ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Spacecraft Design, Testing and Performance  (192)
  • *Ecosystem  (170)
  • 2010-2014  (362)
  • 1980-1984
  • 2010  (362)
Sammlung
Schlagwörter
Erscheinungszeitraum
  • 2010-2014  (362)
  • 1980-1984
Jahr
  • 1
    Publikationsdatum: 2019-08-28
    Beschreibung: NASA accomplishes its strategic goals through human and robotic exploration missions. Many of these missions require launching and landing or returning spacecraft with human or return samples through Earth's and other planetary atmospheres. Spacecraft entering an atmosphere are subjected to extreme aerothermal loads. Protecting against these extreme loads is a critical element of spacecraft design. The safety and success of the planned mission is a prime concern for the Agency, and risk mitigation requires the knowledgeable use of thermal protection systems to successfully withstand the high-energy states imposed on the vehicle. Arc jets provide ground-based testing for development and flight validation of re-entry vehicle thermal protection materials and are a critical capability and core competency of NASA. The Agency's primary hypersonic thermal testing capability resides at the Ames Research Center and the Johnson Space Center and was developed and built in the 1960s and 1970s. This capability was critical to the success of Apollo, Shuttle, Pioneer, Galileo, Mars Pathfinder, and Orion. But the capability and the infrastructure are beyond their design lives. The complexes urgently need strategic attention and investment to meet the future needs of the Agency. The Office of Chief Engineer (OCE) chartered the Arc Jet Evaluation Working Group (AJEWG), a team of experienced individuals from across the Nation, to capture perspectives and requirements from the arc jet user community and from the community that operates and maintains this capability and capacity. This report offers the AJEWG's findings and conclusions that are intended to inform the discussion surrounding potential strategic technical and investment strategies. The AJEWG was directed to employ a 30-year Agency-level view so that near-term issues did not cloud the findings and conclusions and did not dominate or limit any of the strategic options.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: NASA/SP-2010-577 , HQ-STI-10-106
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-08-26
    Beschreibung: The Space Shuttle is propelled into orbit by two solid rocket motors and three liquid fed main engines. After the solid motors fall away, the shuttle engines continue to run for a total time of 8 minutes. These engines are fed propellants by low and high pressure turbopumps. A critical part of the turbopump is the main shaft that supports the drive turbine and the pump inducer and impeller. Rolling element bearings hold the shaft in place during rotation. If the bearings were to fail, the shaft would move, allowing components to rub in a liquid oxygen or hydrogen environment, which could have catastrophic results. These bearings are required to spin at very high speeds, support radial and axial loads, and have high wear resistance without the benefit of a conventional means of lubrication. The Rocketdyne built Shuttle turbopumps demonstrated their capability to perform during launches; however, the seven hour life requirement was not being met. One of the limiting factors was the bearings. In the late 1970's, an engineering team was formed at the Marshall Space Flight Center (MSFC), to develop a test rig and plan for testing the Shuttle s main engine high pressure oxygen turbopump (HPOTP) bearings. The goals of the program were to better understand the operation of bearings in a cryogenic environment and to further develop and refine existing computer models used to predict the operational limits of these bearings. In 1982, testing began in a rig named the Bearing and Seal Material Tester or BSMT as it was commonly called. The first testing investigated the thermal margin and thermal runaway limits of the HPOTP bearings. The test rig was later used to explore potential bearing improvements in the area of increased race curvatures, new cage materials for better lubrication, new wear resistant rolling element materials, and other ideas to improve wear life. The most notable improvements during this tester s time was the incorporation of silicon nitride balls and bronze filled polytetrafluoroethylene (PTFE) cage inserts into the bearings and the anchoring of the SHABERTH bearing model and SINDA thermal computer model for cryogenic bearing analysis. In the mid 1990's, Pratt and Whitney (P&W) won the contract to deliver new high pressure turbopumps for the Shuttle s engines. P&W used two new bearing materials for the rings, Cronidur 30 and AISI 9310 steel and testing was needed on these new materials. A test rig had been designed and delivered to MSFC for testing hydrostatic bearings but with the need by Pratt to validate their bearings, the rig was reconfigured for testing of two ball bearings or a ball bearing and a roller bearing. The P&W bearings are larger than the Rocketdyne bearings and could not be installed in the BSMT. This new test rig was called the LH2 test rig and began operation in 1995. The LH2 test rig accumulated 75,000 seconds of run time in hydrogen. This test rig was valuable in two areas: validating the use of silicon nitride balls and rollers in Alternate Turbopump Development (ATD) bearings, which Pratt eventually used, and in proving the robustness of the balls and rollers after river marks appeared on the surface of the rolling elements. Individual test reports have been presented at conferences and symposiums throughout the years. This paper is a comprehensive report of all the bearing testing done at Marshall. It represents thousands of hours of dedication and labor in all engineering and technical fields that made this program a success.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: M10-0338 , 57th JANNAF Joint Propulsion Meeting; May 03, 2010 - May 07, 2010; Colorado Springs, CO; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-08-24
    Beschreibung: A thermal protection system for atmospheric entry of a vehicle, the system including a honeycomb structure with selected cross sectional shapes that receives and holds thermally cured thermal protection (TP) blocks that have corresponding cross sectional shapes. Material composition for TP blocks in different locations can be varied to account for different atmospheric heating characteristics at the different locations. TP block side walls may be attached to all, or to less than all, the corresponding honeycomb structure side walls.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-08-13
    Beschreibung: The space shuttle fleet of avionics was originally designed in the 1970's. Many of the subsystems have been upgraded and replaced, however some original hardware continues to fly. Not only fly, but has proven to be the best design available to perform its designated task. The shuttle star tracker system is currently flying as a mixture of old and new designs, each with a unique purpose to fill for the mission. Orbiter missions have tackled many varied missions in space over the years. As the orbiters began flying to the International Space Station (ISS), new challenges were discovered and overcome as new trusses and modules were added. For the star tracker subsystem, the growing ISS posed an unusual problem, bright light. With two star trackers on board, the 1970's vintage image dissector tube (IDT) star trackers track the ISS, while the new solid state design is used for dim star tracking. This presentation focuses on the challenges and solutions used to ensure star trackers can complete the shuttle missions successfully. Topics include KSC team and industry partner methods used to correct pressurized case failures and track system performance.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: KSC-2010-068 , 13th Joint FAA/DoD/NASA Aircraft Airworthiness and Sustainment Conference; May 10, 2010 - May 13, 2010; Austin, TX; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2019-08-13
    Beschreibung: The Inflatable Reentry Vehicle Experiment II launched August 17, 2009, from NASA Wallops Flight Facility. The three mission objectives were to demonstrate inflation and re-entry survivability, assess the thermal and drag performance of the reentry vehicle, and to collect flight data for comparison with analysis and design techniques used in vehicle development. The flight was a complete success, with the re-entry vehicle separating cleanly from the launcher, inflating as planned, and demonstrating stable flight through reentry and descent while on-board systems telemetered video and flight performance data to the ground.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: NF1676L-10402 , International Planetary Probe Workshop 2010 (IPPW-7); Jun 14, 2010 - Jun 18, 2010; Barcelona, Spain; Spain
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-08-13
    Beschreibung: To the present day, the idea of using solar sails for space propulsion is still just a concept, but one that provides a great potential for future space exploration missions. Several notable solar propulsion missions and experiments have been performed and more are still in the development stage. Solar Sailing is a method of space flight propulsion, which utilizes the light photons to propel spacecrafts through the vacuum of space. This concept will be tested in the near future with the launch of the NanoSail-D satellite. NanoSail-D is a nano-class satellite, 〈10kg, which will deploy a thin lightweight sheet of reflective material used to propel the satellite in its low earth orbit. Using the features of the NanoSail-D architecture, a second-generation solar sail design concept, dubbed FeatherSail, has been developed. The goal of the FeatherSail project is to create a sail vehicle with the ability to provide steering from the sails and increase the areal density. The FeatherSail design will utilize the NanoSail-D based extendable boom technology with only one sail on each set of booms. This design also allows each of the four sails to feather as much as ninety degrees. The FeatherSail concept uses deployable solar arrays to generate the power necessary for deep space missions. In addition, recent developments in low power, low temperature Silicon-Germanium electronics provide the capability for long duration deep space missions. It is envisioned that the FeatherSail conceptual design will provide the impetus for future sail vehicles, which may someday visit distant places that mankind has only observed.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: M10-0310 , M10-0469 , 57th JANNAF Joint Propulsion Meeting; May 03, 2010 - May 07, 2010; Colorado Springs, CO; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-08-13
    Beschreibung: An analytic model for pressurization and cryogenic propellant conditions during all mission phases of any liquid rocket based vehicle has been developed and validated. The model assumes the propellant tanks to be divided into five nodes and also implements an empirical correlation for liquid stratification if desired. The five nodes include a tank wall node exposed to ullage gas, an ullage gas node, a saturated propellant vapor node at the liquid-vapor interface, a liquid node, and a tank wall node exposed to liquid. The conservation equations of mass and energy are then applied across all the node boundaries and, with the use of perfect gas assumptions, explicit solutions for ullage and liquid conditions are derived. All fluid properties are updated real time using NIST Refprop.1 Further, mass transfer at the liquid-vapor interface is included in the form of evaporation, bulk boiling of liquid propellant, and condensation given the appropriate conditions for each. Model validation has proven highly successful against previous analytic models and various Saturn era test data and reasonably successful against more recent LH2 tank self pressurization ground test data. Finally, this model has been applied to numerous design iterations for the Altair Lunar Lander, Ares V Core Stage, and Ares V Earth Departure Stage in order to characterize Helium and autogenous pressurant requirements, propellant lost to evaporation and thermodynamic venting to maintain propellant conditions, and non-uniform tank draining in configurations utilizing multiple LH2 or LO2 propellant tanks. In conclusion, this model provides an accurate and efficient means of analyzing multiple design configurations for any cryogenic propellant tank in launch, low-acceleration coast, or in-space maneuvering and supplies the user with pressurization requirements, unusable propellants from evaporation and liquid stratification, and general ullage gas, liquid, and tank wall conditions as functions of time.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: M10-0427 , 57th JANNAF Joint Propulsion Meeting; May 03, 2010 - May 07, 2010; Colorado Springs, CO; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2019-08-13
    Beschreibung: Lunar Electric Rovers (LER) are currently being developed that are substantially more capable than the Apollo vehicle (LRN ,"). Unlike the LRV, the new LERs provide a pressurized cabin that serves as short-sleeve environment for the crew of two, including sleeping accommodations and other provisions that allow for long tern stays, possibly up to 60 days, on the hear surface, without the need to replenish consumables from some outside source, such as a lander or outpost. As a consequence, significantly larger regions may be explored in the future and traverse distances may be measured in a few hundred kilometers (1, 2). However, crew safety remains an overriding concern, and methods other than "walk back", the major operational constraint of all Apollo traverses, must be implemented to assure -at any time- the safe return of the crew to the lander or outpost. This then causes current Constellation plans to envision long-tern traverses to be conducted with 2 LERs exclusively, each carrying a crew of two: in case one rover fails, the other will rescue the stranded crew and return all 4 astronauts in a single LER to base camp. Recent Desert Research and Technology Studies (DRATS) analog field tests simulated a continuous 14 day traverse (3), covering some 135 km, and included a rescue operation that transferred the crew and diverse consumables from one LER to another these successful tests add substantial realism to the development of long-term, dual rover operations. The simultaneous utilization of 2 LERs is of course totally unlike Apollo and raises interesting issues regarding science productivity and mission operations, the thrust of this note.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: JSC-CN-19740 , Lunar and Planetary Science Conference 2010; Mar 01, 2010 - Mar 05, 2010; The Woodlands, TX; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2019-08-13
    Beschreibung: The high temperature superconductor (HTS) is being used to develop the magnets for the Variable Specific Impulse Magneto-plasma Rocket (VASIMR ) propulsion system and may provide lightweight magnetic radiation shielding to protect spacecraft crews from radiation caused by GCR and SPEs on missions to Mars. A study is being planned to assess the radiation shielding effectiveness of the artificial magnetosphere produced by the HTS magnet. VASIMR is an advanced technology propulsion engine which is being touted as enabling one way transit to Mars in 90 days or less. This is extremely important to NASA. This technology would enable a significant reduction in the number of days in transit to and from Mars and significantly reduce the astronauts exposure to a major threat - high energy particles from solar storms and GCR during long term deep space missions. This paper summarizes the plans for the study and the subsequent testing of the VASIMR technology onboard the ISS slated for 2013.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: JSC-CN-21529 , 82nd Annual National Technical Association Conference; Sep 08, 2010 - Sep 10, 2010; Washington, DC; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2019-08-13
    Beschreibung: The Space Shuttle Main Engine (SSME) is a large thrust class, reusable, staged combustion cycle rocket engine employing liquid hydrogen and liquid oxygen propellants. A cluster of three SSMEs is used on every space shuttle mission to propel the space shuttle orbiter vehicle into low earth orbit. Development of the SSME began in the early 70's and the first flight of the space shuttle occurred in 1981. Today, the SSME has accrued over one million seconds of ground test and flight operational time, launching 129 space shuttle missions. The systems operation of the SSME was developed and evolved to support the specific requirements of the Space Shuttle Program (SSP). This paper provides a systems operation overview of the SSME, including: engine cycle, propellant flowpaths, and major components; control system; operations during pre-start, start, mainstage, and shutdown phases; launch commit criteria (LCCs) and operational redlines. Furthermore, this paper will discuss how changes to the SSME over its history have impacted systems operations.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: M10-0253 , 57th JANNAF Joint Propulsion Meeting; May 03, 2010 - May 07, 2010; Colorado Springs, CO; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...