ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (47)
  • ddc:551.6  (47)
  • 2020-2024  (47)
  • 1950-1954
  • 1940-1944
  • 1
    Publication Date: 2024-05-22
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉As projected by multiple climate models, short‐duration heavy precipitation events (SDHPEs) are expected to intensify particularly quickly under the changing climate posing substantial risk to natural and human systems. Yet over the years, SDHPEs have received less scientific attention than long‐duration heavy precipitation events (LDHPEs), mainly due to the limitations of measurement systems. Our aim is to provide insight into spatial and temporal variability of SDHPEs detected by the radar network of the 〈italic toggle="no"〉Deutscher Wetterdienst〈/italic〉 (DWD) in Germany from 2001 to 2020 as well as to explore their links to circulation patterns (CPs). The study is based on the Catalogue of Radar‐based heavy Rainfall Events (CatRaRE) generated using reprocessed gauge‐adjusted data of the DWD radar network as well as a new numerical method for classifying CPs over Central Europe called “〈italic toggle="no"〉Großwetterlagen〈/italic〉 for Reanalyses” (GWL‐REA). The results have demonstrated that SDHPEs, which are defined based on either locally valid precipitation values with a return period of 5 years (CatRaRE T5) or absolute precipitation values equal to DWD Warning Level 3 (CatRaRE W3), are common phenomena occurring most frequently in the afternoon hours of the summer season. They constitute up to 90% of all heavy precipitation events included in the catalogues covering relatively small areas—the median area of SDHPEs ranges from 22 km〈sup〉2〈/sup〉 (CatRaRE T5) to 24 km〈sup〉2〈/sup〉 (CatRaRE W3), while the median area of LDHPEs ranges from 175 km〈sup〉2〈/sup〉 (CatRaRE W3) to 184 km〈sup〉2〈/sup〉 (CatRaRE T5). As compared to LDHPEs, SDHPEs are generated by a wider spectrum of circulation conditions, including not only cyclonic but also anticyclonic CPs. In the warm season, the anticyclonic CPs, often accompanied by air mass advection from the south, can induce high thermal instability leading to the development of relatively small, isolated convective cells, which often cannot be captured by rain gauge stations.〈/p〉
    Description: Federal Ministry for Digital and Transport (BMDV)
    Description: https://www.dwd.de/DE/leistungen/catrare/catrare.html
    Keywords: ddc:551.6 ; CatRaRE ; circulation patterns ; GWL‐REA ; heavy precipitation events ; long‐duration precipitation ; radar data ; short‐duration precipitation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-25
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Recent observations and modeling increasingly reveal the key role of cold pools in organizing the convective cloud field. Several methods for detecting cold pools in simulations exist, but are usually based on buoyancy fields and fall short of reliably identifying the active gust front. The current cold pool (CP) detection and tracking algorithm (CoolDeTA), aims to identify cold pools and follow them in time, thereby distinguishing their active gust fronts and the “offspring” rain cells generated nearby. To accomplish these tasks, CoolDeTA utilizes a combination of thermodynamic and dynamical variables and examines the spatial and temporal relationships between cold pools and rain events. We demonstrate that CoolDeTA can reconstruct CP family trees. Using CoolDeTA we can contrast radiative convective equilibrium (RCE) and diurnal cycle CP dynamics, as well as cases with vertical wind shear and without. We show that the results obtained are consistent with a conceptual model where CP triggering of children rain cells follows a simple birth rate, proportional to a CP's gust front length. The proportionality factor depends on the ambient atmospheric stability and is lower for RCE, in line with marginal stability as traditionally ascribed to the moist adiabat. In the diurnal case, where ambient stability is lower, the birth rate thus becomes substantially higher, in line with periodic insolation forcing—resulting in essentially run‐away mesoscale excitations generated by a single parent rain cell and its CP.〈/p〉
    Description: Plain Language Summary: Cold pools are cooled air masses below thunderstorm clouds, produced when rain evaporates underneath such clouds. Cold pools are important, as they produce strong gusts and have been associated with clumping of rain cells, whereby heavy rainfall over relatively small areas could be generated—with implications for flooding. The current work describes a method that helps identify such cold pools in computer simulation data. In contrast to earlier methods, we here show that the interaction between a CP and its surroundings can be reconstructed by the method. We show that this identification works under a range of contexts, such as when horizontal wind is applied in the simulations or when the surface temperature is not constant—as might often be the case over a land surface. The identification reveals interesting dynamical effects, such as that in some cases, cold pools can kick‐start a form of chain reaction, by which “rain cell children” of it give rise to additional cold pools that again produce children, and so forth. The dynamics revealed is in line with expectations of widespread, so‐called mesoscale convective systems over land, whereas over an ocean surface the dynamics is much less explosive.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Our CoolDeTA algorithm reliably detects and tracks cold pools and their causal chains〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉We propose a simple conceptual model which reproduces the cascade‐like mesoscale cold pool dynamics identified by CoolDeTA〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉CoolDeTA opens for new studies into the dynamics of convective self‐organization through cold pools〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: Villum Fonden http://dx.doi.org/10.13039/100008398
    Description: European Research Council http://dx.doi.org/10.13039/501100000781
    Description: Novo Nordisk Foundation Interdisciplinary Synergy Program
    Description: Scientific Steering Committee
    Description: https://doi.org/10.5281/zenodo.6513224
    Description: https://github.com/Shakiro7/coldPool-detection-and-tracking
    Description: https://doi.org/10.5281/zenodo.10115957
    Description: https://doi.org/10.7717/peerj.453
    Keywords: ddc:551.6 ; cold pools ; detection ; tracking ; cloud resolving simulation ; convective organization
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-25
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Dansgaard‐Oeschger (D‐O) climate variability during the last glaciation was first evidenced in ice cores and marine sediments, and is also recorded in various terrestrial paleoclimate archives in Europe. The relative synchronicity across Greenland, the North Atlantic and Europe implies a tight and fast coupling between those regions, most probably effectuated by an atmospheric transmission mechanism. In this study, we investigated the atmospheric changes during Greenland interstadial (GI) and stadial (GS) phases based on regional climate model simulations using two specific periods, GI‐10 and GS‐9 both around 40 ka, as boundary conditions. Our simulations accurately capture the changes in temperature and precipitation as reconstructed by the available proxy data. Moreover, the simulations depict an intensified and southward shifted eddy‐driven jet during the stadial period. Ultimately, this affects the near‐surface circulation toward more southwesterly and cyclonic flow in western Europe during the stadial period, explaining much of the seasonal climate variability recorded by the proxy data, including oxygen isotopes, at the considered proxy sites.〈/p〉
    Description: Plain Language Summary: The climate during the last ice age varied between colder and warmer periods on timescales ranging from hundreds to thousands of years. This variability was first detected in Greenland ice cores and marine sediment cores of the North Atlantic, as well as in continental geological records in Europe. The variation between the colder and warmer periods occur mostly simultaneously in Greenland and in Europe, which is why the atmosphere is assumed to have an important role in transferring the climate signals. We simulated two different periods of the last ice age, one colder and one warmer around 40,000 years ago, using a regional climate model. The aim was to study how the climate and atmospheric circulation changed during these two periods. We find the eddy‐driven jet over the North Atlantic intensified and shifted southward during the colder period. The jet influences the near‐surface atmospheric circulation and leads to more southwesterly and cyclonic flow in western Europe. Oxygen isotope variations observed in western European paleoclimate records may be partly explained by different, more southern moisture sources on top of changes in seasonal temperatures.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Simulated temperatures agree with proxy data; precipitation is biased but GI‐10 versus GS‐9 differences are well captured〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The stadial winter jet stream is intensified and shifted southward, consistent with dominant southwesterly/cyclonic flow in western Europe〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Oxygen isotope signal changes at western European proxy sites may be explained not only by temperature but also by varying moisture sources〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: NRDIO
    Description: AXA Research Fund http://dx.doi.org/10.13039/501100001961
    Description: https://doi.org/10.5065/1dfh-6p97
    Keywords: ddc:551.6 ; Dansgaard‐Oeschger cycle ; regional atmospheric dynamics ; regional climate modeling ; continental paleoclimate proxy ; Europe
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-03
    Description: The novel Aeolus satellite, which carries the first Doppler wind lidar providing profiles of horizontal line‐of‐sight (HLOS) winds, addresses a significant gap in direct wind observations in the global observing system. The gap is particularly critical in the tropical upper troposphere and lower stratosphere (UTLS). This article validates the Aeolus Rayleigh–clear wind product and short‐range forecasts of the European Centre for Medium‐Range Weather Forecasts (ECMWF) with highly accurate winds from the Loon super pressure balloon network at altitudes between 16 and 20 km. Data from 229 individual balloon flights are analysed, applying a collocation criterion of 2 hr and 200 km. The comparison of Aeolus and Loon data shows systematic and random errors of -0.31 and 6.37 m·s〈sup〉-1〈/sup〉, respectively, for the Aeolus Rayleigh–clear winds. The horizontal representativeness error of Aeolus HLOS winds (nearly the zonal wind component) in the UTLS ranges from 0.6–1.1 m·s〈sup〉-1〈/sup〉 depending on the altitude. The comparison of Aeolus and Loon datasets against ECMWF model forecasts suggests that the model systematically underestimates the HLOS winds in the tropical UTLS by about 1 m·s〈sup〉-1〈/sup〉. While Aeolus winds are currently considered as point winds by the ECMWF data assimilation system, the results of the present study demonstrate the need for a more realistic HLOS wind observation operator for assimilating Aeolus winds.
    Keywords: ddc:551.6 ; Aeolus ; data assimilation ; ECMWF forecasts ; HLOS winds ; Loon ; super pressure balloon observations ; systematic and random errors
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-13
    Description: Using the global and coupled ICOsahedral Nonhydrostatic model with the Sapphire configuration (ICON‐S) and a grid spacing of 5 km, we describe seasonal and diurnal features of the tropical rainbelt and assess the limits of ICON‐S in representing tropical precipitation. ICON‐S shows that, by resolving meso‐beta scale process, the rainbelt structure and its seasonality (zonal and meridional migration and enlargement) is reproduced, with better performance over land than over ocean and with a very high degree of agreement to observations. ICON‐S especially struggles in capturing the seasonal features of the tropical rainbelt over the oceans of the Eastern Hemisphere, an issue associated with a cold sea surface temperature (SST) bias at the equator. ICON‐S also shows that a perfect representation of the diurnal cycle of precipitation over land is not a requirement to capture the seasonal features of the rainbelt over land, while over the ocean, 5 km is sufficient to adequately represent the diurnal cycle of precipitation.
    Description: Plain Language Summary: Over the tropics, precipitation falls in distinct bands, that span the circumference of the Earth. These bands migrate from the Northern to the Southern Hemisphere and vice versa following the seasonal migration of the sun. Their center of mass also varies east‐west, as well as their area. Where rain ends up falling is of key importance but conventional climate models relying on statistical approaches to simulate convection cannot represent these characteristics. Here we report on the results of simulations on a global domain and, to our knowledge, for the first time integrated with an atmosphere‐ocean coupled over a full seasonal cycle and with a grid spacing fine enough to explicitly represent convection and Mesoscale Ocean eddies. We show that such simulations can reproduce many aspects of the seasonal migration of the rainbelt over land. For instance, the north‐south and east‐west migration of the rainbelt as well as its expansion during the summer season are well captured. This is also the case for the rainbelt in the eastern Pacific and the Atlantic, but not in the Eastern Hemisphere, where the poor representation of the sea surface temperature pattern distorts the representation of the rainbelt and its seasonal characteristics.
    Description: Key Points: In one year of simulation, the ICOsahedral Nonhydrostatic model with the Sapphire configuration (ICON‐S) reproduces the seasonal features of the tropical rainbelt over land with high agreement with observations. In the eastern Pacific and Atlantic, the seasonal structure and movement of the rainbelt are also reproduced by ICON‐S. Biases in sea surface temperature explain the struggles of ICON‐S in simulating the oceanic rainbelt of the Eastern Hemisphere.
    Description: Hans‐Ertel Centre for Weather Research
    Description: European Union's Horizon 2020
    Description: DKRZ compute time
    Description: https://doi.org/10.17617/3.1XTSR6
    Description: https://mpimet.mpg.de/en/science/modeling-with-icon/code-availability
    Description: https://doi.org/10.5067/GPM/IMERG/3B-HH/06
    Description: https://www.cen.uni-hamburg.de/en/icdc/data/atmosphere/imerg-precipitation-amount.html
    Description: https://www.cen.uni-hamburg.de/en/icdc/data/ocean/hadisst1.html
    Description: https://hdl.handle.net/21.11116/0000-000B-4BAE-E
    Keywords: ddc:551.6 ; tropical precipitation ; rainbelt ; seasonal migration ; ICON-S ; modeling
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-03-12
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Flow‐dependent errors in tropical analyses and short‐range forecasts are analysed using global observing‐system simulation experiments assimilating only temperature, only winds, and both data types using the ensemble Kalman filter (EnKF) Data Assimilation Research Testbed (DART) and a perfect model framework. The idealised, homogeneous observation network provides profiles of wind and temperature data from the nature run for January 2018 using the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) forced by the observed sea‐surface temperature. The results show that the assimilation of abundant wind observations in a perfect model makes the temperature data in the Tropics largely uninformative. Furthermore, the assimilation of wind data reduces the background errors in specific humidity twice as much as the assimilation of temperature observations. In all experiments, the largest analysis uncertainties and the largest short‐term forecast errors are found in regions of strong vertical and longitudinal gradients in the background wind, especially in the upper troposphere and lower stratosphere over the Indian Ocean and Maritime Continent. The horizontal error correlation scales are on average short throughout the troposphere, just several hundred km. The correlation scales of the wind variables in precipitating regions are half of those in nonprecipitating regions. In precipitating regions, the correlations are elongated vertically, especially for the wind variables. Strong positive cross‐correlations between temperature and specific humidity in the precipitating regions are explained using the Clausius–Clapeyron equation.〈/p〉
    Description: China Scholarship Council http://dx.doi.org/10.13039/501100004543
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:551.6 ; ensemble Kalman filter data assimilation ; forecast‐error correlations ; mass and wind observations ; temperature–moisture cross‐correlations ; Tropics
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-03-06
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The usually short lifetime of convective storms and their rapid development during unstable weather conditions makes forecasting these storms challenging. It is necessary, therefore, to improve the procedures for estimating the storms' expected life cycles, including the storms' lifetime, size, and intensity development. We present an analysis of the life cycles of convective cells in Germany, focusing on the relevance of the prevailing atmospheric conditions. Using data from the radar‐based cell detection and tracking algorithm KONRAD of the German Weather Service, the life cycles of isolated convective storms are analysed for the summer half‐years from 2011 to 2016. In addition, numerous convection‐relevant atmospheric ambient variables (e.g., deep‐layer shear, convective available potential energy, lifted index), which were calculated using high‐resolution COSMO‐EU assimilation analyses (0.0625°), are combined with the life cycles. The statistical analyses of the life cycles reveal that rapid initial area growth supports wider horizontal expansion of a cell in the subsequent development and, indirectly, a longer lifetime. Specifically, the information about the initial horizontal cell area is the most important predictor for the lifetime and expected maximum cell area during the life cycle. However, its predictive skill turns out to be moderate at most, but still considerably higher than the skill of any ambient variable is. Of the latter, measures of midtropospheric mean wind and vertical wind shear are most suitable for distinguishing between convective cells with short lifetime and those with long lifetime. Higher thermal instability is associated with faster initial growth, thus favouring larger and longer living cells. A detailed objective correlation analysis between ambient variables, coupled with analyses discriminating groups of different lifetime and maximum cell area, makes it possible to gain new insights into their statistical connections. The results of this study provide guidance for predictor selection and advancements of nowcasting applications.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Based on a combination of data of the cell tracking algorithm KONRAD of the German Weather Service and COSMO‐EU model analyses for the summer half‐years from 2011 to 2016, statistical relationships between storm attributes (lifetime and maximum horizontal area), and ambient variables as well as the storms' history are quantified. The initial growth of the cell area is a better indicator of the lifetime and maximum area than ambient variables are. Of the latter, measures of the midtropospheric wind and vertical wind shear, in particular, are most suitable for distinguishing between convective cells with short and long lifetimes, whereas higher convective instability favours larger cells. 〈boxed-text position="anchor" id="qj4505-blkfxd-0001" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:00359009:media:qj4505:qj4505-toc-0001"〉 〈/graphic〉 〈/boxed-text〉〈/p〉
    Description: Bundesministerium für Digitales und Verkehr http://dx.doi.org/10.13039/100008383
    Keywords: ddc:551.6 ; convective storms ; life cycle ; multisource data ; nowcasting ; statistics ; weather prediction
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-03-05
    Description: Climate hazards associated with compound events (CEs) have lately received increasing attention over South America (SA) due to their potential risks and amplification of impacts. This work addressed the evaluation of different temperature‐ and precipitation‐based CE in SA considering the CORDEX‐CORE ensemble of regional climate models (RCMs) and their driving earth system models (ESMs) in the reference period 1981–2010 and the late 21st century (2070–2099), for the Representative Concentration Pathways (RCPs) 2.6 and 8.5 scenarios. The assessment focused on model performance for the individual events—heatwaves (HWs), Extreme rainfall (ER) days, and dry‐spells (DSs)—and their compound occurrence in terms of climatological frequency and duration. The spatial patterns of individual events were adequately reproduced by the RCMs, evidencing general overestimations in extreme precipitation intensities. In terms of CE, the frequencies of coincident HWs and DSs (sequential DSs and ER) were remarkable over central‐eastern Brazil and southern SA (southeastern SA). The main features of CE were generally well‐simulated by the RCMs, although they presented regional differences such as an underestimation of the maximum frequencies of these two CE in northeastern Brazil and southeastern SA, respectively. The high‐resolution information was generally in line with the larger‐scale driving ESMs. The climate change signal analysis generally showed robust future increases in CE frequency and duration in different areas of SA, as for coincident HWs and DSs (sequential DSs and ER) over northern SA and southern Brazil (southeastern SA). This was mostly consistent among the RCMs ensemble and notably strengthened in the worst‐case scenario (RCP 8.5).
    Description: Key Points: Coincident heatwaves and dry‐spells (DSs) and sequential DSs and extreme rainfall are remarkable compound events (CEs) over South America. Regional climate models can reproduce the frequency and duration of CEs, but with some regional differences. CEs are generally expected to be more frequent in the late 21st century, particularly in the Representative Concentration Pathway 8.5 scenario.
    Description: UBA Secretaría de Ciencia y Técnica, Universidad de Buenos Aires http://dx.doi.org/10.13039/501100010253
    Description: Argentinian ANPCyT
    Description: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
    Description: https://esgf-data.dkrz.de/projects/esgf-dkrz/
    Description: https://psl.noaa.gov/data/gridded/
    Keywords: ddc:551.6 ; extreme events ; temperature ; precipitation ; regional climate models ; CORDEX ; climate change
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-28
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉High spatio‐temporal resolution near‐surface projected data is vital for climate change impact studies and adaptation. We derived the highest statistically downscaled resolution multivariate ensemble currently available: daily 1 km until the end of the century. Deep learning models were employed to develop transfer functions for precipitation, water vapor pressure, radiation, wind speed, and, maximum, mean and minimum temperature. Perfect prognosis is the particular statistical downscaling methodology applied, using a subset of the ReKIS data set for Saxony as predictands, the ERA5 reanalysis as during‐training predictors and the CORDEX‐EUR11 ensemble as projected predictors. The performance of the transfer functions was validated with the VALUE framework, yielding highly satisfactory results. Particular attention was given to the three major perfect prognosis assumptions, for which several tests were carried out and thoroughly discussed. From the latter, we corroborated their fulfillment to a high degree, thus, the derived projections are considered adequate and relevant for impact modelers. In total, 18 runs for RCP85, 1 for RCP45, and 4 for RCP26 were downscaled under both stochastic and deterministic approaches. This multivariate ensemble could drive more accurate and diverse impact studies in the region. Generally, the projected climatologies are in agreement with coarser resolution projections. Nevertheless, statistical particularities were observed for some projections, thus, a list of caveats for potential users is given. Due to the scalability of the presented methodology, further possible applications with additional datasets are proposed. Lastly, several potential improvement prospects are discussed toward the ideal subsequent iteration of the perfect prognosis statistical downscaling methodology.〈/p〉
    Description: Plain Language Summary: There is a great worldwide demand for high spatio‐temporal resolution projections to develop climate change adaptation and mitigation schemes. Despite recent improvements, the resolution of both global and regional climate models is still too coarse to properly represent local variability, particularly in complex terrains. Depending on the application, impact modelers and decision makers require kilometer‐scale projections, with a minimum daily temporal resolution, of near‐surface variables. To fill this information gap, we employed artificial intelligence algorithms to downscale, to a novel daily 1 km resolution, a projection ensemble until the end of the century consisting of precipitation, water vapor pressure, radiation, wind speed, and, maximum, mean and minimum temperature. The ensemble comprises 18 runs of the business‐as‐usual worst‐case scenario (RCP85), 1 run of the stabilization scenario (RCP45), and 4 of the optimistic low‐emissions scenario (RCP26). The main assumptions of the methodology were thoroughly tested and discussed. The validation carried out yielded highly satisfactory results. Thus, we consider the projections to be adequate and relevant for impact studies. The region studied is located in Saxony (Germany), still, the methodology shown is potentially applicable anywhere in the world.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Highest statistically downscaled spatio‐temporal resolution multivariate ensemble currently available, consisting of 23 projection runs〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉We downscaled precipitation, water vapor pressure, radiation, wind speed, and, maximum, mean and minimum temperature〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The methodology complied to a high degree with the three perfect prognosis assumptions and is scalable to other spatio‐temporal resolutions〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: European Social Fund, Freistaat Sachsen http://dx.doi.org/10.13039/501100004895
    Description: https://rekis.hydro.tu-dresden.de/
    Description: https://doi.org/10.5281/zenodo.7570247
    Description: https://doi.org/10.5281/zenodo.7559173
    Description: https://doi.org/10.5281/zenodo.7558945
    Description: https://doi.org/10.5281/zenodo.8059248
    Description: https://doi.org/10.5281/zenodo.8198925
    Keywords: ddc:551.6 ; climate change ; statistical downscaling ; perfect prognosis ; ERA5 ; CORDEX ; deep learning ; multivariate ensemble
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-21
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The prediction skill of sub‐seasonal forecast models is evaluated for seven year‐round weather regimes in the Atlantic–European region. Reforecasts based on models from three prediction centers are considered and verified against weather regimes obtained from ERA‐Interim reanalysis. Results show that predicting weather regimes as a proxy for the large‐scale circulation outperforms the prediction of raw geopotential height. Greenland blocking tends to have the longest year‐round skill horizon for all three models, especially in winter. On the other hand, the skill is lowest for the European blocking regime for all three models, followed by the Scandinavian blocking regime. Furthermore, all models struggle to forecast flow situations that cannot be assigned to a weather regime (so‐called no regime), in comparison with weather regimes. Related to this, variability in the occurrence of no regime, which is most frequent in the transition seasons, partly explains the predictability gap between transition seasons and winter and summer. We also show that models have difficulties in discriminating between related regimes. This can lead to misassignments in the predicted regime during flow situations in which related regimes manifest. Finally, we document the changes in skill between model versions, showing important improvements for the ECMWF and NCEP models. This study is the first multi‐model assessment of year‐round weather regimes in the Atlantic–European domain. It advances our understanding of the predictive skill for weather regimes, reveals strengths and weaknesses of each model, and thus increases our confidence in the forecasts and their usefulness for decision‐making.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉This study is the first sub‐seasonal multi‐model assessment of seven year‐round weather regimes in the Atlantic–European domain. Greenland blocking tends to have the longest year‐round skill horizon for all models, especially in winter. The skill is lowest for the European blocking regime for all models, followed by Scandinavian blocking. Variability in the occurrence of no regime partly explains the predictability gap between the transition seasons and winter and summer. 〈boxed-text position="anchor" id="qj4512-blkfxd-0001" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:00359009:media:qj4512:qj4512-toc-0001"〉 〈/graphic〉 〈/boxed-text〉〈/p〉
    Description: Helmholtz Association http://dx.doi.org/10.13039/501100001656
    Description: AXPO Solutions AGN/A
    Keywords: ddc:551.6 ; blocking ; Europe ; North Atlantic oscillation ; windows of opportunity
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...