ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (11)
  • climate change  (11)
  • 2020-2024  (11)
  • 1940-1944
  • 2023  (11)
  • 1943
Collection
Source
Keywords
Language
Years
  • 2020-2024  (11)
  • 1940-1944
Year
  • 1
    Publication Date: 2024-05-22
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The movement of active dunes is tightly linked to climatic conditions (e.g., wind regime, temperature and precipitation) as well as human influence (e.g., grazing, dune fixation and greening). Dune migration rates can be studied to draw conclusions of changing wind conditions over time. The Gonghe Basin (GB), located on the north‐eastern Tibetan Plateau (TP), offers a good testing ground for these assumptions. The intramontane basin is highly influenced by two major wind regimes: the mid‐latitude Westerlies and the East Asian summer monsoon. To investigate environmental changes, this study combines optical remote sensing techniques with climatic datasets. High‐resolution satellite images of the last five decades, such as CORONA KH‐4B, are used to map dunes and calculate their respective migration rates. Further, height information was extracted as well. Climatic changes from the ERA‐5 reanalysis dataset and normalized difference vegetation index (NDVI) values were processed alongside. Relating the dunes' surface processes to climate model data shows an accordance between slowing migration, expanding vegetation and a decrease in sand drift potential. From 1968 to present time, an average dune migration rate of 7.3 m a〈sup〉−1〈/sup〉 was extracted from the satellite images, with an overall reduction of −1.81 m a〈sup〉−1〈/sup〉. The resultant drift potential (RDP) values for the GB are calculated to be below 10 m〈sup〉3〈/sup〉 s〈sup〉−3〈/sup〉 with a spatial decrease, following a direction from the NW to the SE, fitting well with a corresponding decrease in the migration rates. Our results indicate a good agreement between the development of aeolian landforms and the ERA‐5 climate reanalysis model data, even in a high‐altitude setting with complex topography, which is known to influence such datasets.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉We investigate climatic changes of the past 5 decades in the Gonghe Basin by using a wide range of remote sensing data. Era‐5 data is compared with dune migration rates. The dunes' behaviour is very well represented within the ERA‐5 data and shows a slowing migration over the past five decades. This fits well to climatic developments, like increasing precipitation and temperature. Sand drift potential was calculated and interpolated to pinpoint resultant drift potential (RDP) values to individual barchans. 〈boxed-text position="anchor" content-type="graphic" id="esp5651-blkfxd-0001" xml:lang="en"〉 〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:01979337:media:esp5651:esp5651-toc-0001"〉 〈/graphic〉 〈/boxed-text〉〈/p〉
    Description: Federal Ministry of Education and Research of Germany (BMBF)
    Description: National Key Research and Development Program of China http://dx.doi.org/10.13039/501100012166
    Keywords: ddc:551.3 ; climate change ; CORONA KH‐4B ; dunes ; ERA‐5 ; satellite remote sensing ; Tibetan Plateau
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-28
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉High spatio‐temporal resolution near‐surface projected data is vital for climate change impact studies and adaptation. We derived the highest statistically downscaled resolution multivariate ensemble currently available: daily 1 km until the end of the century. Deep learning models were employed to develop transfer functions for precipitation, water vapor pressure, radiation, wind speed, and, maximum, mean and minimum temperature. Perfect prognosis is the particular statistical downscaling methodology applied, using a subset of the ReKIS data set for Saxony as predictands, the ERA5 reanalysis as during‐training predictors and the CORDEX‐EUR11 ensemble as projected predictors. The performance of the transfer functions was validated with the VALUE framework, yielding highly satisfactory results. Particular attention was given to the three major perfect prognosis assumptions, for which several tests were carried out and thoroughly discussed. From the latter, we corroborated their fulfillment to a high degree, thus, the derived projections are considered adequate and relevant for impact modelers. In total, 18 runs for RCP85, 1 for RCP45, and 4 for RCP26 were downscaled under both stochastic and deterministic approaches. This multivariate ensemble could drive more accurate and diverse impact studies in the region. Generally, the projected climatologies are in agreement with coarser resolution projections. Nevertheless, statistical particularities were observed for some projections, thus, a list of caveats for potential users is given. Due to the scalability of the presented methodology, further possible applications with additional datasets are proposed. Lastly, several potential improvement prospects are discussed toward the ideal subsequent iteration of the perfect prognosis statistical downscaling methodology.〈/p〉
    Description: Plain Language Summary: There is a great worldwide demand for high spatio‐temporal resolution projections to develop climate change adaptation and mitigation schemes. Despite recent improvements, the resolution of both global and regional climate models is still too coarse to properly represent local variability, particularly in complex terrains. Depending on the application, impact modelers and decision makers require kilometer‐scale projections, with a minimum daily temporal resolution, of near‐surface variables. To fill this information gap, we employed artificial intelligence algorithms to downscale, to a novel daily 1 km resolution, a projection ensemble until the end of the century consisting of precipitation, water vapor pressure, radiation, wind speed, and, maximum, mean and minimum temperature. The ensemble comprises 18 runs of the business‐as‐usual worst‐case scenario (RCP85), 1 run of the stabilization scenario (RCP45), and 4 of the optimistic low‐emissions scenario (RCP26). The main assumptions of the methodology were thoroughly tested and discussed. The validation carried out yielded highly satisfactory results. Thus, we consider the projections to be adequate and relevant for impact studies. The region studied is located in Saxony (Germany), still, the methodology shown is potentially applicable anywhere in the world.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Highest statistically downscaled spatio‐temporal resolution multivariate ensemble currently available, consisting of 23 projection runs〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉We downscaled precipitation, water vapor pressure, radiation, wind speed, and, maximum, mean and minimum temperature〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The methodology complied to a high degree with the three perfect prognosis assumptions and is scalable to other spatio‐temporal resolutions〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: European Social Fund, Freistaat Sachsen http://dx.doi.org/10.13039/501100004895
    Description: https://rekis.hydro.tu-dresden.de/
    Description: https://doi.org/10.5281/zenodo.7570247
    Description: https://doi.org/10.5281/zenodo.7559173
    Description: https://doi.org/10.5281/zenodo.7558945
    Description: https://doi.org/10.5281/zenodo.8059248
    Description: https://doi.org/10.5281/zenodo.8198925
    Keywords: ddc:551.6 ; climate change ; statistical downscaling ; perfect prognosis ; ERA5 ; CORDEX ; deep learning ; multivariate ensemble
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-21
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉We quantify sea ice concentration (SIC) changes related to synoptic cyclones separately for each month of the year in the Greenland, Barents and Kara Seas for 1979–2018. We find that these SIC changes can be statistically significant throughout the year. However, their strength varies from region to region and month to month, and their sign strongly depends on the considered time scale (before/during vs. after cyclone passages). Our results show that the annual cycle of cyclone impacts on SIC is related to varying cyclone intensity and traversed sea ice conditions. We further show that significant changes in these cyclone impacts have manifested in the last 40 years, with the strongest changes occurring in October and November. For these months, SIC decreases before/during cyclones have more than doubled in magnitude in the Barents and Kara Seas, while SIC increases following cyclones have weakened (intensified) in the Barents Sea (Kara Sea).〈/p〉
    Description: Plain Language Summary: We study how the sea ice cover in the Arctic Ocean changes due to the passage of low‐pressure systems (cyclones). Our study covers all years between 1979 and 2018 and each individual month of the year. Our results show that the passage of cyclones can affect the sea ice year around, but the strength and the sign (less or more sea ice concentration due to cyclones) of this impact varies strongly. These variations in cyclone impacts throughout the year are related to variations in the strength of the cyclones and changes in the state of the sea ice cover (e.g., thinner vs. thicker ice). We further show that the cyclone impact on the Arctic sea ice has changed during the last 40 years. These changes are strongest in autumn, particularly in October and November. In these months, the strength of the destructive cyclone impacts on sea ice has more than doubled in some regions of the Arctic compared to previous times. In some regions, however, also the strength of ice preserving cyclone impacts (more sea ice due to cyclones) has intensified recently.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Cyclones can significantly impact the sea ice in the Atlantic Arctic in all months of the year, but with strong spatiotemporal variations〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Impacts are stronger in the cold season than in summer due to variations in cyclone intensity and traversed sea ice conditions〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Significant changes emerged throughout the year, recently strongest in the Barents Sea in autumn due to a reduced mean ice concentration〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Horizon 2020 Framework Programme http://dx.doi.org/10.13039/100010661
    Description: https://doi.org/10.24381/cds.adbb2d47
    Description: https://www.cen.uni-hamburg.de/icdc/data/ocean/easy-init-ocean/ecmwf-oras5.html
    Keywords: ddc:551.5 ; cyclones ; sea ice ; Arctic ; atmosphere‐sea ice interactions ; climate change
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-30
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Projected changes in summer precipitation deficits partly depend on alterations in synoptic circulations. Here, the automated Jenkinson–Collison classification is used to assess the ability of 21 global climate models (GCMs) to capture the frequency of recurring circulation types (CTs) and their implications for European daily precipitation amounts in summer (JJA). The ability of the GCMs to reproduce the observed present‐day climate features is evaluated first. Most GCMs capture the observed links between the mean CTs directional flow characteristics and the occurrence of dry days and related dry months. The most robust relationships are found for anticyclonic and easterly CTs which are generally associated with higher‐than‐average occurrences of dry conditions. Future changes in summer CTs' frequencies are estimated in the high‐emission SSP5‐8.5 scenario for the sake of a high signal‐to‐noise ratio. Our results reveal consistent changes, mainly in the zonal CTs. A robust decrease in frequency of the westerlies and an increase in the frequency of easterly CTs favour more continental, dry and warm air masses over central Europe. These dynamical changes are shown to enhance the projected summer drying over central and southern Europe.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Summer large‐scale circulations are derived over Europe using an automated classification. Spatial characteristics of the patterns and their influence on dry days are investigated. Future changes are explored based on global climate models. The predicted drier summers in Europe are found to be influenced by consistent changes in west‐easterly circulations.〈boxed-text position="anchor" content-type="graphic" id="joc8033-blkfxd-0001" xml:lang="en"〉 〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:08998418:media:joc8033:joc8033-toc-0001"〉 〈/graphic〉 〈/boxed-text〉〈/p〉
    Description: EU International Training Network (ITN) Climate Advanced Forecasting of sub‐seasonal Extremes (CAFE)
    Description: H2020 Marie Skłodowska‐Curie Actions
    Description: https://github.com/PedroLormendez/jcclass
    Keywords: ddc:551.6 ; circulation patterns ; climate change ; precipitation ; weather extremes
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    John Wiley & Sons, Inc. | Hoboken, USA
    Publication Date: 2024-01-24
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The IPCC's Sixth Assessment Report warns in stark terms that many long inhabited parts of the world are now on course to become uninhabitable. As astronomers continue to search the universe for new habitable planets, it is equally essential to historicize the consequences of changing habitability on this one. This article reviews how scholars have engaged with the widely noted but rarely theorized categories of “habitability” and “uninhabitability.” While tracing longer imperial genealogies, the primary focus is on notions of habitability in relation to European global empires in the nineteenth and twentieth centuries, and their postcolonial legacies. The article traces three key themes in the literature: that habitability was inherently limited, and beyond those limits allegedly lay uninhabitability; that habitability was differential and that certain places were habitable for some groups but not others (but that this might be changed by technological interventions); and finally, that the limits of habitability were not static, but could change for both better and worse. Here the links between colonialism and ideas of acclimatization, terraforming, “improvement,” deliberate uninhabitability, and an “Anthropocene” have all been central to the literature. These have often been closely associated with insidious forms of environmental determinism, which are taking on new forms in an age of crisis (especially in narratives around climate and migration). By drawing together previously disparate literatures, this article ultimately calls on scholars to embrace habitability studies more widely, and to expand on their interdisciplinary potential for communicating the societal consequences of a changing climate.〈/p〉
    Description: European Commission http://dx.doi.org/10.13039/501100000780
    Description: Irish Research Council http://dx.doi.org/10.13039/501100002081
    Keywords: ddc:910 ; Anthropocene ; climate change ; empire ; environmental determinism ; habitability
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-22
    Description: Natural gas is considered a bridging technology in the energy transition because it produces fewer carbon emissions than coal, for example. However, when leaks exist, methane is released into the atmosphere, leading to a dramatic increase in the carbon footprint of natural gas, as methane is a much stronger greenhouse gas than carbon dioxide. Therefore, we conducted a detailed study of methane emissions from gas‐powered end‐use appliances and then compared their climate impacts with those of electricity‐powered appliances. We used the Munich Oktoberfest as a case study and then extended the study to 25 major natural gas consuming countries. This showed that electricity has been the more climate‐friendly energy source at Oktoberfest since 2005, due to the extensive use of renewable electricity at the festival and the presence of methane emissions, particularly caused by the incomplete combustion and leakages of natural gas in cooking and heating appliances. By contrast, at the global level, our study shows that natural gas still produces lower carbon emissions for end‐user appliances than electricity in 18 of the 25 countries studied. However, as the share of renewable energy in the electricity mix steadily increases in most countries, the carbon footprint of electricity will be lower than that of natural gas in these countries in the near future. These findings from our comparison of the total carbon emissions of electric and gas‐powered end‐use appliances can help inform the debate on how to effectively address climate change.
    Description: Plain Language Summary: Although natural gas is considered a relatively climate‐friendly energy source compared to coal, leakage of methane, the main component of natural gas, can significantly increase the climate impact of natural gas. This is because methane is a very strong greenhouse gas. In this study, we focused on methane leakage from end‐use appliances used for cooking and heating. Using the Munich Oktoberfest as a case study, we found that these end‐use appliances produce significant methane emissions. Therefore, we investigated at which leakage rates and which electricity mixes it would be better to use electric appliances for cooking and heating instead to reduce overall carbon emissions. We found that despite leakage rates, natural gas is still more climate‐friendly than electricity in most countries around the world. However, as the share of renewable energy in the electricity mix increases in most countries, electricity is becoming a more climate‐friendly energy source every year. With this study, we want to make people aware of how the climate friendliness of electricity compares to natural gas over time.
    Description: Key Points: Methane emissions at Oktoberfest are measured and classified as natural gas‐based using isotopic analysis and the ratio of ethane to methane. Oktoberfest could save 87% of total carbon emissions from energy consumption if all gas‐powered appliances were replaced with electric ones. We aim to make people aware how the carbon footprint of electric and natural gas‐driven end‐user appliances compares and evolves over time.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: ETH Zürich Foundation http://dx.doi.org/10.13039/501100012652
    Description: Technical University of Munich–Institute for Advanced Study
    Description: German Excellence Initiative
    Description: European Union Seventh Framework Programme
    Description: https://doi.org/10.14459/2022mp1663551
    Description: https://github.com/ankitshekhar99/Oktoberfest2019Study/tree/main
    Keywords: ddc:333.7 ; climate change ; methane ; carbon dioxide ; emissions ; carbon mitigation ; global
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-12-16
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉In 2022, western Europe experienced its hottest summer on record and widespread dry conditions, with substantial impacts on health, water and vegetation. We use a reanalysis to classify daily mean sea level pressure fields and to investigate the influence of synoptic circulations on the occurrence of temperature extremes and dry days. Summer 2022 featured an above‐normal occurrence of anticyclones extending from the British Isles to the Baltic countries, as well as enhanced easterly, southerly and low‐flow conditions which contributed to the observed extremes over southern and western Europe. While the hot summer of 2022 is only partially explained by circulation anomalies, such anomalies played a key role in the exceptional occurrence of dry days. The comparison with summer circulation anomalies projected by twenty global climate models moreover suggests that future circulation changes will further exacerbate hot and dry extremes over Europe.〈/p〉
    Description: Plain Language Summary: In 2022, western Europe recorded its hottest summer up to date since preindustrial times. At the same time, widespread dry conditions caused dramatic impacts on human health, water resources, crop yields and wildfires. This was partly enhanced by the human–caused cumulative emissions of greenhouse gases, but also potentially by large‐scale circulation anomalies that may also be triggered by global warming. By grouping distinct weather patterns, we find that many extreme hot days during the summer of 2022 over well‐defined parts of Europe were favored by anomalous transport of hot and dry air masses or persistent low‐wind conditions. These weather patterns were essential but not the dominant factor that led to the occurrence of extreme temperatures. Yet, they played a key role in enhancing the number of dry days. We also find that the weather patterns observed in summer 2022 will become more common in coming decades if greenhouse gas emissions remain without reduction. This would further worsen hot and dry extremes in summer over Europe.〈/p〉
    Description: Key Points : 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉European summer 2022 hot extremes have been enhanced by an anomalous occurrence of distinct circulation types over different subdomains〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Predominant circulation anomalies also contributed to the exceptional number of dry days, as much as local, mostly thermodynamical effects〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Such anomalous circulations will become more common, thus further worsening European hot and dry extremes〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: HORIZON EUROPE Marie Sklodowska‐Curie Actions http://dx.doi.org/10.13039/100018694
    Description: https://doi.org/10.24381/cds.adbb2d47
    Description: https://doi.org/10.5194/gmd-9-1937-2016
    Keywords: ddc:551.6 ; hot summer 2022 ; hot extremes ; circulation types ; circulation classification ; climate change ; atmospheric circulation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-12-12
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Global warming, bioinvasions, and parasitism affect single‐species performances and species interactions, substantially impacting the structure and stability of marine ecosystems. In light of accelerated global change, the information derived from studies focusing on single species and single drivers is insufficient, calling for a multi‐stressor approach under near‐natural conditions. We investigated the effects of warming (+3°C) on the performance of a benthic community composed of native and invasive macroalgae, consumers and a trematode parasite in a mesocosm setting. We also assessed the effects of warming and parasitism on the survival and growth of gastropods and mussels and the thermal dependency of trematode performance. Our findings show that warming and grazing by infected gastropods had a large detrimental effect on the invasive macroalga growth. Furthermore, the single and interactive effects of parasitism and warming were detrimental to intermediate host survival and growth, especially to large mussels. Finally, cercarial emergence positively correlated to the natural peaks of summer temperatures, while infection intensity in mussels was higher in larger individuals. Our findings suggest that grazing and warming will be detrimental to the invasive macroalga, favoring the native alga. Moreover, parasitism will enhance grazing, especially in summer, when higher temperatures trigger parasite development. However, parasite‐enhanced grazing may be buffered by higher mortality or a shift in the size of infected intermediate hosts under warming. Our findings demonstrate how complex effects of ocean warming can be on food webs and how they can be mediated by parasitism and, as a result, influence native and invasive macroalgae differently.〈/p〉
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Keywords: ddc:577.7 ; Baltic community ; climate change ; bioinvasions ; parasitism ; interactive effects ; macroalgae growth
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-11-24
    Description: This study investigates the impact of increased global warming on heat stress changes and the potential number of people exposed to heat risks over Africa. For this purpose a heat index has been computed based on an ensemble‐mean of high‐resolution regional climate model simulations from the Coordinated Output for Regional Evaluations embedded in the COordinated Regional Climate Downscaling EXperiment, under two Representative Concentration Pathways (RCPs) scenarios (RCP2.6 and RCP8.5), combined with projections of population growth developed based on the Shared Socioeconomic Pathways (SSPs) scenarios (SSP1 and SSP5). Results show that by the late 21st century, the increased global warming is expected to induce a 12‐fold increase in the area extent affected by heat stress of high‐risk level. This would result in an increase of about 10%–30% in the number of days with high‐risk heat conditions, as well as about 6%–20% in their magnitude throughout the seasonal cycle over West, Central, and North‐East Africa. Therefore, and because of the lack of adaptation and mitigation policies, the exacerbation of ambient heat conditions could contribute to the exposure of about 2–8.5 million person‐events to heat stress of high‐risk level over Burkina Faso, Ghana, Niger, and Nigeria. Furthermore, it was found that the interaction effect between the climate change and population growth seems to be the most dominant in explaining the total changes in exposure due to moderate and high heat‐related risks over all subregions of the African continent.
    Description: Plain Language Summary: This study investigates the impact of increased global warming on heat stress changes and the potential number of persons likely to be exposed to heat risks over Africa. Results show that by the end of the 21st century, the increased global warming is expected to induce a 12‐fold increase in the total area affected by dangerous heat conditions over the continent. This would result in an increase of about 10%–30% in the number of days with these heat conditions, as well as about 6%–20% in their magnitude throughout the seasonal cycle over West, Central and North‐East Africa. Therefore, because of the lack of adaptation and mitigation policies, the exacerbation of ambient heat conditions could contribute to the exposure of about 2–8.5 million person‐events to heat stress of high‐risk level over Burkina Faso, Ghana, Niger, and Nigeria. Since these heat events would be partly driven by interactions effects between climate change and population growth, efficient measures allowing not only to mitigate the increased greenhouse gas emissions, but also the effects of high heat on the human body must be urgently implemented on the affected countries' scale, in order to significantly decrease the vulnerability of their populations to potential heat‐related health problems.
    Description: Key Points: Increased global warming induces more spatially and temporally widespread extreme heat events over West, Central and North‐East Africa. Populations of some West African countries are projected to be particularly exposed to moderate and high heat conditions. Change in population exposure to dangerous heat categories is mainly driven by the interaction effect between climate and population growth.
    Description: Deutscher Akademischer Austauschdienst http://dx.doi.org/10.13039/501100001655
    Description: Projekt DEAL
    Description: https://esg-dn1.nsc.liu.se/search/cordex/
    Description: https://esgf-data.dkrz.de/projects/esgf-dkrz/
    Description: https://www.isimip.org/gettingstarted/details/31
    Description: https://sedac.ciesin.columbia.edu/data/set/popdynamics-1-8th-pop-base-year-projection-ssp-2000-2100-rev01/data-download
    Description: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
    Keywords: ddc:551.6 ; Africa ; climate change ; heat stress index ; global warming
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-10-24
    Description: Trends in flood magnitudes vary across the conterminous USA (CONUS). There have been attempts to identify what controls these regionally varying trends, but these attempts were limited to certain—for example, climatic—variables or to smaller regions, using different methods and datasets each time. Here we attribute the trends in annual maximum streamflow for 4,390 gauging stations across the CONUS in the period 1960–2010, while using a novel combination of methods and an unprecedented variety of potential controlling variables to allow large‐scale comparisons and minimize biases. Using process‐based flood classification and complex networks, we find 10 distinct clusters of catchments with similar flood behavior. We compile a set of 31 hydro‐climatological and land use variables as predictors for 10 separate Random Forest models, allowing us to find the main controls the flood magnitude trends for each cluster. By using Accumulated Local Effect plots, we can understand how these controls influence the trends in the flood magnitude. We show that hydro‐climatologic changes and land use are of similar importance for flood magnitude trends across the CONUS. Static land use variables are more important than their trends, suggesting that land use is able to attenuate (forested areas) or amplify (urbanized areas) the effects of climatic changes on flood magnitudes. For some variables, we find opposing effects in different regions, showing that flood trend controls are highly dependent on regional characteristics and that our novel approach is necessary to attribute flood magnitude trends reliably at the continental scale while maintaining sensitivity to regional controls.
    Description: Key Points: A wide variety of controls are necessary to explain flood magnitude trends across the United States between 1960 and 2010. Climatic changes and land cover conditions are of similar importance for flood magnitude trends at the regional scale. Controls on flood trends can have highly nonlinear effects and can have opposing effects in different hydro‐climatological subregions.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: USACE Water Institute
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: https://nwis.waterdata.usgs.gov/usa/nwis/peak
    Description: https://water.usgs.gov/GIS/metadata/usgswrd/XML/streamgagebasins.xml
    Description: https://psl.noaa.gov/
    Description: https://www.sciencebase.gov/catalog/item/59692a64e4b0d1f9f05fbd39
    Keywords: ddc:551.48 ; annual maximum flood ; magnitude trends ; drivers ; Random Forest ; clustering ; climate change
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...