ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Amino Acid Sequence  (65)
  • Astronomy
  • American Association for the Advancement of Science (AAAS)  (67)
  • 2005-2009  (67)
  • 2000-2004
  • 2006  (67)
Collection
Publisher
Years
  • 2005-2009  (67)
  • 2000-2004
Year
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-12-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉New York, N.Y. -- Science. 2006 Dec 22;314(5807):1854-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17185569" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astronomical Phenomena ; Astronomy ; Climate ; Fossils ; Genome ; Genome, Human ; Genomics ; Hominidae ; Humans ; Lasers ; Physical Phenomena ; Physics ; Primates/genetics ; *Science
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-12-23
    Description: Novel, low-abundance microbial species can be easily overlooked in standard polymerase chain reaction (PCR)-based surveys. We used community genomic data obtained without PCR or cultivation to reconstruct DNA fragments bearing unusual 16S ribosomal RNA (rRNA) and protein-coding genes from organisms belonging to novel archaeal lineages. The organisms are minor components of all biofilms growing in pH 0.5 to 1.5 solutions within the Richmond Mine, California. Probes specific for 16S rRNA showed that the fraction less than 0.45 micrometers in diameter is dominated by these organisms. Transmission electron microscope images revealed that the cells are pleomorphic with unusual folded membrane protrusions and have apparent volumes of 〈0.006 cubic micrometer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baker, Brett J -- Tyson, Gene W -- Webb, Richard I -- Flanagan, Judith -- Hugenholtz, Philip -- Allen, Eric E -- Banfield, Jillian F -- New York, N.Y. -- Science. 2006 Dec 22;314(5807):1933-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth and Planetary Sciences, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17185602" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; *Biofilms ; California ; Cell Membrane/ultrastructure ; DNA Transposable Elements ; DNA, Archaeal ; Databases, Genetic ; *Ecosystem ; *Euryarchaeota/genetics/physiology/ultrastructure ; Genes, Archaeal ; Genes, rRNA ; *Genome, Archaeal ; Hydrogen-Ion Concentration ; Microscopy, Electron, Transmission ; Mining ; Molecular Sequence Data ; Oligonucleotide Probes ; Phylogeny ; Pyrophosphatases/genetics/metabolism ; RNA, Ribosomal, 16S/genetics ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-12-23
    Description: Plant immune responses are triggered by pattern recognition receptors that detect conserved pathogen-associated molecular patterns (PAMPs) or by resistance (R) proteins recognizing isolate-specific pathogen effectors. We show that in barley, intracellular mildew A (MLA) R proteins function in the nucleus to confer resistance against the powdery mildew fungus. Recognition of the fungal avirulence A10 effector by MLA10 induces nuclear associations between receptor and WRKY transcription factors. The identified WRKY proteins act as repressors of PAMP-triggered basal defense. MLA appears to interfere with the WRKY repressor function, thereby de-repressing PAMP-triggered basal defense. Our findings reveal a mechanism by which these polymorphic immune receptors integrate distinct pathogen signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shen, Qian-Hua -- Saijo, Yusuke -- Mauch, Stefan -- Biskup, Christoph -- Bieri, Stephane -- Keller, Beat -- Seki, Hikaru -- Ulker, Bekir -- Somssich, Imre E -- Schulze-Lefert, Paul -- New York, N.Y. -- Science. 2007 Feb 23;315(5815):1098-103. Epub 2006 Dec 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Microbe Interactions, Max-Planck-Institut fur Zuchtungsforschung, Carl-von-Linne-Weg 10, D-50829 Koln, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17185563" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/genetics/*immunology/metabolism/microbiology ; Arabidopsis Proteins/genetics/metabolism ; Ascomycota/growth & development/*immunology ; Cell Nucleus/metabolism ; Cytoplasm/metabolism ; Fungal Proteins/metabolism ; Hordeum/genetics/*immunology/metabolism/microbiology ; Immunity, Innate ; Molecular Sequence Data ; Mutation ; Plant Diseases/*immunology/microbiology ; Plant Proteins/chemistry/genetics/*metabolism ; Plants, Genetically Modified ; Protein Structure, Tertiary ; Receptors, Immunologic/chemistry/genetics/*metabolism ; Receptors, Pattern Recognition/metabolism ; Recombinant Fusion Proteins/metabolism ; Transcription Factors/genetics/*metabolism ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-12-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Komar, Anton A -- New York, N.Y. -- Science. 2007 Jan 26;315(5811):466-7. Epub 2006 Dec 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA. a.komar@csuohio.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17185559" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Codon ; Cyclosporine/pharmacology ; *Genes, MDR ; Haplotypes ; Mutagenesis, Site-Directed ; P-Glycoprotein/antagonists & inhibitors/*chemistry/genetics/*metabolism ; *Polymorphism, Single Nucleotide ; Protein Biosynthesis ; *Protein Conformation ; *Protein Folding ; RNA, Messenger/genetics/metabolism ; Verapamil/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-12-16
    Description: A methanogenic archaeon isolated from deep-sea hydrothermal vent fluid was found to reduce N(2) to NH(3) at up to 92 degrees C, which is 28 degrees C higher than the current upper temperature limit of biological nitrogen fixation. The 16S ribosomal RNA gene of the hyperthermophilic nitrogen fixer, designated FS406-22, was 99% similar to that of non-nitrogen fixing Methanocaldococcus jannaschii DSM 2661. At its optimal growth temperature of 90 degrees C, FS406-22 incorporated (15)N(2) and expressed nifH messenger RNA. This increase in the temperature limit of nitrogen fixation could reveal a broader range of conditions for life in the subseafloor biosphere and other nitrogen-limited ecosystems than previously estimated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mehta, Mausmi P -- Baross, John A -- New York, N.Y. -- Science. 2006 Dec 15;314(5806):1783-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Oceanography, University of Washington, Seattle, WA 98195, USA. mausmi@alum.mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17170307" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Archaea/classification/genetics/*isolation & purification/*metabolism ; Archaeal Proteins/chemistry/genetics/metabolism ; Base Sequence ; *Ecosystem ; Genes, Archaeal ; Genes, rRNA ; Geologic Sediments/microbiology ; *Hot Temperature ; Molecular Sequence Data ; Nitrogen/metabolism ; *Nitrogen Fixation/genetics ; Nitrogenase/chemistry/*genetics/metabolism ; Operon ; Oxidation-Reduction ; Oxidoreductases/chemistry/genetics/metabolism ; Pacific Ocean ; Phylogeny ; RNA, Ribosomal, 16S/genetics ; Seawater/*microbiology ; Volcanic Eruptions
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-12-16
    Description: The majority of known Toxoplasma gondii isolates from Europe and North America belong to three clonal lines that differ dramatically in their virulence, depending on the host. To identify the responsible genes, we mapped virulence in F(1) progeny derived from crosses between type II and type III strains, which we introduced into mice. Five virulence (VIR) loci were thus identified, and for two of these, genetic complementation showed that a predicted protein kinase (ROP18 and ROP16, respectively) is the key molecule. Both are hypervariable rhoptry proteins that are secreted into the host cell upon invasion. These results suggest that secreted kinases unique to the Apicomplexa are crucial in the host-pathogen interaction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646183/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646183/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saeij, J P J -- Boyle, J P -- Coller, S -- Taylor, S -- Sibley, L D -- Brooke-Powell, E T -- Ajioka, J W -- Boothroyd, J C -- 1R01AI045806-01A1/AI/NIAID NIH HHS/ -- AI05093/AI/NIAID NIH HHS/ -- AI059176/AI/NIAID NIH HHS/ -- AI21423/AI/NIAID NIH HHS/ -- AI30230/AI/NIAID NIH HHS/ -- AI36629/AI/NIAID NIH HHS/ -- AI41014/AI/NIAID NIH HHS/ -- F32AI60306/AI/NIAID NIH HHS/ -- R01 AI021423/AI/NIAID NIH HHS/ -- R01 AI021423-20/AI/NIAID NIH HHS/ -- R01 AI036629/AI/NIAID NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2006 Dec 15;314(5806):1780-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17170306" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Chromosome Mapping ; Chromosomes/genetics ; Crosses, Genetic ; Female ; Genes, Protozoan ; Genetic Complementation Test ; Mice ; Mice, Inbred BALB C ; Mice, Inbred CBA ; Molecular Sequence Data ; Oligonucleotide Array Sequence Analysis ; *Polymorphism, Single Nucleotide ; Protozoan Proteins/chemistry/*genetics/metabolism ; Quantitative Trait Loci ; Toxoplasma/enzymology/*genetics/*pathogenicity ; Toxoplasmosis, Animal/*parasitology ; Virulence ; Virulence Factors/chemistry/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-12-16
    Description: Toxoplasma gondii strains differ dramatically in virulence despite being genetically very similar. Genetic mapping revealed two closely adjacent quantitative trait loci on parasite chromosome VIIa that control the extreme virulence of the type I lineage. Positional cloning identified the candidate virulence gene ROP18, a highly polymorphic serine-threonine kinase that was secreted into the host cell during parasite invasion. Transfection of the virulent ROP18 allele into a nonpathogenic type III strain increased growth and enhanced mortality by 4 to 5 logs. These attributes of ROP18 required kinase activity, which revealed that secretion of effectors is a major component of parasite virulence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Taylor, S -- Barragan, A -- Su, C -- Fux, B -- Fentress, S J -- Tang, K -- Beatty, W L -- Hajj, H El -- Jerome, M -- Behnke, M S -- White, M -- Wootton, J C -- Sibley, L D -- AI059176/AI/NIAID NIH HHS/ -- AI36629/AI/NIAID NIH HHS/ -- AI44600/AI/NIAID NIH HHS/ -- P20 RR-020185/RR/NCRR NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2006 Dec 15;314(5806):1776-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17170305" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Catalytic Domain ; Chromosome Mapping ; Chromosomes/genetics ; Cloning, Molecular ; Genes, Protozoan ; Mice ; Molecular Sequence Data ; Movement ; Point Mutation ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Protozoan Proteins/chemistry/genetics/*metabolism ; Quantitative Trait Loci ; Toxoplasma/*enzymology/genetics/growth & development/*pathogenicity ; Toxoplasmosis, Animal/mortality/parasitology ; Transfection ; Virulence/genetics ; Virulence Factors/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-11-25
    Description: The Dobzhansky-Muller model proposes that hybrid incompatibilities are caused by the interaction between genes that have functionally diverged in the respective hybridizing species. Here, we show that Lethal hybrid rescue (Lhr) has functionally diverged in Drosophila simulans and interacts with Hybrid male rescue (Hmr), which has functionally diverged in D. melanogaster, to cause lethality in F1 hybrid males. LHR localizes to heterochromatic regions of the genome and has diverged extensively in sequence between these species in a manner consistent with positive selection. Rapidly evolving heterochromatic DNA sequences may be driving the evolution of this incompatibility gene.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brideau, Nicholas J -- Flores, Heather A -- Wang, Jun -- Maheshwari, Shamoni -- Wang, Xu -- Barbash, Daniel A -- R01 GM074737-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Nov 24;314(5803):1292-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17124320" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Chromosomal Proteins, Non-Histone/metabolism ; Chromosome Mapping ; Crosses, Genetic ; Drosophila/*genetics/physiology ; Drosophila Proteins/chemistry/*genetics/metabolism ; Drosophila melanogaster/*genetics/physiology ; *Evolution, Molecular ; Female ; *Genes, Insect ; Genetic Speciation ; *Hybridization, Genetic ; Male ; Molecular Sequence Data ; Selection, Genetic ; Transformation, Genetic ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2006-11-25
    Description: Clostridium novyi-NT is an anaerobic bacterium that can infect hypoxic regions within experimental tumors. Because C. novyi-NT lyses red blood cells, we hypothesized that its membrane-disrupting properties could be exploited to enhance the release of liposome-encapsulated drugs within tumors. Here, we show that treatment of mice bearing large, established tumors with C. novyi-NT plus a single dose of liposomal doxorubicin often led to eradication of the tumors. The bacterial factor responsible for the enhanced drug release was identified as a previously unrecognized protein termed liposomase. This protein could potentially be incorporated into diverse experimental approaches for the specific delivery of chemotherapeutic agents to tumors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheong, Ian -- Huang, Xin -- Bettegowda, Chetan -- Diaz, Luis A Jr -- Kinzler, Kenneth W -- Zhou, Shibin -- Vogelstein, Bert -- CA062924/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2006 Nov 24;314(5803):1308-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and the Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17124324" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antineoplastic Agents/*administration & dosage/pharmacokinetics/therapeutic use ; Bacterial Proteins/chemistry/genetics/*metabolism ; Base Sequence ; Camptothecin/administration & dosage/analogs & ; derivatives/pharmacokinetics/therapeutic use ; Cell Line, Tumor ; Cloning, Molecular ; Clostridium/*chemistry/genetics ; Colorectal Neoplasms/*drug therapy ; Doxorubicin/*administration & dosage/pharmacokinetics/therapeutic use ; Drug Carriers ; Humans ; Lipase/chemistry/genetics/*metabolism ; Lipid Bilayers/chemistry ; Liposomes/chemistry/*metabolism ; Mice ; Molecular Sequence Data ; Mutation ; Neoplasm Transplantation ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2006-11-25
    Description: Enhancing the nutritional value of food crops is a means of improving human nutrition and health. We report here the positional cloning of Gpc-B1, a wheat quantitative trait locus associated with increased grain protein, zinc, and iron content. The ancestral wild wheat allele encodes a NAC transcription factor (NAM-B1) that accelerates senescence and increases nutrient remobilization from leaves to developing grains, whereas modern wheat varieties carry a nonfunctional NAM-B1 allele. Reduction in RNA levels of the multiple NAM homologs by RNA interference delayed senescence by more than 3 weeks and reduced wheat grain protein, zinc, and iron content by more than 30%.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737439/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737439/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Uauy, Cristobal -- Distelfeld, Assaf -- Fahima, Tzion -- Blechl, Ann -- Dubcovsky, Jorge -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2006 Nov 24;314(5803):1298-301.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17124321" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cloning, Molecular ; Frameshift Mutation ; *Genes, Plant ; Iron/*metabolism ; Molecular Sequence Data ; Plant Leaves/chemistry ; Plant Proteins/*metabolism ; Plants, Genetically Modified ; Protein Structure, Tertiary ; Quantitative Trait Loci ; RNA Interference ; RNA, Plant/genetics/metabolism ; Transcription Factors/chemistry/*genetics/physiology ; Triticum/chemistry/*genetics/*metabolism/physiology ; Zinc/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...