ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (269)
  • 2005-2009  (269)
  • 2000-2004
  • 1965-1969
  • 2008  (269)
Collection
Keywords
Years
  • 2005-2009  (269)
  • 2000-2004
  • 1965-1969
Year
  • 1
    Publication Date: 2019-08-28
    Description: Speech topics include: Leadership in Space; Space Exploration: Real and Acceptable Reasons; Why Explore Space?; Space Exploration: Filling up the Canvas; Continuing the Voyage: The Spirit of Endeavour; Incorporating Space into Our Economic Sphere of Influence; The Role of Space Exploration in the Global Economy; Partnership in Space Activities; International Space Cooperation; National Strategy and the Civil Space Program; What the Hubble Space Telescope Teaches Us about Ourselves; The Rocket Team; NASA's Direction; Science and NASA; Science Priorities and Program Management; NASA and the Commercial Space Industry; NASA and the Business of Space; American Competitiveness: NASA's Role & Everyone's Responsibility; Space Exploration: A Frontier for American Collaboration; The Next Generation of Engineers; System Engineering and the "Two Cultures" of Engineering; Generalship of Engineering; NASA and Engineering Integrity; The Constellation Architecture; Then and Now: Fifty Years in Space; The Reality of Tomorrow; and Human Space Exploration: The Next 50 Years.
    Keywords: Lunar and Planetary Science and Exploration
    Type: NASA/SP-2008-564
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-28
    Description: In 2004 NASA initiated studies of advanced science mission concepts known as the Vision Missions and inspired by a series of NASA roadmap activities conducted in 2003. Also in 2004 NASA began implementation of the first phases of a new space exploration policy, the Vision for Space Exploration. This implementation effort included development of a new human-carrying spacecraft, known as Orion, and two new launch vehicles, the Ares I and Ares V rockets.collectively called the Constellation System. NASA asked the National Research Council (NRC) to evaluate the science opportunities enabled by the Constellation System (see Preface) and to produce an interim report on a short time schedule and a final report by November 2008. The committee notes, however, that the Constellation System and its Orion and Ares vehicles have been justified by NASA and selected in order to enable human exploration beyond low Earth orbit, and not to enable science missions. This interim report of the Committee on Science Opportunities Enabled by NASA s Constellation System evaluates the 11 Vision Mission studies presented to it and groups them into two categories: those more deserving of future study, and those less deserving of future study. Although its statement of task also refers to Earth science missions, the committee points out that the Vision Missions effort was focused on future astronomy, heliophysics, and planetary exploration and did not include any Earth science studies because, at the time, the NRC was conducting the first Earth science decadal survey, and funding Earth science studies as part of the Vision Missions effort would have interfered with that process. Consequently, no Earth science missions are evaluated in this interim report. However, the committee will evaluate any Earth science mission proposal submitted in response to its request for information issued in March 2008 (see Appendix A). The committee based its evaluation of the preexisting Vision Missions studies on two criteria: whether the concepts offered the potential for a significant scientific advance, and whether or not the concepts would benefit from the Constellation System. The committee determined that all of the concepts offered the possibility of a significant scientific advance, but it cautions that such an evaluation ultimately must be made by the decadal survey process, and it emphasizes that this interim report s evaluation should not be considered to be an endorsement of the scientific merit of these proposals, which must of course be evaluated relative to other proposals. The committee determined that seven of these concepts would benefit from the Constellation System, whereas four would not, but it stresses that this conclusion does not reflect an evaluation of the scientific merit of the projects, but rather an assessment of whether or not new capabilities provided by the Constellation System could significantly affect them. Some of the mission concepts, such as the Advanced Compton Telescope, already offer a significant scientific advance and fit easily within the mass and volume constraints of existing launch vehicles. Other mission concepts, such as the Palmer Quest proposal to drill through the Mars polar cap, are not constrained by the launch vehicle, but rather by other technology limitations. The committee evaluated the mission concepts as presented to it, aware nevertheless that proposing a far larger and more ambitious mission with the same science goals might be possible given the capabilities of the Ares V launch vehicle. (Such proposals can be submitted in response to the committee s request for information to be evaluated in its final report.) See Table S.1 for a summary of the Vision Missions, including their cost estimates, technical maturity, and reasons that they might benefit from the Constellation System. The committee developed several findings and recommendations.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-27
    Description: The Sedna Planitia Quadrangle (V-19) extend from 25 deg N - 50 deg N latitude, 330 deg - 0 deg longitude. The quadrangle contains the northern-most portion of western Eistla Regio and the Sedna Planitia lowlands. Geologic maps of Sedna Planitia (V-199), Hecate Chasma (V-28) quadrangles have been completed at the 1:5,000,000 scale as part of the NASA Planetary Geologic Mapping Program. All quadrangles (V-53, V-28 and V-19) have been reviewed at lease once and will be resubmitted. In V-28 and V-53, more plains materials units have been mapped than in previously mapped quadrangles V-46 and V-39. V-19 is more comparable to these latter maps in terms of numbers of plains units. In V-28, all of the plains materials units to the south of the rift have an unusually high concentration of volcanic edifices, which both predate and postdate the units. A similar situation is seen in V-53 and V-19, where small edifice formation is not confined to any specific time period. In the two chasma-related quadrangles, coronae are located along the rift, as well as to the north and the south of the rifts. Coronae in both quadrangles exhibit all forms of corona topographic shapes, including depressions, rimmed depressions, plateaus and domes. In V-28 and V-53, some coronae along the rift do not have much associated volcanism; coronae with the most volcanism in these quadrangles are located at least 500 km off the rifts or on the Themis Regio highland. All three quadrangles have very horizontal stratigraphic columns, as limited contact between units prevents clear age determinations. While this results in the appearance that all units formed at the same time, the use of hachured columns for each unit illustrates the limited nature of our stratigraphic knowledge in these quadrangles, allowing for numerous possible geologic histories. The scale of resurfacing in these quadrangles is on the scale of 100s of kilometers, consistent with the fact that they lie in the most volcanic region of Venus.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ, 2008; NASA/CP-2008-215469
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-26
    Description: Tooting crater is approximately 29 km in diameters, is located at 23.4 deg N, 207.5 deg E and is classified as a multi-layered ejecta crater. Tooting crater is a very young crater, with an estimated age of 700,000 to 2M years. The crater formed on virtually flat lava flows within Amazonis Planitia where there appears to have been no major topographic features prior to the impact, so that we can measure ejecta thickness and cavity volume. In the past 12 months, the authors have: published their first detailed analysis of the geometry of the crater cavity and the distribution of the ejecta layers; refined the geologic map of the interior of Tooting crater through mapping of the cavity at a scale of 1:1100K; and continued the analysis of an increasing number of high resolution images obtained by the CTX and HiRISE instruments. Currently the authors seek to resolve several science issues that have been identified during this mapping, including: what is the origin of the lobate flows on the NW and SW rims of the crater?; how did the ejecta curtain break apart during the formation of the crater, and how uniform was the emplacement process for the ejecta layers; and, can we infer physical characteristics about the ejecta? Future study plans include the completion of a draft geologic map of Tooting crater and submission of it to the U.S. Geological survey for a preliminary review, publishing a second research paper on the detailed geology of the crater cavity and the distribution of the flows on the crater rim, and completing the map text for the 1:100K geologic map description of units at Tooting crater.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ, 2008; NASA/CP-2008-215469
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-26
    Description: To understand the spatial and temporal relations between tectonic and volcanic processes on Venus, the Juno Chasma region is mapped. Geologic units are used to establish regional stratigraphic relations and the timing between rifting and volcanism.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ, 2008; NASA/CP-2008-215469
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-26
    Description: As part of a continuing study to understand the relationship between valleys and highland resurfacing through geologic mapping, the authors are continuing to map seven 1:500,000-scale MTM quads in portions of the Margaritifer, Arabia, and Noachis Terrae. Results from this mapping will also help constrain the role and extent of past water in the region. The MTMs are grouped in two different areas within the region and compliment previous mapping in adjacent areas. Three western quads focus on Jones crater and the Himera, Samara, and Loire Valles systems. This abstract focuses on the four eastern quads wherein a large, ancient impact structure, Noachis basin, is flanked on its south and east by a series of valley networks. A solitary valley drains this basin and stretches north-northeast for approximately 450 km, transporting materials into Arabia Terra. Pertinent raster and vector data have been imported and registered using ESRI's ArcMap GIS software. To inspect and quantify stratigraphic relations, crater counts are being compiled in ESRI's ArcView GIS software to make use of crater counting tools specifically developed for planetary mappers. New datasets from the Mars Reconnaissance Orbiter including 4 CTX images, 31 CRISM multi-spectral pushbroom images, and 4 HiRISE images were incorporated into the project during the third year. The CRISM dataset uses summary parameters with thresholds to select targets for the high-resolution datasets. The befit for mappers is the extensive coverage and general compositional information. Results of a cursory analysis show strong mafic absorptions on the floors of Peta crater and Noachis basin. LCP absorptions occur more often than olivine, however, olivine tends to be denser than both pyroxenes. Olivine and HCP mat indicate relatively younger rocks, which is supported by the occurrence of wrinkle ridges associated with high olivine and HCP absorptions in the Peta crater and Noachis basin floors.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ, 2008; NASA/CP-2008-215469
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-26
    Description: In the coming year a global geological map of Ganymede will be completed that represents the most recent understanding of the satellite on the basis of Galileo mission results. This contribution builds on important previous accomplishments in the study of Ganymede utilizing Voyager data and incorporates the many new discoveries that were brought about by examination of Galileo data. Material units have been defined, structural landforms have been identified, and an approximate stratigraphy has been determined utilizing a global mosaic of the surface with a nominal resolution of 1 km/pixel assembled by the USGS. This mosaic incorporates the best available Voyager and Galileo regional coverage and high resolution imagery (100-200 m/pixel) of characteristic features and terrain types obtained by the Galileo spacecraft. This map has given us a more complete understanding of: 1) the major geological processes operating on Ganymede, 2) the characteristics of the geological units making up its surface, 3) the stratigraphic relationships of geological units and structures, and 4) the geological history inferred from these relationships. A summary of these efforts is provided here.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ, 2008; NASA/CP-2008-215469
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-26
    Description: Europa, with its indications of a sub-ice ocean, is of keen interest to astrobiology and planetary geology. Knowledge of the global distribution and timing of Europan geologic units is a key step for the synthesis of data from the Galileo mission, and for the planning of future missions to the satellite. The first geologic map of Europa was produced at a hemisphere scale with low resolution Voyager data. Following the acquisition of higher resolution data by the Galileo mission, researchers have identified surface units and determined sequences of events in relatively small areas of Europa through geologic mapping using images at various resolutions acquired by Galileo's Solid State Imaging camera. These works provided a local to subregional perspective and employed different criteria for the determination and naming of units. Unified guidelines for the identification, mapping and naming of Europan geologic units were put forth by and employed in regional-to-hemispheric scale mapping which is now being expanded into a global geologic map. A global photomosaic of Galileo and Voyager data was used as a basemap for mapping in ArcGIS, following suggested methodology of all-stratigraphy for planetary mapping. The following units have been defined in global mapping and are listed in stratigraphic order from oldest to youngest: ridged plains material, Argadnel Regio unit, dark plains material, lineaments, disrupted plains material, lenticulated plains material and Chaos material.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ, 2008; NASA/CP-2008-215469
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-26
    Description: The authors seek to construct a 1:2,500,000-scale map of Lunar Quadrangle 10 (LQ10 or the Marius Quadrangle) to address outstanding questions about the Moon's volcanologic history and the role of impact basins in lunar geologic evolution. The selected quadrangle contains Aristarchus plateau and the Marius hills, Reiner Gamma, and Hevelius crater. By generating a geologic map of this region, we can constrain the temporal (and possibly genetic) relations between these features, revealing more information about the Moon's chemical and thermal evolution. Although many of these individual sites have been investigated using Lunar Orbiter, Clementine, Lunar Prospector and Galileo data, no single investigation has yet attempted to constrain the stratigraphic and geologic relationships between these features. Furthermore, we will be able to compare our unit boundaries on the eastern boundary of the proposed map area with those already mapped in the Copernicus Quadrangle. Geologic mapping of the Marius Quadrangle would provide insight to the following questions: the origin, evolution, and distribution of mare volcanism; the timing and effects of the major basin-forming impacts on lunar crustal stratigraphy; and, the Moon's important resources, where they are concentrated, and how they can be accessed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ, 2008; NASA/CP-2008-215469
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-26
    Description: A new global geologic map of Jupiter's volcanic moon, Io is being prepared, with the focus being on completion of a draft map by July 2008. Here initial results of the mapping are reported: a preliminary distribution of material units in terms of areas and a visual representation. Additionally, the mapping hopes to address some of the problems in Io geology. Thus far it has been discovered that Io's surface is dominated by plains material, thought to consist of Io's silicate crust covered by pyroclastic deposits and lava flows of silicate and sulfur-bearing composition. Many plains areas contain flow fields that cannot be mapped separately due to a lack of resolution or modification by alteration processes. Discrete lava flows and flow fields are the next most abundant unit, with bright (sulfur?) flows in greater abundance than dark (silicate?) flows. The source of most of Io's heat flow, the paterae, are the least abundant unit in terms of areal extent.Upon completion of the draft map for peer review, it will be used to investigate several specific questions about the geological evolution of Io that previously could not be well addressed, including: comparison of the areas versus the heights of Ionian mountains to assess their stability and evolution; correlation and comparison of Galileo Near-Infrared Mapping Spectrometer and Photopolarimeter-Radiometer hot spot locations with the mapped location of dark versus bright lava flows and patera floors to assess any variations in the types of sources for Io's active volcanism; and the creation of a global inventory of the areal coverage of dark and bright laval flows to assess the relative importance of sulfur versus silicate volcanism in resurfacing Io, and to assess whether there are regional concentrations of either style of volcanism that may have implications on interior processes.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ, 2008; NASA/CP-2008-215469
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...