ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books  (67)
  • English  (67)
  • 2015-2019  (67)
  • AWI Reading room  (67)
Collection
  • Books  (67)
Language
Year
Branch Library
  • 1
    Monograph available for loan
    Monograph available for loan
    Hoboken, NJ : Wiley
    Call number: AWI A14-15-0008
    Description / Table of Contents: The cryosphere, that region of the world where water is temporarily or permanently frozen, plays a crucial role on our planet. Recent developments in remote sensing techniques, and the acquisition of new data sets, have resulted in significant advances in our understanding of all components of the cryosphere and its processes. This book, based on contributions from 40 leading experts, offers a comprehensive and authoritative overview of the methods, techniques and recent advances in applications of remote sensing of the cryosphere. Examples of the topics covered include: snow extent, depth, grain size and impurities; surface and subsurface melting; glaciers; accumulation over the Greenland and Antarctica ice sheets; ice thickness and velocities; gravimetric measurements from space; sea, lake and river ice; frozen ground and permafrost; fieldwork activities; recent and future cryosphere-oriented missions and experiments.
    Type of Medium: Monograph available for loan
    Pages: 408 Seiten , Illustrationen
    Edition: 1. edition
    ISBN: 9781118368855
    Series Statement: The cryosphere science series
    Language: English
    Note: Table of Contents: List of contributors. - Cryosphere Science: Series Preface. - Preface. - Acknowledgments. - About the companion website. - 1 Remote sensing and the cryosphere. - 1.1 Introduction. - 1.2 Remote sensing. - 1.2.1 The electromagnetic spectrum and blackbody radiation. - 1.2.2 Passive systems. - 1.2.3 Active systems. - 1.3 The cryosphere. - References. - 2 Electromagnetic properties of components of the cryosphere. - 2.1 Electromagnetic properties of snow. - 2.1.1 Visible/near-infrared and thermal infrared. - 2.1.2 Microwave region. - 2.2 Electromagnetic properties of sea ice. - 2.2.1 Visible/near-infrared and thermal infrared. - 2.2.2 Microwave region. - 2.3 Electromagnetic properties of freshwater ice. - 2.4 Electromagnetic properties of glaciers and ice sheets. - 2.4.1 Visible/near-infrared and thermal infrared. - 2.4.2 Microwave region. - 2.5 Electromagnetic properties of frozen soil. - 2.5.1 Visible/near-infrared and thermal infrared. - 2.5.2 Microwave region. - References. - Acronyms. - Websites cited. - 3 Remote sensing of snow extent. - 3.1 lntroduction. - 3.2 Visible/near-infrared snow products. - 3.2.1 The normalized difference snow index (NDSI). - 3.3 Passive microwave products. - 3.4 Blended VNIR/PM products. - 3.5 Satellite snow extent as input to hydrological models. - 3.6 Concluding remarks. - Acknowledgments. - References. - Acronyms. - Websites cited. - 4 Remote sensing of snow albedo, grain size, and pollution from space. - 4.1 Introduction. - 4.2 Forward modeling. - 4.3 Local optical properties of a snow layer. - 4.4 Inverse problem. - 4.5 Pitfalls of retrievals. - 4.6 Conclusions. - Acknowledgments. - References. - Acronyms. - Websites cited. - 5 Remote sensing of snow depth and snow water equivalent. - 5.1 Introduction. - 5.2 Photogrammetry. - 5.3 LiDAR. - 5.4 Gamma radiation. - 5.5 Gravity data. - 5.6 Passive microwave data. - 5.7 Active microwave data. - 5.8 Conclusions. - References. - Acronyms. - Websites cited. - 6 Remote sensing of melting snow and ice. - 6.1 Introduction. - 6.2 General considerations on optical/thermal and microwave sensors and techniques for remote sensing of melting. - 6.2.1 Optical and thermal sensors. - 6.2.2 Microwave sensors. - 6.2.3 Electromagnetic properties of dry and wet snow. - 6.3 Remote sensing of melting over land. - 6.4 Remote sensing of melting over Greenland. - 6.4.1 Thermal infrared sensors. - 6.4.2 Microwave sensors. - 6.5 Remote sensing of melting over Antarctica. - 6.6 Conclusions. - References. - Acronyms. - 7 Remote sensing of glaciers. - 7.1 Introduction. - 7.2 Fundamentals. - 7.3 Satellite instruments for glacier research. - 7.4 Methods. - 7.4.1 Image classification for glacier mapping. - 7.4.2 Mapping debris-covered glaciers. - 7.4.3 Glacier mapping with SAR data. - 7.4.4 Assessing glacier changes. - 7.4.5 Area and length changes. - 7.4.6 Volumetrie glacier changes. - 7.4.7 Glacier velocity. - 7.5 Glaciers of the Greenland ice sheet. - 7.5.1 Surface elevation. - 7.5.2 Glacier extent. - 7.5.3 Glacier dynamics. - 7.6 Summary. - References. - Acronyms. - Websites cited. - 8 Remote sensing of accumulation over the Greenland and Antarctic ice sheets. - 8.1 Introduction to accumulation. - 8.2 Spaceborne methods for determining accumulation over ice sheets. - 8.2.1 Microwave remote sensing. - 8.2.2 Other remote sensing techniques and combined methods. - 8.3 Airborne and ground-based measurements of accumulation. - 8.3.1 Ground-based. - 8.3.2 Airborne. - 8.4 Modeling of accumulation. - 8.5 The future for remote sensing of accumulation. - 8.6 Conclusions. - References. - Acronyms. - Website cited. - 9 Remote sensing of ice thickness and surface velocity. - 9.1 Introduction. - 9.1.1 Electrical properties of glacial ice. - 9.2 Radar principles. - 9.2.1 Radar sounder. - 9.2.2 Radar equation. - 9.3 Pulse compression. - 9.4 Antennas. - 9.5 Example results. - 9.6 SAR and array processing. - 9.7 SAR Interferometry. - 9. 7.1 Introduction. - 9.7.2 Basic theory. - 9.7.3 Practical considerations of InSAR systems. - 9.7.4 Application of InSAR to Cryosphere remote sensing. - 9.8 Conclusions. - References. - Acronyms. - 10 Gravimetry measurements from space. - 10.1 Introduction. - 10.2 Observing the Earth's gravity field with inter-satellite ranging. - 10.3 Surface mass variability from GRACE. - 10.4 Results. - 10.5 Conclusions. - References. - Acronyms. - 11 Remote sensing of sea ice. - 11.1 Introduction. - 11.2 Sea ice concentration and extent. - 11.2.1 Passive microwave radiometers. - 11.2.2 Active microwave - scatterometry and radar. - 11.2.3 Visible and infrared. - 11.2.4 Operational sea ice analyses. - 11.3 Sea ice drift. - 11.4 Sea ice thickness and age, and snow depth. - 11.4.1 Altimetric thickness estimates. - 11.4.2 Radiometric thickness estimates. - 11.4.3 Sea ice age estimates as a proxy for ice thickness. - 11.5 Sea ice melt onset and freeze-up, albedo, melt pond fraction and surface temperature. - 11.5.1 Melt onset and freeze-up. - 11.5.2 Sea ice albedo and melt pond fraction. - 11.5.3 Sea ice surface temperature. - 11.6 Summary, challenges and the road ahead. - References. - Acronyms. - Website cited. - 12 Remote sensing of lake and river ice. - 12.1 Introduction. - 12.2 Remote sensing of lake ice. - 12.2.1 Ice concentration, extent and phenology. - 12.2.2 Ice types. - 12.2.3 Ice thickness and snow on ice. - 12.2.4 Snow/ice surface temperature. - 12.2.5 Floating and grounded ice: the special case of shallow Arctic/sub-Arctic lakes. - 12.3 Remote sensing of river ice. - 12.3.1 Ice extent and phenology. - 12.3.2 lce types, ice jams and flooded areas. - 12.3.3 Ice thickness. - 12.3.4 Surface flow velocities. - 12.3.5 Incorporating SAR-derived ice information into a GIS-based system in support of river-flow modeling and flood forecasting. - 12.4 Conclusions and outlook. - Acknowledgments. - References. - Acronyms. - Websites cited. - 13 Remote sensing of permafrost and frozen ground. - 13.1 Permafrost - an essential climate variable of the "Global Climate Observing System". - 13.2 Mountain permafrost. - 13.2.1 Remote sensing of surface features and permafrost landforms. - 13.2.2 Generation of digital elevation models. - 13.2.3 Terrain elevation change and displacement. - 13.3 Lowland permafrost - identification and mapping of surface features. - 13.3.1 Land cover and vegetation. - 13.3.2 Permafrost landforms. - 13.3.3 Landforms and processes indicating permafrost degradation. - 13.4 Lowland permafrost - remote sensing of physical variables related to the thermal permafrost state. - 13.4.1 Land surface temperature through thermal remote sensing. - 13.4.2 Freeze-thaw state of the surface soil through microwave remote sensing. - 13.4.3 Permafrost mapping with airborne electromagnetic surveys. - 13.4.4 Regional surface deformation through radar interferometry. - 13.4.5 A gravimetric signal of permafrost thaw?. - 13.5 Outlook - remote sensing data and permafrost models. - References. - Acronyms. - 14 Field measurements for remote sensing of the cryosphere. - 14.1 Introduction. - 14.2 Physical properties of interest. - 14.2.1 Surface properties. - 14.2.2 Sub-surface properties. - 14.3 Standard techniques for direct measurements of physical properties. - 14.3.1 Topography. - 14.3.2 Snow depth. - 14.3.3 Snow water equivalent and density. - 14.3.4 Temperature. - 14.3.5 Stratigraphy. - 14.3.6 Sea ice depth and ice thickness. - 14.4 New techniques for high spatial resolution measurements. - 14.4.1 Topography. - 14.4.2 Surface properties. - 14.4.3 Sub-surface properties. - 14.5 Simulating airborne and spaceborne observations from the ground. - 14.5.1 Active microwave. - 14.5.2 Passive microwave. - 14.6 Sampling strategies for remote sensing field campaigns: concepts and examples. - 14.6.1 Ice sheet campaigns. - 14.6.2 Seasonal snow campaigns. - 14.6.3 Sea ice campaigns. - 14.7 Conclusions. - References. - Acronyms. - Websites cited. - 15 Remote sensing missions and the cryosphere. - 15.1 In
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    Tokyo : National Institute for Polar Research
    Call number: AWI P5-15-0033
    Type of Medium: Monograph available for loan
    Pages: 26 S. : Ill., graph. Darst., Kt.
    Edition: 2014, rev. March 2015
    Language: English
    Note: Contents: 1. Introduction. - (1) The purposes of the long-term plan report. - (2) The background and particulars of this report. - (3) Contents of this report. - 2.Changes in the Arctic environment to date and in the near future. - 3. History of Arctic environmental research. - 4. Abstracts of all themes. - (1) Elucidation of abrupt environmental change in the Arctic associated with the on-going global warming. - Theme 1: Arctic amplification of global warming. - Theme 2: Mechanisms and influence of sea ice decline. - Theme 3: Biogeochemical cycles and ecosystem changes. - Theme 4: Ice sheet, glaciers, permafrost, snowfall, snow cover and hydrological cycle. - Theme 5: Interactions between the Arctic and the entire earth. - Theme 6: Predicting future environmental conditions of the Arctic based on paleoenvironmental records. - Theme 7: Effects of the Arctic environment on human society. - (2) Elucidation of environmental change concerning biodiversity. - Theme 8: Effects on terrestrial ecosystems and biodiversity. - Theme 9: Influence on marine ecosystem and biodiversity. - (3) Broad and important subjects on the Arctic environment. - Theme 10: Geospace environment. - Theme 11: Interaction of surface environment change with solid earth. - Theme 12: Basic understanding on formation and transition process of permafrost. - (4) Development of methods enabling breakthroughs in environmental research. - Theme A: Sustainable seamless monitoring. - Theme B: Earth system-modeling for inter-disciplinary research. - Theme C: Data assimilation to connect monitoring and modeling. - 5. Improvement of research foundation. - Authors and reviewers.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Monograph available for loan
    Monograph available for loan
    Dordrecht : Springer
    Call number: AWI A11-15-0048
    Description / Table of Contents: This textbook aims to be a one stop shop for those interested in aerosols and their impact on the climate system. It starts with some fundamentals on atmospheric aerosols, atmospheric radiation and cloud physics, then goes into techniques used for in-situ and remote sensing measurements of aerosols, data assimilation, and discusses aerosol-radiation interactions, aersol-cloud interactions and the multiple impacts of aerosols on the climate system. The book aims to engage those interested in aerosols and their impacts on the climate system: graduate and PhD students, but also post-doctorate fellows who are new to the field or would like to broaden their knowledge. The book includes exercises at the end of most chapters. Atmospheric aerosols are small (microscopic) particles in suspension in the atmosphere, which play multiple roles in the climate system. They interact with the energy budget through scattering and absorption of solar and terrestrial radiation. They also serve as cloud condensation and ice nuclei with impacts on the formation, evolution and properties of clouds. Finally aerosols also interact with some biogeochemical cycles. Anthropogenic emissions of aerosols are responsible for a cooling effect that has masked part of the warming due to the increased greenhouse effect since pre-industrial time. Natural aerosols also respond to climate changes as shown by observations of past climates and modelling of the future climate.
    Type of Medium: Monograph available for loan
    Pages: XVII, 311 Seiten , Illustrationen
    ISBN: 9789401796484
    Uniform Title: Aérosols atmosphériques : propriétés et impacts climatiques
    Language: English
    Note: Contents: 1 General Introduction. - 1.1 The Climate System. - 1.2 The Atmosphere. - 1.3 Energy Budget and Atmospheric Composition. - 1.4 The Water Cycle. - 1.5 Aerosols and Climate Change. - 1.6 Outline of this Textbook. - References. - Further Reading (Textbooks and Articles. - 2 Atmospheric Aerosols. - 2.1 Definitions. - 2.2 Sources of Aerosols and Aerosol Precursors. - 2.2.1 Marine Aerosols. - 2.2.2 Desert Dust. - 2.2.3 Volcanic Aerosols. - 2.2.4 Biogenic Aerosols. - 2.2.5 Biomass Burning Aerosols. - 2.2.6 Aerosols from Fossil Fuel Combustion. - 2.3 Spatial and Temporal Aerosol Distributions. - 2.4 Aerosol-Cloud-Radiation Interactions. - 2.5 Climate Effects of Aerosols. - References. - Further Reading (Textbooks and Articles). - 3 Physical, Chemical and Optical Aerosol Properties. - 3.1 Fine, Accumulation and Coarse Modes. - 3.2 Size Distribution. - 3.3 Chemical Composition. - 3.3.1 Aerosol Mixture. - 3.3.2 Inorganic Aerosols. - 3.3.3 Black Carbon Aerosols. - 3.3.4 Organic Aerosols. - 3.3.5 Geographic Distribution of Aerosol Chemical Composition. - 3.4 Refractive Index. - 3.5 Deliquescence, Efflorescence and Hysteresis. - 3.6 Definition of Aerosol Optical Properties. - 3.6.1 Absorption and Scattering Cross Sections. - 3.6.2 Phase Function. - 3.6.3 Upscatter Fractions. - 3.7 Calculation of Aerosol Optical Properties. - 3.7.1 Mie Theory. - 3. 7.2 Extinction, Scattering and Absorption. - 3.7.3 Optical Depth and Angström Coefficient. - 3.8 Optical Properties of Nonspherical Aerosols. - 3.9 Aerosols and Atmospheric Visibility. - References. - Further Reading (Textbooks and Articles). - 4 Aerosol Modelling. - 4.1 Introduction. - 4.2 Emissions. - 4.2.1 Generalities. - 4.2.2 Fossil Fuels, Biofuels, and Other Anthropogenic Sources. - 4.2.3 Vegetation Fires. - 4.2.4 Sea Spray. - 4.2.5 Desert Dust. - 4.2.6 Dimethylsulphide. - 4.2.7 Biogenic Volatile Organic Compounds. - 4.2.8 Volcanoes. - 4.2.9 Resuspension. - 4.3 Atmospheric Processes. - 4.3.1 Nucleation. - 4.3.2 Condensation of Semi-Volatile Compounds. - 4.3.3 Coagulation. - 4.3.4 In-Cloud Aerosol Production. - 4.3.5 Wet Deposition. - 4.3.6 Dry Deposition. - 4.3.7 Sedimentation. - 4.3.8 Aerosol Transport. - 4.4 Modelling Approaches. - 4.4.1 Bulk Approach. - 4.4.2 Sectional Approach. - 4.4.3 Modal Approach. - 4.5 Example: The Sulphur Budget. - References. - Further Reading (Textbooks and Articles). - 5 Interactions of Radiation with Matter and Atmospheric Radiative Transfer. - 5.1 Introduction. - 5.2 Electromagnetic Radiation. - 5.2.1 Generalities. - 5.2.2 Definitions. - 5.3 Interactions of Radiation with Matter. - 5.3.1 Matter, Energy and Spectral Lines. - 5.3.2 Intensity of Spectral Lines. - 5.3.3 Spectral Line Profiles. - 5.3.4 Processes of lnteractions of Radiation with Matter. - 5.4 Modelling of the Interaction Processes. - 5.4.1 Molecular Absorption Coefficient. - 5.4.2 Scattering Phase Function. - 5.4.3 Molecular Scattering. - 5.4.4 Absorption and Scattering by Aerosols. - 5.4.5 Thermal Emission. - 5.5 Atmospheric Radiative Transfer. - 5.5.1 Equation of Radiative Transfer. - 5.5.2 Extinction Only. - 5.5.3 Scattering Medium. - 5.5.4 Plane-Parallel Atmosphere. - 5.5.5 Resolution of the Equation of Radiative Transfer. - 5.6 Absorption Bands, Energy, and Actinic Fluxes. - 5.6.1 Main Molecular Absorption Bands in the Atmosphere. - 5.6.2 Radiative Flux. - 5.6.3 Two-Flux Method. - 5.6.4 Stefan-Boltzmann Law. - 5.6.5 Radiative Budget. - 5.6.6 Actinic Fluxes. - 5.6.7 Polarization of Radiation. - References. - Further Reading (Textbooks and Articles). - 6 In Situ and Remote Sensing Measurements of Aerosols. - 6.1 Introduction to Aerosol Remote Sensing. - 6.2 Passive Remote Sensing: Measurement of the Extinction. - 6.2.1 General Principles. - 6.2.2 Ground-Based Photometry. - 6.2.3 Spaceborne Occultation Measurements. - 6.2.4 Retrieval of Aerosol Size Distribution. - 6.3 Passive Remote Sensing: Measurement of the Scattering. - 6.3.1 General Principles. - 6.3.2 Ground-Based Measurement of Scattered Radiation. - 6.3.3 Spaceborne Measurements of Scattered Radiation. - 6.4 Measurement of Infrared Radiation. - 6.4.1 General Principles. - 6.4.2 Spaceborne Nadir Measurement of Infrared Radiation. - 6.4.3 Spaceborne Limb Measurement of Infrared Radiation. - 6.5 Active Remote Sensing: Lidar. - 6.5.1 General Principles. - 6.5.2 The Lidar Equation. - 6.5.3 Raman Lidar. - 6.6 In Situ Aerosol Measurements. - 6.6.1 Measurement of Aerosol Concentrations. - 6.6.2 Measurement of Aerosol Chemical Composition. - 6.6.3 Measurement of Aerosol Scattering. - 6.6.4 Measurement of Aerosol Absorption. - 6.7 Conclusions. - References. - Further Reading (Textbooks and Articles). - 7 Aerosol Data Assimilation. - 7.1 Introduction. - 7.2 Basic Principles of Data Assimilation. - 7.3 Applications of Data Assimilation for Aerosols. - References. - Further Reading (Textbooks and Articles). - 8 Aerosol-Radiation Interactions. - 8.1 Introduction. - 8.2 Atmospheric Radiative Effects Due to Aerosols. - 8.2.1 Simplified Equation for Scattering Aerosols. - 8.2.2 Simplified Equation for Absorbing Aerosols. - 8.2.3 Radiative Transfer Calculations. - 8.2.4 Global Estimates and Sources of Uncertainty. - 8.3 Rapid Adjustments to Aerosol-Radiation Interactions. - 8.4 Radiative Impact of Aerosols on Surface Snow and Ice. - References. - Further Reading (Textbooks and Articles). - 9 Aerosol-Cloud lnteractions. - 39.1 Introduction. - 9 .1.1 Cloud Formation. - 9 .1.2 Cloud Distribution. - 9 .1.3 Aerosol-Cloud Interactions. - 9.2 Aerosol Effects on Liquid Clouds. - 9 .2.1 Saturation Pressure of Water Vapour. - 9.2.2 Kelvin Effect. - 9.2.3 Raoult's Law. - . - 9.2.4 Köhler Theory. - 9.2.5 Extensions to the Köhler Theory. - 9.2.6 CCN and Supersaturation in the Cloud. - 9.2.7 Dynamical and Radiative Effects in Clouds. - 9.2.8 Principle of the Cloud Albedo Effect. - 9.2.9 Observations of the Cloud Albedo Effect. - 9.2.10 Adjustments in Liquid Water Clouds. - 9.2.11 Rapid Adjustments Occurring in Liquid Clouds. - 9.3 Aerosols Effects on Mixed-Phased and Ice Clouds. - 9.3.1 Elements of Microphysics of Ice Clouds. - 9.3.2 Impact of Anthropogenic Aerosols on Ice Clouds. - 9.4 Forcing Due to Aerosol-Cloud lnteractions. - 9.5 Aerosols, Contrails and Aviation-Induced Cloudiness. - 9.5.1 Formation of Condensation Trails. - 9.5.2 Estimate of the Climate Impact of Contrails. - References. - Further Reading (Textbooks and Articles). - 10 Climate Response to Aerosol Forcings. - 10.1 Introduction. - 10.2 Radiative Forcing, Feedbacks and Climate Response. - 10.2.1 Radiative Forcing. - 10.2.2 Climate Feedbacks. - 10.2.3 Rapid Adjustments and Effective Radiative Forcing. - 10.2.4 Climate Response and Climate Efficacy. - 10.3 Climate Response to Aerosol Forcings. - 10.3.1 Equilibrium Response. - 10.3.2 Past Emissions. - 10.3.3 Detection and Attribution of Aerosol Impacts. - 10.3.4 Future Emissions Scenarios. - 10.4 Nuclear Winter. - References. - Further Reading (Textbooks and Articles). - 11 Biogeochemical Effects and Climate Feedbacks of Aerosols. - 11 .1 Introduction. - 11.2 Impact of Aerosols on Terrestrial Ecosystems. - 11.2.1 Diffuse Radiation and Primary Productivity. - 11.2.2 Aerosols as a Source of Nutrients. - 11.2.3 Acidification of Precipitation. - 11.3 Impact of Aerosols on Marine Ecosystems. - 11.4 Aerosols-Atmospheric Chemistry Interactions. - 11.4.1 Interactions with Tropospheric Chemistry. - 11.4.2 Impact of Stratospheric Aerosols on the Ozone Layer and Ultravialet Radiation. - 11.5 Climate Feedbacks Involving Marine Aerosols. - 11.5.1 Sulphate Aerosols from DMS Emissions. - 11.5.2 Marine Aerosols. - 11.5.3 Other Aerosols of Maritime Origin. - 11.6 Climate Feedbacks Involving Continental Aerosols. - 11.6.1 Secondary Organic Aerosols. - 11.6.2 Primary Aerosols of Biogenic Origin. - 11.6.3 Aerosols from Vegetation Fires. - 11.6.4 Desert Dust. - 11.7 Climate Feedbacks Involving Stratospheric Aerosols. - References. - Further Reading (Textbooks and Articles). - 12 Strato
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Call number: AWI A4-22-94820
    In: Rendiconti Lincei. Scienze fisiche e naturali, Volume 27, Supplement 1
    Type of Medium: Journal available for loan
    Pages: 270 Seiten , Illustrationen
    ISSN: 2037-4631
    Series Statement: Rendiconti Lincei. Scienze fisiche e naturali Volume 27, Supplement 1
    Language: English
    Note: Table of Contents: Environmental changes in the Arctic: an Italian perspective / David Cappelletti, Roberto Azzolini, Leonardo Langone, Stefano Ventura, Angelo Viola, Stefano Aliani, Vito Vitale & Enrico Brugnoli Atmospheric observations at the Amundsen-Nobile Climate Change Tower in Ny-Ålesund, Svalbard / Mauro Mazzola, Angelo Pietro Viola, Christian Lanconelli & Vito Vitale On turbulence characteristics at Ny-Ålesund–Svalbard / Francesco Tampieri, Angelo Pietro Viola, Mauro Mazzola & Armando Pelliccioni Variability features associated with ozone column and surface UV irradiance observed over Svalbard from 2008 to 2014 / Boyan H. Petkov, Vito Vitale, Mauro Mazzola, Angelo Lupi, Christian Lanconelli, Angelo Viola & Maurizio Busetto Air-snow exchange of reactive nitrogen species at Ny-Ålesund, Svalbard (Arctic) / Antonietta Ianniello, Francesca Spataro, Rosamaria Salvatori, Mauro Valt, Marianna Nardino, Mats P. Björkman, Giulio Esposito & Mauro Montagnoli Size distribution and ion composition of aerosol collected at Ny-Ålesund in the spring–summer field campaign 2013 / F. Giardi, S. Becagli, R. Traversi, D. Frosini, M. Severi, L. Caiazzo, C. Ancillotti, D. Cappelletti, B. Moroni, M. Grotti, A. Bazzano, A. Lupi, M. Mazzola, V. Vitale, O. Abollino, L. Ferrero, E. Bolzacchini, A. Viola & R. Udisti Multi-seasonal ultrafine aerosol particle number concentration measurements at the Gruvebadet observatory, Ny-Ålesund, Svalbard Islands / Angelo Lupi, Maurizio Busetto, Silvia Becagli, Fabio Giardi, Christian Lanconelli, Mauro Mazzola, Roberto Udisti, Hans-Christen Hansson, Tabea Henning, Boyan Petkov, Johan Ström, Radovan Krejci, Peter Tunved, Angelo Pietro Viola & Vito Vitale Elemental and lead isotopic composition of atmospheric particulate measured in the Arctic region (Ny-Ålesund, Svalbard Islands) / Andrea Bazzano, Francisco Ardini, Marco Grotti, Mery Malandrino, Agnese Giacomino, Ornella Abollino, David Cappelletti, Silvia Becagli, Rita Traversi & Roberto Udisti Sulfate source apportionment in the Ny-Ålesund (Svalbard Islands) Arctic aerosol / Roberto Udisti, Andrea Bazzano, Silvia Becagli, Ezio Bolzacchini, Laura Caiazzo, David Cappelletti, Luca Ferrero, Daniele Frosini, Fabio Giardi, Marco Grotti, Angelo Lupi, Mery Malandrino, Mauro Mazzola, Beatrice Moroni, Mirko Severi, Rita Traversi, Angelo Viola & Vito Vitale Water-soluble trace, rare earth elements and organic compounds in Arctic aerosol / Clara Turetta, Roberta Zangrando, Elena Barbaro, Jacopo Gabrieli, Elisa Scalabrin, Piero Zennaro, Andrea Gambaro, Giuseppa Toscano & Carlo Barbante AGAP: an atmospheric gondola for aerosol profiling / Mauro Mazzola, Maurizio Busetto, Luca Ferrero, Angelo Pietro Viola & David Cappelletti Local vs. long-range sources of aerosol particles upon Ny-Ålesund (Svalbard Islands): mineral chemistry and geochemical records / Beatrice Moroni, David Cappelletti, Luca Ferrero, Stefano Crocchianti, Maurizio Busetto, Mauro Mazzola, Silvia Becagli, Rita Traversi & Roberto Udisti Snowpack characteristics of Brøggerhalvøya, Svalbard Islands / Mauro Valt & Rosamaria Salvatori Continuous monitoring of spectral albedo of snowed surfaces in Ny-Ålesund / Roberto Salzano, Christian Lanconelli, Rosamaria Salvatori, Giulio Esposito & Vito Vitale Evolution of the Svalbard annual snow layer during the melting phase / Andrea Spolaor, Elena Barbaro, Jean Marc Christille, Torben Kirchgeorg, Fabio Giardi, David Cappelletti, Clara Turetta, Andrea Bernagozzi, Mats P. Björkman, Enzo Bertolini & Carlo Barbante Characterization of seawater properties and ocean heat content in Kongsfjorden, Svalbard Archipelago / Stefano Aliani, Roberta Sciascia, Ilaria Conese, Alessandra D’Angelo, Fabrizio Del Bianco, Federico Giglio, Leonardo Langone & Stefano Miserocchi Gas hydrate stability zone in shallow Arctic Ocean in presence of sub-sea permafrost / Umberta Tinivella & Michela Giustiniani A numerical algorithm for the assessment of the conjecture of a subglacial lake tested at Amundsenisen, Svalbard / Daniela Mansutti, Edoardo Bucchignani & Piotr Glowacki Trace elements in marine particulate and surface sediments of Kongsfjorden, Svalbard Islands / Francisco Ardini, Andrea Bazzano, Paola Rivaro, Francesco Soggia, Amanda Terol & Marco Grotti Stable isotopes and digital elevation models to study nutrient inputs in high-arctic lakes / Edoardo Calizza, Maria Letizia Costantini, David Rossi, Vittorio Pasquali, Giulio Careddu & Loreto Rossi Legacy and emergent POPs in the marine fauna of NE Greenland with special emphasis on the Greenland shark Somniosus microcephalus / Simonetta Corsolini, Karla Pozo & Jørgen S. Christiansen Body size-related constraints on the movement behaviour of the arctic notostracan Lepidurus arcticus (Pallas, 1973) under laboratory conditions / Giorgio Mancinelli & Vittorio Pasquali Geomorphological features of the Kongsfjorden area: Ny-Ålesund, Blomstrandøya (NW Svalbard, Norway) / Enrico Miccadei, Tommaso Piacentini & Claudio Berti Quantification of fracturing within fault damage zones affecting Late Proterozoic carbonates in Svalbard / Paola Cianfarra & F. Salvini Towards a calibration laboratory in Ny-Ålesund / Chiara Musacchio, Andrea Merlone, Angelo Viola, Vito Vitale & Marion Maturilli Development of an automatic sampler for extreme polar environments: first in situ application in Svalbard Islands / Giuseppe Zappalà, Gabriele Bruzzone, Gabriella Caruso & Maurizio Azzaro Isolation and degradation potential of a cold-adapted oil/PAH-degrading marine bacterial consortium from Kongsfjorden (Arctic region) / Francesca Crisafi, Laura Giuliano, Michail M. Yakimov, Maurizio Azzaro & Renata Denaro
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Series available for loan
    Series available for loan
    [Bremerhaven] : Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research
    Associated volumes
    Call number: ZSP-290-2013/2016
    In: Forschungs- und Entwicklungsprogramm / Alfred-Wegener-Institut für Polar- und Meeresforschung, 2013-2016
    Type of Medium: Series available for loan
    Pages: In 2 Bänden , Illustrationen
    Language: English
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Series available for loan
    Series available for loan
    [Bremerhaven] : Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research
    Associated volumes
    Call number: ZSP-290-2013/2016-2
    In: Status report 2013-2016 / Alfred-Wegener-Institut, Vol. 2
    Type of Medium: Series available for loan
    Pages: 86 Seiten , Illustrationen
    Language: English
    Note: Contents I. Selected scientific and coordinating staff Research Unit 1a: The polar atmosphere and cryosphere in a changing climate Boike, Julia Diekmann, Bernhard Eisen, Olaf Grosse, Guido Hellmer, Hartmut H. Herzschuh, Ulrike Humbert, Angelika Lantuit, Hugues Mollenhauer, Gesine Rex, Markus Wilhelms, Frank Research Unit lb: Climate interactions with polar seas, marine ecosystems Bridging research and society: products, tools and climate services and biogeochernical processes Boetius, Antje Bracher, Astrid Brey, Thomas Haas, Christian Kanzow, Torsten Klaas, Christine Meyer, Bettina Pörtner, Hans-Otto Richter, Claudio Rost, Björn Soltwedel, Thomas Strass, Volker H. Waite, Anya M. Research Unit 2: Fragile coasts and she!f seas Abele, Doris Boersma, Maarten Buschbaum, Christian Gerdts, Gunnar John, Uwe Kasten, Sabine Koch, Boris Wegner, K. Mathias Wiltshire, Karen Helen Research Unit 3: The Earth system from a polar perspective: data, modeling and synthesis Bijma, Jelle Jokat, Wilfried Jung, Thomas Knorr, Gregor Köhler, Peter Laepple, Thomas Lamy, Frank Lohmann, Gerrit Schlindwein, Vera Stein, Rüdiger Tiedemann, Ralf Wolf-Gladrow, Dieter Research Unit 4: Bridging research and society: products, tools and climate services Bergmann, Melanie Buck, Bela H. Frickenhaus, Stephan Grosfeld, Klaus Gutow, Lars Krause, Gesche Research Unit 5: Research infrastructure - performance categories LK I and LK II Nixdorf, Uwe II. Indicators and resources 1. Indicators and resources by Research Units 2. Indicators and resources by user facilities 3. Indicators and resources by program Program PACES II "Marine, Coastal and Polar Systems" 4. Indicators for the center Ill. Definition of indicators IV. List of abbreviations Imprint
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Monograph available for loan
    Monograph available for loan
    Sosnowiec : Wydział Nauk o Ziemi Uniwersytet Śląski | Warszawa : Instytut Geofizyki Polskiej Akademii Nauk | Sopot : Instytut Oceanologii Polskiej Akademii Nauk
    Call number: AWI S6-22-94809
    Type of Medium: Monograph available for loan
    Pages: 101, [3] Seiten , Illustrationen , 22x22 cm
    Language: English
    Note: Table of Contents INTRODUCTION 1. The Centre for Polar Studies 2. The Centre in the context of Polish and international polar research 3. Development and achievements of the Centre for Polar Studies Underwater acoustic signatures od glacier calving Svalbard reveals a new island Freshwater in a salty fjord Between genetics and palaeontology: ancient DNA in palaeoceanographical research Influence of glacial disturbance and food availability on organisms size in Kongsfjorden and Hornsund fjords Message in a stainless steel bottle thrown into deep geological time 4. Technical facilities and infrastructure for polar research 5. Interdisciplinary Polar Studies Foundations of ISP Profiles of doctoral thesis 6. Exploration of Polar and Mountain Regions - a new speciality of MSc studies at the Faculty of Earth Sciences, University of Silesia 7. Science communication and dissemination 8. Towards the future
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Monograph available for loan
    Monograph available for loan
    Baltimore, Md. : Johns Hopkins University Pr.
    Call number: AWI E1-15-89213
    Description / Table of Contents: Alfred Wegener aimed to create a revolution in science which would rank with those of Nicolaus Copernicus and Charles Darwin. After completing his doctoral studies in astronomy at the University of Berlin, Wegener found himself drawn not to observatory science but to rugged fieldwork, which allowed him to cross into a variety of disciplines. The author of the theory of continental drift - the direct ancestor of the modern theory of plate tectonics and one of the key scientific concepts of the past century - Wegener also made major contributions to geology, geophysics, astronomy, geodesy, atmospheric physics, meteorology, and glaciology. Remarkably, he completed this pathbreaking work while grappling variously with financial difficulty, war, economic depression, scientific isolation, illness, and injury. He ultimately died of overexertion on a journey to probe the Greenland ice cap and calculate its rate of drift. This landmark biography - the only complete account of the scientist's fascinating life and work - is the culmination of more than twenty years of intensive research. In Alfred Wegener, Mott T. Greene places Wegener's background and theoretical advances in earth science in the context of his brilliantly eclectic career, bringing Wegener to life by analyzing his published scientific work, delving into all of his surviving letters and journals, and tracing both his passionate commitment to science and his thrilling experiences as a polar explorer, a military officer during World War I, and a world record-setting balloonist. In the course of writing this book, Greene traveled to every place that Alfred Wegener lived and worked - to Berlin, rural Brandenburg, Marbug, Hamburg, and Heidelberg in Germany; to Innsbruck and Graz in Austria; and onto the Greenland ice cap. He also pored over archives in Copenhagen, Munich, Marburg, Graz, and Bremerhaven, where the majority of Wegener's surviving papers are found. Written with great immediacy and descriptive power, Alfred Wegener is a powerful portrait of the scientist who pioneered the modern notion of unified earth science. The book should be of interest not only to earth scientists, students of polar travel and exploration, and historians but to all readers who are fascinated by the great minds of science.
    Type of Medium: Monograph available for loan
    Pages: xiv, 675 S. , Ill., Kt.
    ISBN: 9781421417127
    Language: English
    Note: Contents: Preface. - Acknowledgements. - 1. The boy: Berlin and Brandenburg, 1880-1899. - 2. The student: Berlin - Heidelberg - Innsbruck - Berlin, 1899-1901. - 3. The astronomer: Berlin, 1901-1904. - 4. The aerologist: Lindenberg, 1905-1906. - 5. The polar meteorologist: Greenland, 1906. - 6. The Arctic explorer (1): Greenland, 1907-1908. - 7. The atmospheric physicist (1): Berlin und Marburg, 1908-1910. - 8. The atmospheric physicist (2): Marburg, 1910. - 9. At a crossroads: Marburg, 1911. - 10. The theorist of continental drift (1): Marburg, December 1911 - February 1912. - 11. The theorist of continental drift (2): Marburg, February - April 1912. - 12. The Arctic explorer (2): Greenland, 1912-1913. - 13. The soldier: Marburg and "The Field", 1913-1915. - 14. The meteorologist: "In the field", 1916-1918. - 15. The geophysicist: Hamburg, 1919-1920. - 16. From geophysicist to climatologist: Hamburg, 1920-1922. - 17. The paleoclimatologist: Hamburg, 1922-1924. - 18. The professor: Graz, 1924-1928. - 19. Theorist and Arctic explorer: Graz and Greenland, 1928-1929. - 20. The expedition leader: Graz and Greenland, 1929-1930. - Epilogue. - Notes. - Bibliographical essay. - Index.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Call number: AWI G1-17-90601
    Description / Table of Contents: This innovative study presents concepts and problems in soil physics, and provides solutions using original computer programs. It provides a close examination of physical environments of soil, including an analysis of the movement of heat, water and gases. The authors employ the programming language Python, which is now widely used for numerical problem solving in the sciences. In contrast to the majority of the literature on soil physics, this text focuses on solving, not deriving, differential equations for transport. Using numerical procedures to solve differential equations allows the solution of quite difficult problems with fairly simple mathematical tools. Numerical methods convert differential into algebraic equations, which can be solved using conventional methods of linear algebra. Each chapter introduces a soil physics concept, and proceeds to develop computer programs to solve the equations and illustrate the points made in the discussion. Problems at the end of each chapter help the reader practise using the concepts introduced. The text is suitable for advanced undergraduates, graduates and researchers of soil physics. It employs an open source philosophy where computer code is presented, explained and discussed, and provides the reader with a full understanding of the solutions. Once mastered, the code can be adapted and expanded for the user's own models, fostering further developments. The Python tools provide a simple syntax, Object Oriented Programming techniques, powerful mathematical and numerical tools, and a user friendly environment.
    Type of Medium: Monograph available for loan
    Pages: X, 449 Seiten , Illustrationen
    Edition: First edition
    ISBN: 0199683093 , 9780199683093
    Language: English
    Note: Contents: 1 Introduction. - 2 Basic Physical Properties of Soil. - 2.1 Geometry of the Soil Matrix. - 2.2 Soil Structure. - 2.3 Fractal Geometry. - 2.4 Geometry of the Pore Space. - 2.5 Specific Surface Area. - 2.6 Averaging. - 2.7 Bulk Density, Water Content and Porosity. - 2.8 Relationships between Variables. - 2.9 Typical Values of Physical Properties. - 2.10 Volumes and Volumetric Fractions for a Soil Prism. - 2.11 Soil Solid Phase. - 2.12 Soil Texture. - 2.13 Sedimentation Law. - 2.14 Exercises. - 3 Soil Gas Phase and Gas Diffusion. - 3.1 Transport Equations. - 3.2 The Diffiisivity of Gases in Soil. - 3.3 Computing Gas Concentrations. - 3.4 Simulating One-Dimensional Steady-State Oxygen Diffusion in a Soil Profile. - 3.5 Numerical Implementation. - 3.6 Exercises. - 4 Soil Temperature and Heat Flow. - 4.1 Differential Equations for Heat Conduction. - 4.2 Soil Temperature Data. - 4.3 Numerical Solution of the Heat Flow Equation. - 4.4 Soil Thermal Properties. - 4.5 Numerical Implementation. - 4.6 Exercises. - 5 Soil Liquid Phase and Soil-Water Interactions. - 5.1 Properties of Water. - 5.2 Soil Water Potential. - 5.3 Water Potential-Water Content Relations. - 5.4 Liquid- and Vapour-Phase Equilibrium. - 5.5 Exercises. - 6 Steady-State Water Flow and Hydraulic Conductivity. - 6.1 Forces on Water in Porous Media. - 6.2 Water Flow in Saturated Soils. - 6.3 Saturated Hydraulic Conductivity. - 6.4 Unsaturated Hydraulic Conductivity. - 6.5 Exercises. - 7 Variation in Soil Properties. - 7.1 Frequency Distributions. - 7.2 Probability Density Functions. - 7.3 Transformations. - 7.4 Spatial Correlation. - 7.5 Approaches to Stochastic Modelling. - 7.6 Numerical Implementation. - 7.7 Exercises. - 8 Transient Water Flow. - 8.1 Mass Conservation Equation. - 8.2 Water Flow. - 8.3 Infiltration. - 8.4 Numerical Simulation of Infiltration. - 8.5 Numerical Implementation. - 8.6 Exercises. - 9 Triangulated Irregular Network. - 9.1 Digital Terrain Model. - 9.2 Triangulated Irregular Network. - 9.3 Numerical Implementation. - 9.4 Main. - 9.5 Triangulation. - 9.6 GIS Functions. - 9.7 Boundary. - 9.8 Geometrical Properties of Triangles. - 9.9 Delaunay Triangulation. - 9.10 Refinement. - 9.11 Utilities. - 9.12 Visualization. - 9.13 Exercise. - 10 Water Flow in Three Dimensions. - 10.1 Governing Equations. - 10.2 Numerical Formulation. - 10.3 Coupling Surface and Subsurface Flow. - 10.4 Numerical Implementation. - 10.5 Simulation. - 10.6 Visualization and Results. - 10.7 Exercises. - 11 Evaporation. - 11.1 General Concepts. - 11.2 Simultaneous Transport of Liquid and Vapour in Isothermal Soil. - 11.3 Modelling evaporation. - 11.4 Numerical Implementation. - 11.5 Exercises. - 12 Modelling Coupled Transport. - 12.1 Transport Equations. - 12.2 Partial Differential Equations. - 12.3 Surface Boundary Conditions. - 12.4 Numerical Implementation. - 12.5 Exercises. - 13 Solute Transport in Soils. - 13.1 Mass Flow. - 13.2 Diffusion. - 13.3 Hydrodynamic Dispersion. - 13.4 Advection-Dispersion Equation. - 13.5 Solute-Soil Interaction. - 13.6 Sources and Sinks of Solutes. - 13.7 Analytical Solutions. - 13.8 Numerical Solution. - 13.9 Numerical Implementation. - 13.10 Exercises. - 14 Transpiration and Plant-Water Relations. - 14.1 Soil Water Content and Soil Water Potential under a Vegetated Surface. - 14.2 General Features of Water Flow in the SPAC. - 14.3 Resistances to Water Flow within the Plant. - 14.4 Effect of Environment on Plant Resistance. - 14.5 Detailed Consideration of Soil and Root Resistances. - 14.6 Numerical Implementation. - 14.7 Exercises. - 15 Atmospheric Boundary Conditions. - 15.1 Radiation Balance at the Exchange Surface. - 15.2 Boundary-Layer Conductance for Heat and Water Vapour. - 15.3 Evapotranspiration and the Penman-Monteith Equation. - 15.4 Partitioning of Evapotranspiration. - 15.5 Exercise. - Appendix A: Basic Concepts and Examples of Python Programming. - A.1 Basic Python. - A.2 Basic Concepts of Computer Programming. - A.3 Data Representation: Variables. - A.4 Comments Rules and Indendation. - A.5 Arithmetic Expression. - A.6 Functions. - A.7 Flow Control. - A.8 File Input and Output. - A.9 Arrays. - A.10 Reading Date Time. - A.11 Object-Oriented Programming in Python. - A.12 Output and Visualization. - A.13 Exercises. - Appendix B: Computational Tools. - B.1 Numerical Differentiation. - B.2 Numerical Integration. - B.3 Linear Algebra. - B.4 Exercises. - List of Symbols. - List of Python Variables. - List of Python Projects. - References. - Index.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Monograph available for loan
    Monograph available for loan
    New York, NY : Cambridge University Press
    Call number: AWI A6-17-90616
    Type of Medium: Monograph available for loan
    Pages: xxxiv, 432 Seiten , Illustrationen, graphische Darstellungen
    Edition: First published
    ISBN: 9781107118140
    Language: English
    Note: Contents: Lists of figures. - List of contributors. - Preface. - 1. Challenges for ice age dynamics: a dynamical systems perspective / Michel Crucifix, Guillaume Lenoir and Takahito Mitsui. - 2. Tipping points in the climate system / Peter Ditlevsen. - 3. Atmospheric teleconnection patterns / Steven B. Feldstein and Christian L. E. Franzke. - 4. Atmospheric regimes: the link between weather and the large scale circulation / David M. Straus, Franco Molteni and Susanna Corti. - 5. Low-frequency regime transitions and predictability of regimes in a barotropic model / Balu T. Nadiga and Terence J. O'Kane. - 6. Complex network techniques for climatological data analysis / Reik V. Donner, Marc Wiedermann and Jonathan F. Donges. - 7. On inference and validation of causality relations in climate teleconnections / Illia Horenko, Susanne Gerber, Terence J. O'Kane, James S. Risbey and Didier P. Monselesan. - 8. Stochastic climate theory / Georg A. Gottwald, Daan T. Crommelin and Christian L. E. Franzke. - 9. Stochastic subgrid modelling for geophysical and three-dimensional turbulence / Jorgen S. Frederiksen, Vassili Kitsios, Terence J. O'Kane and Meelis J. Zidikheri. - 10. Model error in data assimilation / John Harlim. - 11. Long-term memory in climate: detection, extreme events, and significance of trends / Armin Bunde and Josef Ludescher. - 12. Fractional stochastic models for heavy tailed, and long-range dependent, fluctuations in physical systems / Nicholas W. Watkins. - 13. Modelling spatial extremes using Max-Stable Processes / Mathieu Ribatet. - 14. Extreme value analysis in dynamical systems: two case studies / Tamás Bódai. - Index.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...