sequestered in the hydrate phase after swapping at 9.2 MPa and 277.15 K. Hydrate saturation was 82.5% and the initial porosity and permeability of sandstone are 25.1% and 49 mD, respectively. With the increase of initial porosity and permeability of sandstone, the CH4 recovery efficiency and the amount of CO2 captured increase when other conditions (the hydrate saturation and reaction time) are similar. For investigating the CH4-flue gas swapping mechanism, a micro-differential scanning calorimetry was used to test the heat changes in the whole reaction. No noticeable endothermic or exothermic phenomenon was detected in the CH4-flue gas swapping, which indicates that CH4 hydrate would form mixed hydrates directly instead of going through a dissociation and reformation process. Based on the observed experimental results, a CH4-flue gas swapping mechanism is proposed and the reaction process is found to be essentially controlled by mass transfer.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-12
    Description: Four years after the Genomic Observatories Network was formally established as a collaboration between the Group on Earth Observations Biodiversity Observation Network and the Genomic Standards Consortium, we review the development of the network. Considering institutional infrastructure, we note the growing role of omic observation in active and increasingly interlinked marine networks, with examples such as EMBRC/ASSEMBLE, International Long Term Ecological Research Network, AtlantOS, National Association of Marine Labs, Smithsonian MarineGEO, and Partnership on Observation of the Global Oceans. We also note some key human elements essential to meeting the networks' goals, address how the community is evolving, and why performing seemingly simple tasks within a broadly distributed community presents significant challenges even among those who have agreed to use standards. From the perspectives above, we review lessons learned from use cases that leverage Genomic Observatories Network, such as the Autonomous Reef Monitoring Structures (ARMS), Ocean Sampling Day (OSD) and myOSD, which included experiences with citizen science. Looking forward, we survey 1) promising new technologies for in situ biological observation (e.g., cheap 3D printed omics samplers), 2) progress towards adoption of omics methods in marine policy and conservation programs, and 3) opportunities that a Genomic Observatory brings, alone or embedded in a network, to address novel scientific questions and support Essential Biodiversity Variables, Essential Ocean Variables, and indices such as the Ocean Health Index. Given the data intensive nature of omics investigation, we note emerging cyberinfrastructure solutions, such as the Genomic Observatories Metadatabase (GeOMe), an open-access repository for geographic and ecological metadata associated with biosamples, and predictive modeling efforts, such as those of the Island Digital Ecosystem Avatar (IDEA) Consortium. Finally, we explore the potential of Genomic Observatories as components of high-resolution calibration sites. Such observatories would provide super-contextualized "data trusts" for machine learning and artificial intelligence applications that draw on multi-omic observation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC32018 Ocean Sciences Meeting, Portland, Oregon, USA, 2018-02-11-2018-02-16American Geophysical Union
    Publication Date: 2020-02-12
    Description: Target audience: All ocean scientists who wish to share or discover best practice documents in their domain. Background: A working group convened under the AtlantOS project and including partners from ODIP, IODE, JCOMM, IEEE, and AWI is currently developing new technologies and approaches for handling best practices (BPs) across ocean science. The goal of the working group is to create a sustained repository for BPs, to ease their propagation and adoption. Goals: After briefly describing its work, the BP working group will engage town hall participants in a discussion on 1) how best to find and centrally archive BPs in participants' disciplines and 2) what capacities a central archive of BPs would need to help participants create, discover, share, and archive their BPs. The participant input gathered will be used to further the development of a multidisciplinary repository for BPs and better harmonise ocean observation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-11-22
    Description: The dynamics of effusive events is controlled by the interplay between conduit geometry and source conditions. Dyke‐like geometries have been traditionally assumed for describing conduits during effusive eruptions, but their depth‐dependent and temporal modifications are largely unknown. We present a novel model which describes the evolution of conduit geometry during effusive eruptions by using a quasi steady state approach based on a 1‐D conduit model and appropriate criteria for describing fluid shear stress and elastic deformation. This approach provides time‐dependent trends for effusion rate, conduit geometry, exit velocity, and gas flow. Fluid shear stress leads to upward widening conduits, whereas elastic deformation becomes relevant only during final phases of effusive eruptions. Simulations can reproduce different trends of effusion rate, showing the effect of magma source conditions and country rock properties on the eruptive dynamics. This model can be potentially applied for data inversion in order to study specific case studies.
    Description: Published
    Description: 7471-7480
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Magma ascent ; Effusive eruption ; Conduit geometry ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...