ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books  (22)
  • English  (22)
  • 2010-2014  (14)
  • 1980-1984  (8)
  • 1960-1964
  • 2013  (14)
  • 1981  (8)
  • AWI Reading room  (22)
Collection
  • Books  (22)
Language
Years
  • 2010-2014  (14)
  • 1980-1984  (8)
  • 1960-1964
Year
Branch Library
  • 1
    Monograph available for loan
    Monograph available for loan
    Sankt-Peterburg : Sankt-Peterburgskij Gosudarstvennyj Universitet
    Call number: AWI Bio-13-0030
    Description / Table of Contents: Atlas contains photographic images of 91 plant species and pollen which are found in Lena River Delta as well as information about current conditions of their growth. This is a major advantage of this atlas as compared to other publications of this kind. All information is presented in Russian and English. All materials were collected in framework of the Russian-German expeditions "Lena-2009", "Lena-2010", "Lena-2011" and "Lena-2012". Photographs illustrate the general view of the plant, inflorescence and pollen grains in different positions and from high to low focus. Plants are grouped into families, where each family has its own color. Atlas is addressed not only to specialists in palynology, but to all who are interested in the flora and vegetation of the Arctic region, including students of geographical, biological and environmental fields.
    Type of Medium: Monograph available for loan
    Pages: 111 Seiten , Illustrationen
    ISBN: 9785439100361
    Language: Russian , English
    Note: Contents: Introduction. - Apiaceae. - Asteraceae. - Betulaceae. - Boraginaceae. - Brassicaceae. - Campanulaceae. - Caryophyllaceae. - Crassulaceae. - Cyperaceae. - Diapensiaceae. - Ericaceae. - Fabaceae. - Gentianaceae. - Hippuriadaceae. - Juncaceae. - Lentibulariaceae. - Liliaceae. - Onagraceae. - Papaveraceae. - Parnassiaceae. - Pinaceae. - Plumbaginaceae. - Poaceae. - Polemoniaceae. - Polygonaceae. - Portulacaceae. - Primulaceae. - Pyrolaceae. - Ranunculaceae. - Rosaceae. - Salicaceae. - Saxifragaceae. - Scrophulariaceae. - Valerianaceae. - Index of plants by family. - Alphabetical index of plants. , In englischer und russischer Sprache. , Teilw. in kyrillischer Schrift
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    Cambridge : Cambridge Univ. Press
    Call number: AWI P6-13-0049
    Description / Table of Contents: Antarctica is the coldest and driest continent on earth - a place for adventure and a key area for global science. Research conducted in this extreme environment has received increasing international attention in recent years due to concerns over destruction of the ozone layer above it and the problems of global warming and rising sea levels. Data collected in the Antarctic now informs a wide range of scientific fields. A record of the globe's climate is locked up in its deep snow and ice while, as part of the early supercontinent Gondwana, its rocks have much to teach us about the geological history of the earth. Adiversity of unique plants and animals abound in Antarctic waters and the clear skies overhead allow astronomers to probe the outer reaches of the universe. Governed internationally since 1959, the Antarctic is also an object lesson in collaboration between nations. This dramatically illustrated new book brings together an international group of leading Antarctic scientists to explain why the Antarctic is so central to understanding the history and potential fate of our planet. It introduces the beauty of the world's greatest wilderness, its remarkable attributes, and the global importance of the international science done there. Spanning topics from marine biology to space science, this book is an accessible overview for anyone interested in the Antarctic and its science and governance. It provides a valuable summary for those involved in polar management and development of new research programmes, and is an inspiration for the next generation of Antarctic researchers.
    Type of Medium: Monograph available for loan
    Pages: xii, 342 S. : Ill., graph. Darst., Kt.
    ISBN: 9781107003927
    Language: English
    Note: Contents: List of contributors. - Introduction. - 1 Discovering the unknown continent. - 2 A keystone in a changing world. - 3 Ice with everything. - 4 Climate of extremes. - 5 Stormy and icy seas. - 6 Life in a cold environment. - 7 Space science research from Antarctica. - 8 Living and working in the cold. - 9 Scientists together in the cold. - 10 Managing the frozen commons. - 11 Antarctica: a global change perspective. - Appendix A Visiting Antarctica. - Appendix B Further reading. - Acknowledgements. - Index.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Series available for loan
    Series available for loan
    [Zürich] : IAHS (ICSI)
    Associated volumes
    Call number: AWI G7-14-0007
    In: Glacier mass balance bulletin
    Type of Medium: Series available for loan
    Pages: 106 S. : Ill., graph. Darst., Kt.
    Language: English
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Monograph available for loan
    Monograph available for loan
    Berlin [u.a.] : Springer
    Associated volumes
    Call number: AWI A4-13-0079
    In: Springer Praxis books in geophysical sciences
    Description / Table of Contents: Contents: Preface to the first edition. - Preface to the second editon. - List of figures. - List of tables. - List of symbols. - List of abbreviations. - 1 Introduction. - 2 Drift ice material. - 2.1 Sea ice cover. - 2.2 Ice floes to drift ice particles. - 2.3 Sea ice growth and melting. - 2.4 Ice thickness distribution. - 2.5 Sea ice ridges. - 2.6 Drift ice state. - 3 Ice kinematics. - 3.1 Description of ice velocity field. - 3.2 Observations. - 3.3 Stochastic modelling. - 3.4 Conservation of ice. - 4 Sea ice rheology. - 4.1 General. - 4.2 Viscous laws. - 4.3 Plastic laws. - 4.4 Granular floe collision models. - 4.5 Scaling of ice strength. - 5 Equation of drift ice motion. - 5.1 Derivation of the equation of motion. - 5.2 Atmospheric and oceanic boundary layers. - 5.3 Sea ice-ocean interaction. - 5.4 Scale analysis. - 5.5 Dynamics of a single ice floe. - 6 Free drift. - 6.1 Steady state solution. - 6.2 Non-steady case. - 6.3 Linear coupled ice-ocean model. - 6.4 Frequency spectrum of free drift. - 6.5 Spatial aspects of free drift. - 7 Drift in the presence of internal friction. - 7.1 The role of internal friction. - 7.2 Channel flow of sea ice. - 7.3 Ice drift along coastal boundary. - 7.4 Zonal sea ice drift. - 7.5 Modelling of ice tank experiments. - 7.6 Timespace scaling of ice drift. - 8 Numerical modelling. - 8.1 Numerical solutions. - 8.2 Examples of sea ice dynamics models. - 8.3 Short-term modelling applications. - 8.4 Oil spills in ice conditions. - 8.5 Climate models. - 9 Use and need of knowledge on ice drift. - 9.1 Science. - 9.2 Practice. - 9.3 Final comments. - 10 Study problems. - 10.1 Problems. - 10.2 Instructions and solutions. - 11 References. - Index.
    Description / Table of Contents: This new edition of The drift of sea ice brings the theory, observations and practical applications of research into sea ice drift completely up to date, taking in to account and discussing the many new scientific results which have been published, in particular connected with thermodynamics, ice-ocean interaction, scaling, and numerical model applications in short-term and climate forecasting. This revised and expanded text presents the geophysical theory, observations from field programs, mathematical modelling techniques, and applications of sea ice drift science. It shows how the fundamental laws of sea ice drift come from the material properties of sea ice and the basic laws of mechanics. The book provides detailed analytical modelling and mathematical models and presents the construction of numerical ice drift models. The drift of sea ice gives a collection of worked examples on sea ice dynamics; details the derivation of the fundamental laws of sea ice dynamics in an understandable form; teaches methods for local and regional ice forecasting for ice engineering applications; analyses the system of equations for the general properties of sea ice drift and the derivation of the free drift model and analytical models for ice drift in the presence of internal friction; makes an excellant source book for climate research concerning the role of sea ice dynamics in the global climate.
    Type of Medium: Monograph available for loan
    Pages: XXX, 347 Seiten , Illustrationen
    Edition: 2. Aufl., Softcover reprint of hardcover 2011
    ISBN: 9783642267574
    Series Statement: Springer Praxis books in geophysical sciences
    Language: English
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Call number: AWI A14-13-0083 ; ad AWI A14-13-0083
    Description / Table of Contents: This handbook provides the first comprehensive review of measurement principles, instruments and processing techniques for airborne observation of the earth's atmosphere and surface. For each field, the major prinicples of measurement are presented and illustrated with commonly-used airborne instruments, to assess the present capabilities in terms of accuracy, to raise awareness of specific issues with the interpretation of measurements from airborne operations, and to review emerging measurement techniques. The authors are internationally-recognized experts in their field, who actively contribute to the design and developement of modern airborne instrumentation and processing techniques. While primarily intended for climate, geophysical and atmospheric researchers, its relevance to the solar system makes this work useful to astronomers studying planetary atmospheres with telescopes and space probes.
    Type of Medium: Monograph available for loan
    Pages: XXXII, 655 Seiten , Illustrationen
    ISBN: 9783527409969
    Series Statement: Wiley series in atmospheric physics and remote sensing
    Language: English
    Note: Contents Preface A Tribute to Dr. Robert Knollenberg List of Contributors 1 Introduction to Airborne Measurements of the Earth Atmosphere and Surface / Ulrich Schumann, David W. Fahey, Manfred Wendisch, and Jean-Louis Brenguier 2 Measurement of Aircraft State and Thermodynamic and Dynamic Variables / Jens Bange, Marco Esposito, Donald H. Lenschow, Philip R. A. Brown,Volker Dreiling, Andreas Giez, Larry Mahrt, Szymon P. Malinowski, Alfred R. Rodi, Raymond A. Shaw, Holger Siebert, Herman Smit, Martin Zöger 2.1 Introduction 2.2 Historical 2.3 Aircraft State Variables 2.3.1 Barometric Measurement of Aircraft Height 2.3.2 Inertial Attitude, Velocity, and Position 2.3.2.1 System Concepts 2.3.2.2 Attitude Angle Definitions 2.3.2.3 Gyroscopes and Accelerometers 2.3.2.4 Inertial-Barometric Corrections 2.3.3 Satellite Navigation by Global Navigation Satellite Systems 2.3.3.1 GNSS Signals 2.3.3.2 Differential GNSS 2.3.3.3 Position Errors and Accuracy of Satellite Navigation 2.3.4 Integrated IMU/GNSS Systems for Position and Attitude Determination 2.3.5 Summary, Gaps, Emerging Technologies 2.4 Static Air Pressure 2.4.1 Position Error 2.4.1.1 Tower Flyby 2.4.1.2 Trailing Sonde 2.4.2 Summary 2.5 Static Air Temperature 2.5.1 Aeronautic Definitions of Temperatures 2.5.2 Challenges of Airborne Temperature Measurements 2.5.3 Immersion Probe 2.5.4 Reverse-Flow Sensor 2.5.5 Radiative Probe 2.5.6 Ultrasonic Probe 2.5.7 Error Sources 2.5.7.1 Sensor 2.5.7.2 Dynamic Error Sources 2.5.7.3 In-Cloud Measurements 2.5.8 Calibration of Temperature Sensors 2.5.9 Summary, Gaps, Emerging Technologies 2.6 Water Vapor Measurements 2.6.1 Importance of Atmospheric Water Vapor 2.6.2 Humidity Variables 2.6.3 Dew or Frost Point Hygrometer 2.6.4 Lyman-α Absorption Hygrometer 2.6.5 Lyman-α Fluorescence Hygrometer 2.6.6 Infrared Absorption Hygrometer 2.6.7 Tunable Laser Absorption Spectroscopy Hygrometer 2.6.8 Thin Film Capacitance Hygrometer 2.6.9 Total Water Vapor and Isotopic Abundances of 18O and 2H 2.6.10 Factors Influencing In-Flight Performance 2.6.10.1 Sticking of Water Vapor at Surfaces 2.6.10.2 Sampling Systems 2.6.11 Humidity Measurements with Dropsondes 2.6.12 Calibration and In-Flight Validation 2.6.13 Summary and Emerging Technologies 2.7 Three-Dimensional Wind Vector 2.7.1 Airborne Wind Measurement Using Gust Probes 2.7.1.1 True Airspeed (TAS) and Aircraft Attitude 2.7.1.2 Wind Vector Determination 2.7.1.3 Baseline Instrumentation 2.7.1.4 Angles of Attack and Sideslip 2.7.2 Errors and Flow Distortion 2.7.2.1 Parameterization Errors 2.7.2.2 Measurement Errors 2.7.2.3 Timing Errors 2.7.2.4 Errors due to Incorrect Sensor Configuration 2.7.3 In-Flight Calibration 2.8 Small-Scale Turbulence 2.8.1 Hot-Wire/Hot-Film Probes for High-Resolution Flow Measurements 2.8.2 Laser Doppler Anemometers 2.8.3 Ultrasonic Anemometers/Thermometers 2.8.4 Measurements of Atmospheric Temperature Fluctuations with Resistance Wires 2.8.5 Calibration of Fast-Response Sensors 2.8.6 Summary, Gaps, and Emerging Technologies 2.9 Flux Measurements 2.9.1 Basics 2.9.2 Measurement Errors 2.9.3 Flux Sampling Errors 2.9.3.1 Systematic Flux Error 2.9.3.2 Random Flux Error 2.9.4 Area-Averaged Turbulent Flux 2.9.5 Preparation for Airborne Flux Measurement 3 In SituTrace Gas Measurements / Jim McQuaid, Hans Schlager, Maria Dolores Andrés-Hernández,Stephen Ball, Agnès Borbon, Steve S. Brown, Valery Catoire, Piero Di Carlo, Thomas G. Custer, Marc von Hobe, James Hopkins, Klaus Pfeilsticker, Thomas Röckmann, Anke Roiger, Fred Stroh, Jonathan Williams, and Helmut Ziereis 3.1 Introduction 3.2 Historical and Rationale 3.3 Aircraft Inlets for Trace Gases 3.4 Examples of Recent Airborne Missions 3.5 Optical In SituTechniques 3.5.1 UV Photometry 3.5.2 Differential Optical Absorption Spectroscopy 3.5.2.1 Measurement Principle 3.5.2.2 Examples of Measurement 3.5.3 Cavity Ring-Down Spectroscopy 3.5.3.1 Measurement Principle 3.5.3.2 Aircraft Implementation 3.5.3.3 Calibration and Uncertainty 3.5.3.4 Broadband Cavity Spectroscopic Methods 3.5.4 Gas Filter Correlation Spectroscopy 3.5.5 Tunable Laser Absorption Spectroscopy 3.5.5.1 Tunable Diode Versus QCLs 3.5.5.2 Further Progress 3.5.6 Fluorescence Techniques 3.5.6.1 Resonance Fluorescence 3.5.6.2 LIF Techniques 3.5.6.3 Chemical Conversion Resonance Fluorescence Technique 3.6 Chemical Ionization Mass Spectrometry 3.6.1 Negative-Ion CIMS 3.6.1.1 Measurement Principle and Aircraft Implementation 3.6.1.2 Calibration and Uncertainties 3.6.1.3 Measurement Example 3.6.2 The Proton Transfer Reaction Mass Spectrometer 3.6.3 Summary and Future Perspectives 3.7 Chemical Conversion Techniques 3.7.1 Peroxy Radical Chemical Amplification 3.7.1.1 Measurement Principles 3.7.1.2 Airborne Measurements 3.7.1.3 Calibration and Uncertainties 3.7.2 Chemiluminescence Techniques 3.7.2.1 Measurement Principle 3.7.2.2 Measurement of Ozone Using Chemiluminescence 3.7.2.3 NOy and NO2 Conversion 3.7.2.4 Calibration and Uncertainties 3.7.2.5 Measurement Examples 3.7.2.6 Summary 3.7.3 Liquid Conversion Techniques 3.7.3.1 Measurement Principles 3.7.3.2 Aircraft Implementation 3.7.3.3 Data Processing 3.7.3.4 Limitations, Uncertainties, and Error Propagation 3.7.3.5 Calibration and Maintenance 3.7.3.6 Measurement Examples 3.7.3.7 Summary and Emerging Technologies 3.8 Whole Air Sampler and Chromatographic Techniques 3.8.1 Rationale 3.8.2 Whole Air Sampling Systems 3.8.2.1 Design of Air Samplers 3.8.2.2 The M55-Geophysica Whole Air Sampler 3.8.3 Water Vapor Sampling for Isotope Analysis 3.8.4 Measurement Examples 3.8.5 Off-Line Analysis of VOCs 3.8.5.1 Air Mass Ageing 3.8.5.2 Using VOC Observations to Probe Radical Chemistry 4 In Situ Measurements of Aerosol Particles / Andreas Petzold, Paola Formenti, Darrel Baumgardner, Ulrich Bundke, Hugh Coe, Joachim Curtius, Paul J. DeMott, Richard C. Flagan, Markus Fiebig, James G. Hudson, Jim McQuaid, Andreas Minikin, Gregory C. Roberts, and Jian Wang 4.1 Introduction 4.1.1 Historical Overview 4.1.2 Typical Mode Structure of Aerosol Particle Size Distribution 4.1.3 Quantitative Description of Aerosol Particles 4.1.4 Chapter Structure 4.2 Aerosol Particle Number Concentration 4.2.1 Condensation Particle Counters 4.2.2 Calibration of Cut-Off and Low-Pressure Detection Efficiency 4.3 Aerosol Particle Size Distribution 4.3.1 Single-Particle Optical Spectrometers 4.3.1.1 Measurement Principles and Implementation 4.3.1.2 Measurement Issues 4.3.2 Aerodynamic Separators 4.3.3 Electrical Mobility Measurements of Particle Size Distributions 4.3.4 Inversion Methods 4.4 Chemical Composition of Aerosol Particles 4.4.1 Direct Offline Methods 4.4.2 Direct Online Methods (Aerosol Mass Spectrometer, Single Particle Mass Spectrometer, and Particle-Into-Liquid Sampler) 4.4.2.1 Bulk Aerosol Collection and Analysis 4.4.2.2 Mass Spectrometric Methods 4.4.2.3 Incandescence Methods 4.4.3 Indirect Methods 4.5 Aerosol Optical Properties 4.5.1 Scattering Due to Aerosol Particles 4.5.2 Absorption of Solar Radiation Due to Aerosol Particles 4.5.2.1 Filter-Based Methods 4.5.2.2 In Situ Methods 4.5.2.3 Airborne Application 4.5.3 Extinction Due to Aerosol Particles 4.5.4 Inversion Methods 4.6 CCN and IN 4.6.1 CCN Measurements Methods 4.6.2 IN Measurement Methods 4.6.3 Calibration 4.6.3.1 CCN Instrument Calibration 4.6.3.2 IN Instrument Calibration 4.7 Challenges and Emerging Techniques 4.7.1 Particle Number 4.7.2 Particle Size 4.7.3 Aerosol Optical Properties 4.7.4 Chemical Composition of Aerosol Particles 4.7.5 CCN Measurements 4.7.6 IN Measurements 5 In Situ Measurements of Cloud and Precipitation Particles / Jean-Louis Brenguier, William Bachalo, Patrick Y. Chuang, Biagio M. Esposito, Jacob Fugal, Timothy Garrett, Jean-Francois Gayet, Hermann Gerber, Andy Heymsfield, Alexander Kokhanovsky, Alexei Korolev, R. Paul Lawson, David C. Rogers, Raymond A. Shaw, Walter Strapp, and Manfred Wendisch 5.1 Introduction 5.1.1 Rationale 5.1.2 Characterization of Cloud Microphysical Properties 5.1.3 Chapter Outline 5.
    Location: AWI Reading room
    Location: AWI Reading room
    Branch Library: AWI Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Monograph available for loan
    Monograph available for loan
    Gdynia : Gdynia Maritime University
    Call number: AWI A4-15-0012
    Type of Medium: Monograph available for loan
    Pages: 402 S. : Ill., graph. Darst., Kt.
    ISBN: 9788374211918
    Language: English
    Note: CONTENS: 1. lntroduction. - 2. Location of the Polish Polar Station at Hornsund. - 3. The principal climatic parameters. - 3.1. Duralion of day and night. - 3.2. Potential insolation. - 3.3. Changes in the sea ice area and the surface temperatures of surrounding seas. - 3.3.1. Sea surface temperature. - 3.3.2. Sea ice cover. - 3.3.3. Factcrs influencing changes of SST and ice cover in the region of Spitsbergen. - 4. The atmospheric circulation. - 4.1. The mean baric field. - 4.2. The frequency of occurrence of the circulation types. - 4.3. Index of zonal circulation - western (W). - 4.4. Index of meridional circulation - southern (S). - 4.5. Index of cyclonicity (C). - 5. The atmospheric pressure. - 5.1. The annual course. - 5.2. Extreme values and interdiurnal variability. - 6. The winds. - 6.1. The structure of wind directions. - 6.2. Wind speeds. - 6.3. The associations between wind directions and speeds. - 7. Cloudiness and sunshine duration. - 7.1. Cloudiness. - 7.2. Clear and cloudy days. - 7.3. Types of clouds, manifestations of local climatic features in the cloudiness. - 7.4. Sunshine duration. - 8. Solar radiation. - 9. Air temperature. - 9.1. Annual air temperature. - 9.2. Monthly air temperatures. - 9.3 The annual patterns of diurnal temperature. - 9.5 Thermal seasons. - 9.5 Factors shaping interannual variability of the air temperature. - 9.5.1. Associations of air temperature at Hornsund with indices describing the large scale atmospheric circulation. - 9.5.2 lnfluence of atmospheric circulation on the air temperature at Hornsund. - 9.5.3. The influence of sea ice cover on the air temperature at Hornsund. - 9.5.4. The influence of sea surface temperature (SST) changes on the air temperature at Hornsund. - 9.5.5. Comprehensive effects of changes of sea ice extent, sea surface temperature and atmospheric circulation on the air temperature at Hornsund. - 10. Humidity. - 10.1. Water vapour pressure. - 10.2. Relative humidity. - 11. Atmospheric precipitation. - 11 .1. General information, materials and methods. - 11.2.Distribution of monthly means and annual totals of precipitation. - 11.3. High diurnal precipitation. - 11.4 Number of days with precipitation. - 11.5 The annual cycle of atmospheric precipitation, taking the modes of occurrence into consideration. - 11.6 Associations of precipitation with atmospheric circulation. - 12. The horizontal visibility and fog. - 12.1 The horizontal visibility. - 12.2 Fog. - 13. States of the weather and weather seasonality. - 13.1 Methods. - 13.2 Structure of states of the weather. - 13.2.1 Weather groups and subgroups. - 13.2.2 Weather classes. - 13.2.3. Types of weather. - 13.2.4 The annual structure of states of the weather. - 13.3 Seasonal structure of the climate in the station region. - 13.3.1. Winter (October 21 - May 10). - 13.3.2. Spring (May 11 - July 10). - 13.3.3. Summer (July 11 - August 31). - 13.3.4. Autumn (September 1 - October 20). - 13.3.5. Remarks on the observed climatic seasonality. - 14. The climate of the station in the light of selected climatic indices. - 14.1. Continentality and oceanicity of the climate. - 14.2. The humidity of the climate. - 14.3. Wind chill. - 14.4. Positive and negative degree-days. - 15. The associations between climatic parameters and a model of changes of climatic conditions in the Hornsund region. - 15.1. Associations between climatic parameters. - 15.2. A model to forecast climatic changes in the Hornsund region. - 16. Changes of climate in the Hornsund station region during the meteorological observation, 1979-2009. - 16.1. Changes of atmospheric pressure. - 16.2. Changes of circulation indices. - 16.2.1. The W index of western zonal circulation. - 16.2.2. The S index of southern meridional circulation. - 16.2.3. The C index of cyclonicity. - 16.3. Changes of direction and velocity of the winds. - 16.4. Changes of cloudiness, sunshine duration and horizontal visibility. - 16.5. Changas of air temperature. - 16.6. Changes of precipitation. - 16.6.1. The multiannual variability of precipitation totals. - 16.6.2. Variability of rainfall and snowfall totals. - 16.6.3. Variability of the number of days with precipitation 〉 0.0 mm. - 16.6.4. Variability of number of days with precipitation [greater-than-or-equal sign] 0.1 mm. - 16.6.5. Variability of number of days with rainfall and snowfall. - 16.6.6. General trends of changes in atmospheric precipitation. - 17. Summary. - 18. Results of Observations. - 18. 1. Results of observations of meteorological parameters made at Hornsund during the Founding Expedition (1957-1958). - 18.2. Results of observations of meteorological parameters at Hornsundin 1978-2012. - 19. Snow cover at the Hornsund station. - 20. Ground temperatures at Hornsund. - REFERENCES. - APPENDICES. - 1. Calendar of circulation types for territory of Spitsbergen. - 1.1. Monthly, annual and seasonal values of circulation type S. - 1.2. Monthly, annual and seasonal values of circulation type W. - 1.3. Monthly, annual and seasonal values of circulation type C. - 2. LF1-4 Index. - 13. DG3L index.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Series available for loan
    Series available for loan
    Stockholm : Department of Physical Geography and Quaternary Geology, Stockholm University
    Associated volumes
    Call number: AWI G2-13-0052
    In: Dissertations from the Department of Physical Geography and Quaternary Geology
    Description / Table of Contents: The Arctic is subject to growing economic and political interest. Meanwhile, its water and climate systems are in rapid transformation. Relevant and accessible information about water and climate is therefore vital to detect, understand and adapt to the changes. This thesis investigates hydrological monitoring systems, climate model data, and our understanding of hydro-climatic change, for adaptation to water system changes in the Arctic. Results indicate a lack of harmonized water chemistry data, which may impede efforts to understand transport and origin of key waterborne constituents. Further development of monitoring cannot rely only on a reconciliation of observations and projections on where climate change will be the most severe, as they diverge in this regard. Climate model simulations of drainage basin temperature and precipitation have improved between two recent model generations, but large inaccuracies remain for precipitation projections. Late 20th-century discharge changes in major Arctic rivers generally show excess of water relative to precipitation changes. This indicates a possible contribution of stored water from permafrost or groundwater to sea level rise. The river contribution to the increasing Arctic Ocean freshwater inflow matches that of glaciers, which underlines the importance of considering all sources when assessing change. To provide adequate information for research and policy, Arctic hydrological and hydrochemical monitoring needs to be extended, better integrated and made more accessible. This especially applies to hydrochemistry monitoring, where a more complete set of monitored basins is motivated, including a general extension for the large unmonitored areas close to the Arctic Ocean. Improvements in climate model parameterizations are needed, in particular for precipitation projections. Finally, further water-focused data and modeling efforts are required to resolve the source of excess discharge in Arctic rivers.
    Type of Medium: Series available for loan
    Pages: Getr. Zählung
    ISBN: 9789174476385
    Series Statement: Dissertations from the Department of Physical Geography and Quaternary Geology 35
    Language: English
    Note: Zugl.: Stockholm, Univ., Diss., 2013
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Call number: ZSP-553-5
    In: Meddelelser om Grønland
    Type of Medium: Monograph available for loan
    Pages: 19 S.
    ISBN: 8717028736
    ISSN: 0106-1046
    Series Statement: Meddelelser om Grønland : Geoscience 5
    Language: English
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Call number: ZSP-558-1
    In: Middle atmosphere program
    Type of Medium: Series available for loan
    Pages: V, 104 S. : graph. Darst.
    Language: English
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Call number: ZSP-558-2
    In: Middle atmosphere program
    Type of Medium: Series available for loan
    Pages: IX, 505 S. : Ill., graph. Darst.
    Language: English
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Call number: ZSP-558-3 ; MOP 46209 / Mitte
    In: Middle atmosphere program
    Type of Medium: Series available for loan
    Pages: III, 187 S. : graph. Darst.
    Language: English
    Location: AWI Reading room
    Location: MOP - must be ordered
    Branch Library: AWI Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Call number: AWI P8-89-0293
    In: Heidelberger geographische Arbeiten, Heft 69
    Type of Medium: Monograph available for loan
    Pages: 573 Seiten , Illustrationen , 2 Kartenbeilagen , 24 cm
    ISBN: 3885700697
    Series Statement: Heidelberger geographische Arbeiten 69
    Language: German , English
    Note: Inhaltsverzeichnis: Vorwort. - 1. Zielsetzung und Ablauf der Heidelberg-Ellesmere Island-Expedition 1978 / D. Barsch und L. King. - 2. Das Borup-Fjord-Gebiet in N-Ellesmere Island, N. W. T., Kanada: Entdeckung und Begehung des Gebietes, vorhandene Karten und offizielle Namen / L. King. - 3. Geodätische und photogrammetrische Arbeiten an der Oobloyah Bay, N-Ellesmere Island, N.W.T., Kanada, im Rahmen der "Heidelberg-Ellesmere-Island-Expedition 1978" / G. Hell. - 4. Geologie, Tektonik und strukturelle Verzeichnung der geomorphologischen Großformen im Expeditionsgebiet Oobloyah Bay - Neil Peninsula, N-Ellesmere Island, N.W.T., Kanada / H. R. Völk. - 5. Witterungsverlauf im Oobloyah-Tal, N-Ellesmere Island, N.W.T., Kanada, vom 24. Juni bis zum 4. August 1978, ein statistischer Wertevergleich / W. A. Flügel. - 6. Das Sommerklima von N-Ellesmere Island, N.W.T., Kanada - eine Beurteilung von Stationswerten unter besonderer Berücksichtigung des Sommers 1978 / L. King. - 7. Zur Geomorphologie des Expeditionsgebietes Oobloyah Bay, N-Ellesmere Island, N.W.T., Kanada / D. Barsch. - 8. Studien zur gegenwärtigen Geomorphodynamik im Bereich der Oobloyah Bay, N-Ellesmere Island, N.W.T., Kanada / D. Barsch. - 9. Terassen, Flußarbeit und das Modell der exzessiven Talbildungszone im Expeditionsgebiet Oobloyah Bay, N-Ellesmere Island, N.W.T., Kanada / D. Barsch. - 10. Die Gletscher im Einzugsgebiet des Borup-Fjord, N-Ellesmere Island, N.W.T., Kanada / L. King. - 11. Gletschergeschichtliche Arbeiten im Gebiet zwischen Oobloyah Bay und Esayoo Bay, N-Ellesmere Island, N.W.T., Kanada / L. King. - 12. Glaziologische Beobachtungen an der Stirn des Weber-Gletschers, Borup-Fjord-Gebiet, N-Ellesmere Island, N.W.T., Kanada / D. Barsch, L. King und R. Mäusbacher. - 13. Jungquartäre Delta- und Flußentwicklung im glazialisostatischen Hebungsraum der Oobloyah Bay auf N-Ellesmere Island, N.W.T., Kanada / H. R. Völk. - 14. Hydrologische Studien zum Wasserhaushalt hocharktischer Einzugsgebiete im Bereich des Oobloyah-Tals, N-Ellesmere Island, N.W.T., Kanada / W. A. Flügel. - 15. Hydrochemische Untersuchungen von Niederschlägen, Bodenwasser, Seen und Flüssen im Oobloyah-Tal, N-Ellesmere Island, N.W.T., Kanada / W. A. Flügel. - 16. Geomorphologische Kartierung im Oobloyah-Tal, N-Ellesmere Island, N.W.T., Kanada / R. Mäusbacher. - 17. Gesteinstemperaturen und Insolationsverwitterung im hocharktischen Bereich, Oobloyah Bay, N-Ellesmere Island, N.W.T., Kanada / H. Eichler. - 18. Kleinformen der hocharktischen Verwitterung im Bereich der Oobloyah Bay, N-Ellesmere Island, N.W.T., Kanada - Formengenese und Prozesse / H. Eichler. - 19. Oberflächennahe Bodentemperaturmessungen in Oobloyah Bay, N-Ellesmere Island, N.W.T., Kanada / R. Mäusbacher. - 20. Recent iron ore deposition and heavy metal accumulation in Access Lake, Oobloyah Valley, northern Ellesmere Island, N.W.T., Canada / D. Barsch und G. Müller. - 21. Die Meereisentwicklung im Inneren des östlichen kanadischen Arktisarchipels und ihre Bedeutung für die Arbeiten der Heidelberg-Ellesmere Island-Expedition an der Oobloyah Bay, N-Ellesmere Island, N.W.T., Kanada / L. King. - 22. Gefäßpflanzen von Oobloyah Bay, N-Ellesmere Island, N.W.T., Kanada; eine kommentierte Pflanzenliste und phänologische Beobachtungen / R. Mäusbacher. - 23. The mosses of peat mounds, Oobloyah Bay, northern Ellesmere Island, N.W.T., Canada / L. King. - 24. Beobachtungen zu organischen Kleinformen im Oobloyah Tal, N-Ellesmere Island, N.W.T., Kanada / W. A. Flügel und R. Mäusbacher. - 25. Faunal notes of the Heidelberg Ellesmere Island Expedition 1978, Oobloyah Bay, northern Ellesmere Island, N.W.T., Canada / D. Barsch und L. King. - Anlage 1: Orthophotokarte 〈1 : 25 000〉 Oobloyah Bay. - Anlage 2: Geomorphologische Karte 〈1 : 25 000〉 Oobloyah Bay. - Anlage 3: Radiocarbondaten. - Anlage 4: Planung, Einkauf und Lagerung der Nahrungsmittel. , Beiträge teilweise in deutsch, teilweise in englisch
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Call number: AWI Bio-99-0205-2 ; AWI Bio-99-0205-1
    In: Atlas of seeds and small fruits of Northwest-European plant species 〈Sweden, Norway, Denmark, East Fennoscandia and Iceland〉
    Type of Medium: Monograph available for loan
    Pages: 259 S. , Ill.
    ISBN: 9172604980
    Language: English
    Note: Contents: Introduction. - Information concerning the Taxonomic Arrangement and the Material Examined. - Notes on Keys and Descriptions. - Glossary. - List of Abbreviations. - Salicaceae. - Myricaceae. - Corylaceae. - Betulaceae. - Fagaceae. - Ulmaceae. - Cannabaceae. - Urticaceae. - Santalaceae. - Loranthaceae. - Polygonaceae. - Chenopodioneae. - Amaranthaceae. - Portulacaceae. - Caryophyllaceace. - Nymphaeaceae. - Ceratophyllaceae. - Ranunculaceae. - Paeoniaceae. - Berberidaceae. - Aristolochiaceae. - Papaveraceae. - Cruciferae. - References. - Index of Taxa. - Plates. - Simple Symmetrical Plane Shapes.
    Location: AWI Reading room
    Location: AWI Reading room
    Branch Library: AWI Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Call number: AWI G2-17-91083
    Type of Medium: Monograph available for loan
    Pages: xxi, 174 S. , Ill., graph. Darst., Kt.
    ISBN: 978-0-9884626-1-8
    Language: English
    Note: Table of Contents: Acronyms & Abbreviations. - Foreword. - Technical review by Dr. W. J. Langston. - Executive Summary. - 1. Introduction. - 1.2 Legislative background. - 1.2.1 International. - 1.2.2 Europe. - 1.2.3 Canada and the USA. - 1.3 Marine sediment contamination - background. - 1.4 Dredging processes. - 1.4.1 Environmental impacts of dredging. - 1.4.2 Effectiveness of dredging to improve environmental exposure to contaminants. - 1.4.3 Case studies. - 1.5 Environmental management of marine sediments. - 1.5.1 Environmental management systems. - 1.5.2 ISO 14001. - 1.5.3 Management techniques. - 1.6 Models and indices used in marine sediment analyses. - 1.7 Methodologies for spatial analysis in sediment dynamics and pollution dispersal. - 1.7.1 Uses of GIS in marine environment. - 1.7.2 Examples of GIS analysis methods for pollution management in the marine environment. - 1.7.3 Organising data. - 1.8 data needs and availability. - 1.8.1 Data needs. - 1.8.2 Data availability. - 1.9 Contaminated area database. - 2. Ecological implications of contaminated sediments. - 2.1 Introduction. - 2.2 Antifoul paints as pollutant sources and reservoirs. - 2.2.1 Background. - 2.3 Antifoul as a contaminant - sources. - 2.3.1 Background. - 2.3.2 Leaching. - 2.3.3 Shipyards. - 2.3.4 Recreational craft. - 2.3.5 Paint residue - macro scale. - 2.3.6 Paint residue - micro scale. - 2.3.7 Sediment disturbance. - 2.4 Antifoul as a contaminant - sinks, secondary sources and pathways. - 2.4.1 Background. - 2.4.2 Sediment sinks - legacy. - 2.4.3 Sediment sinks - residence. - 2.5 Biogeochemical pathways. - 2.6 Antifoul and ecological implications. - 2.7 Ecological effects of sediment antifoul. - 2.7.1 Species to community. - 2.7.2 Legacy, ecology and management. - 2.7.3 Port and harbour examples. - 2.8 Conclusions. - 3. Pilot area introduction and description. - 3.1 Elefsina Bay (Elefsis). - 3.2 Piraeus. - 3.2.1 Piraeus and areas to the west. - 3.2.2 Zea & Microlimano. - 3.3 Lavrio. - 3.4 Rafina. - 3.5 Summary. - 4. Sediment data collection methods & sampling. - 4.1 Sampling design. - 4.2 Sediment sampling procedure. - 4.3 Sediment sample pre-treatment. - 4.4 Chemical analysis. - 4.4.1 Total metal content. - 4.4.2 Metal partitioning in geochemical fractions. - 4.5 Data use. - 5. Database Design & Compilation. - 5.1 Data collection. - 5.2 Database structuring & display. - 5.3 Exploring the database. - 5.4 Summary. - 6. Spatial statistical analyses. - 6.1 Environmental quality guidelines for sediments. - 6.2 Interpolation of data. - 6.3 Cluster & Correlation analysis. - 6.4 Elefsina Bay (Elefsis). - 6.4.1 Geostatistical analysis - kriging. - 6.4.2 Cluster & correlation analysis. - 6.5 Piraeus port and marinas. - 6.5.1 Geostatistical analysis - kriging. - 6.5.2 Cluster & correlation analysis. - 6.6 Lavrio. - 6.6.1 Geostatistical analysis. - 6.6.2 Cluster & correlation analysis. - 6.7 Rafina. - 6.7.1 Cluster & correlation analysis. - 6.8 Conclusions. - 7. Discussion and Overview. - 7.1 Overview of study. - 7.2 Contaminated sediments and their environmental impact. - 7.3 Data availability. - 7.3.1 Summary data at global scale. - 7.3.2 Detailed locational data for analysis. - 7.4 Database development. - 7.5 Implications. - 7.6 Practical application. - 7.7 Funding opportunities for further study. - 7.8 Conclusions. - References. - Journals, Books & Conference Proceedings. - Web Sites. - Appendix A. - A Models and indices used in marine sediment analyses. - A1 Multivariate statistics. - A1.1 Principal component analysis. - A1.2 Cluster analysis. - A1.3 Partial Least squares analysis. - A1.4 Multivariate statistics. - A2 Indices. - A2.1 AZTI Marine Biotic Index (AMBI). - A2.2 Benthic Quality Index (BQI). - A2.3 The Benthic Response Index. - A2.4 The Relative Benthic Index. - A2.5 The Index of Biotic (Biological) Integrity. - A3 Pollution dispersion modelling. - Appendix B. - B Cross-Validation statistics for simple Kriging analysis. - Appendix C. - C1 Using ArcGIS Explorer. - C2 Installing ArcGIS Explorer. - C3 Using ArcExplorer Desktop. - Appendix D. - About the authors.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Call number: AWI Bio-20-93530
    Description / Table of Contents: The Arctic tundra, covering approx. 5.5 % of the Earth’s land surface, is one of the last ecosystems remaining closest to its untouched condition. Remote sensing is able to provide information at regular time intervals and large spatial scales on the structure and function of Arctic ecosystems. But almost all natural surfaces reveal individual anisotropic reflectance behaviors, which can be described by the bidirectional reflectance distribution function (BRDF). This effect can cause significant changes in the measured surface reflectance depending on solar illumination and sensor viewing geometries. The aim of this thesis is the hyperspectral and spectro-directional reflectance characterization of important Arctic tundra vegetation communities at representative Siberian and Alaskan tundra sites as basis for the extraction of vegetation parameters, and the normalization of BRDF effects in off-nadir and multi-temporal remote sensing data. Moreover, in preparation for the upcoming German EnMAP (Environmental Mapping and Analysis Program…
    Type of Medium: Dissertations
    Pages: circa 330 Seiten , Illustrationen, Diagramme
    Language: English
    Note: TABLE OF CONTENTS Abstract Kurzfassung Table of Contents List of Figures List of Tables List of Abbreviations List of Symbols 1 INTRODUCTION 1.1 Background and Scientific Setting 1.2 Motivation and Research Questions 1.3 Structure of Thesis 2 FUNDAMENTALS OF HYPERSPECTRAL AND SPECTRO-DIRECTIONAL REMOTE SENSING 2.1 Hyperspectral Remote Sensing of Vegetation 2.2 Spectro-Directional Remote Sensing of Vegetation 2.3 The EnMAP Satellite System 2.4 Spectro-Goniometer Systems for the Ground-Based Measurement of BRDF Effects 3 THE TUNDRA PERMAFROST STUDY LOCATIONS AND THEIR ENVIRONMENT 3.1 The Eurasia Arctic Transect (EAT) 3.1.1 Geological and Climatic Setting 3.1.2 Vegetation 3.2 The North American Arctic Transect (NAAT) 3.2.1 Geological and Climatic Setting 3.2.2 Vegetation 4 OBSERVATIONS AND METHODOLOGY 4.1 Observations Used for this Study 4.1.1 The ECI-GOA-Yamal 2011 Expedition 4.1.2 The EyeSight- NAAT-Alaska 2012 Expedition 4.1.3 Data Used for Hyperspectral Characterization of Arctic Tundra 4.1.4 Data Used for Spectro-Directional Characterization of Arctic Tundra 4.2 Methodology Used for Field Work and Data Analysis 4.2.1 Field Spectroscopy and Hyperspectral Data Analysis 4.2.2 Considerations for the Field Spectro-Goniometer Measurements and the Spectro-Directional Data Analysis 5 DEVELOPMENT AND PRECOMMISSIONING INSPECTION OF THE MANTIS FIELD SPECTRO-GONIOMETER 5.1 Introduction 5.2 Theoretical Background 5.3 Description of the Field Spectro-Goniometer System 5.3.1 Construction Schedule 5.3.2 Description of the Field Spectro-Goniometer Platform (ManTIS) 5.3.3 Sensor Configuration of the AWI ManTIS Field Spectro-Goniometer 5.3.4 Measurement Strategy 5.3.5 Software for Semi-Automatic Control 5.4 Error Assessment 5.4.1 Radiometrical Accuracy 5.4.2 Pointing Accuracy 5.4.3 Ground Instantaneous Field of View and Sensor Self-Shadowing 5.4.4 Temporal Illumination Changes and Environmental Influences 5.5 Data Analysis 5.5.1 Data Processing 5.5.2 Data Visualization 5.6 Performance of ManTIS Field Spectro-Goniometer in the Field 5.6.1 Test Site and Experiment Setup 5.6.2 Results and Discussion 5.7 Conclusions and Outlook 6 HYPERSPECTRAL REFLECTANCE CHARACTERIZATION OF LOW ARCTIC TUNDRA VEGETATION 6.1 Introduction 6.2 Material & Methods 6.2.1 Study Area 6.2.2 Environmental Gradients/Zones and Vegetation Description 6.2.3 Data Acquisition and Pre-Processing 6.2.4 Data Analysis 6.3 Results 6.3.1 The Zonal Climate Gradient 6.3.2 Acidic Versus Non-Acidic Tundra (Soil pH Zones) 6.3.3 The Toposequence at Happy Valley (Subzone E) 6.3.4 The Soil Moisture Gradient at Franklin Bluffs (Subzone D) 6.4 Discussion 6.4.1 Overview of Field Characterization and Spectral Properties along the Gradients 6.4.2 Performance of Spectral Metrics and Vegetation Indices 6.5 Conclusions 7 RESULTS OF THE SPECTRO-DIRECTIONAL REFLECTANCE INVESTIGATIONS 7.1 Overview of the Spectro-Directional Reflectance Characteristics of Low Arctic Tundra Vegetation 7.1.1 Representativeness of the Study Plots Representing Tundra Vegetation 7.1.2 Vaskiny Dachi – Bioclimate Subzone D 7.1.3 Happy Valley – Bioclimate Subzone E 7.1.4 Franklin Bluffs – Bioclimate Subzone D 7.2 Influence of High Sun Zenith Angles on the Reflectance Anisotropy 7.2.1 MAT (Happy Valley) 7.2.2 MNT (Franklin Bluffs) 7.3 Variability in Multi-Angular Remote Sensing Products of Low Arctic Tundra Environments 7.3.1 Spectro-Directional Variability of Different Low Arctic Plant Communities 7.3.2 Spectro-Directional Variability under Varying Sun Zenith Angles 8 DISCUSSION 8.1 The Hyperspectral Reflectance Characteristics of Tundra Vegetation in Context of the Spectro-Goniometer Measurements 8.2 Applicability of the ManTIS Field Spectro-Goniometer System 8.3 The Spectro-Directional Reflectance Characteristics of Tundra Vegetation 8.4 Variability in Reflectance Anisotropy at High Sun Zenith Angles 8.5 Applicability of Multi- Angular Remote Sensing Products for Arctic Tundra Environments 9 CONCLUSIONS & OUTLOOK Acknowledgments References Appendix Table of Contents of the Appendix References of the Appendix Statutory Declaration / Eidesstattliche Erklärung
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Call number: AWI Bio-20-93529
    Description / Table of Contents: The Arctic is considered as a focal region in the ongoing climate change debate. The currently observed and predicted climate warming is particularly pronounced in the high northern latitudes. Rising temperatures in the Arctic cause progressive deepening and duration of permafrost thawing during the arctic summer, creating an ‘active layer’ with high bioavailability of nutrients and labile carbon for microbial consumption. The microbial mineralization of permafrost carbon creates large amounts of greenhouse gases, including carbon dioxide and methane, which can be released to the atmosphere, creating a positive feedback to global warming. However, to date, the microbial communities that drive the overall carbon cycle and specifically methane production in the Arctic are poorly constrained. To assess how these microbial communities will respond to the predicted climate changes, such as an increase in atmospheric and soil temperatures causing increased bioavailability of organic carbon, it is necessary to investigate the current status …
    Type of Medium: Dissertations
    Pages: 146 Blätter , Illustrationen
    Language: English
    Note: Table of content Abstract Zusammenfassung 1. Introduction 1.1. Motivation 1.2. Scientific Background 1.2.1. Permafrost in arctic environments 1.2.2. Carbon storage and emission in arctic environments 1.2.3. Methane cycling in arctic environments 1.3. Study Sites 1.3.1. Lena-Delta, Siberia 1.3.2. El’gygytgyn Crater Lake, Chukotka 1.4. Objectives and approach 1.5. Thesis organization 1.6. Summary of the included manuscripts and contribution of the co-authors 1.6.1. Response of methanogenic archaea to Late Pleistocene and Holocene climate changes in the Siberian Arctic 1.6.2. Response of microbial communities to landscape and climatic changes in a terrestrial permafrost sequence of the El’gygytgyn crater, Far East Russian Arctic 1.6.3. Glacial-interglacial microbial community dynamics in Middle Pleistocene sediments in the Lake El’gygytgyn, Far East Russian Arctic 2. Response of methanogenic archaea to Late Pleistocene and Holocene climate changes in the Siberian Arctic 2.1. Abstract 2.2. Introduction 2.3. Materials and Methods 2.3.1. Study site 2.3.2. Permafrost drilling and sample preparation 2.3.3. Sediment properties 2.3.4. Potential methane production rates 2.3.5. Lipid biomarker analysis 2.3.6. Detection of archaeol and isoprenoid GDGTs 2.3.7. Detection of PLFAs and PLELs 2.3.8. DNA extraction and polymerase chain reaction (PCR) amplification 2.3.9. Phylogenetic analysis 2.4. Results and Discussion 2.4.1. Methane profile of the Kurungnakh permafrost sequence 2.4.2. Signals of living microbial communities in the Kurungnakh permafrost sequence 2.4.3. Reconstruction of past microbial communities in the Kurungnakh permafrost sequence 2.4.4. Climate impact on the distribution of microbial communities in the Kurungnakh permafrost sequence 2.4.5. Climatic impact on the composition of methanogenic communities in the Kurungnakh permafrost sequence 2.5. Conclusion 2.6. Acknowledgement 3. Response of microbial communities to landscape and climatic changes in a terrestrial permafrost sequence of the El’gygytgyn crater, Far East Russian Arctic 3.1. Abstract 3.2. Introduction 3.3. Materials and Methods 3.3.1.Study site 3.3.2. Drilling and sample material 3.3.3. Sediment properties 3.3.4. Lipid biomarker analysis 3.3.5. Detection of glycerol dialkyl glycerol tetraethers (GDGTs) and archaeol 3.3.6. Detection of phospholipid fatty acids (PLFA) 3.3.7. Deoxyribonucleic acid (DNA) extraction and amplification 3.3.8. Quantitative PCR analysis of archaeal and bacterial small sub unit (SSU) rRNA genes 3.3.9. Phylogenetic analysis 3.4. Results 3.4.1. TOC-contents 3.4.2. Distribution of glycerol dialkyl glycerol tetraethers (GDGTs) and archaeol 3.4.3. Distribution of phospholipid fatty acids (PLFA) 3.4.4. Composition of archaeol and isoprenoid GDGTs 3.4.5. Quantification of bacterial and archaeal genes 3.4.6. Analysis of methanogenic community fingerprints 3.5. Discussion 3.5.1. Microbial communities in subaquatic deposits 3.5.2. Microbial communities in subaerial deposits 3.5.3. Microbial succession in the Holocene sequence of Lake El’gygytgyn permafrost 3.6.Conclusion 3.7. Acknowledgements 4. Glacial-interglacial microbial community dynamics in Middle Pleistocene sediments in the Lake El’gygytgyn, Far East Russian Arctic 4.1. Abstract 4.2. Introduction 4.3. Materials and Methods 4.3.1. Study site 4.3.2. Drilling and sample preparation 4.3.3. Sediment properties 4.3.4. Lipid biomarker analyses 4.3.5. Deoxyribonucleic acid (DNA) extraction and quantitative polymerase chain reaction (qPCR) 4.3.6. PCR amplification of methanogenic SSU rRNA genes 4.4. Results 4.4.1. Sedimentary TOC and biogenic silica concentration 4.4.2. Quantification of bacterial and archaeal genes 4.4.3. Quantification and composition of lipid biomarkers 4.4.4. Potential methane production 4.4.5. Methanogenic community composition 4.5. Discussion 4.6. Acknowledgements 5. Synthesis 5.1. The reaction of microbial communities to past climatic change in the Arctic 5.2.The response of microbial communities to carbon composition and availability 5.3. Implications from this study for future research 6. Data collection 6.1. Manuscript I: Response of methanogenic archaea to Late Pleistocene and Holocene climate changes in the Siberian Arctic 6.1.1. Sediment properties 6.1.2. Isoprenoid glycerol dialkyl glycerol tetraethers and archaeol 6.1.3. Branched glycerol dialkyl glycerol tetraethers 6.1.4. Phospholipid ester and ether lipids (summary) 6.2. Manuscript II: Response of microbial communities to landscape and climatic changes in a terrestrial permafrost sequence of the El’gygytgyn crater, Far East Russian Arctic 6.2.1. Sediment properties and gene quantifications 6.2.2. Phospholipid fatty acids composition 6.2.3. Isoprenoid glycerol dialkyl glycerol tetraethers and archaeol 6.2.4. Branched glycerol dialkyl glycerol tetraethers 6.3. Manuscript III: Glacial-interglacial microbial community dynamics in Middle Pleistocene sediments in the Lake El’gygytgyn, Far East Russian Arctic 6.3.1. Sediment properties and gene quantifications 6.3.2. Isoprenoid glycerol dialkyl glycerol tetraethers and archaeol 6.3.3. Branched glycerol dialkylglycerol tetraethers 7. References 8. Final thoughts and acknowledgements 9. Curriculum vitae 10.Erklärung
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Call number: AWI G3-22-94801
    Type of Medium: Monograph available for loan
    Pages: 95 Seiten , Illustrationen
    ISBN: 978-5-89658-049-2
    Language: English
    Note: Contents INTRODUCTION / P.V.Krasilnikov PART I GENERAL CHARACTERIZATION OF ENVIRONMENTAL CONDITIONS Geological settings / D.E.Konyushkov, R.V.Desyatkin Climate and soil temperature dynamics / D.E.Konyushkov, R.V.Desyatkin, A.R.Desyatkin Geocryological conditions / D.E.Konyushkov, A.N.Fedorov Vegetation / D.E.Konyushkov, R.V.Desyatkin SOILS AND SOIL COVER PATTERNS – GENERAL SCOPE / D.E.Konyushkov, R.V.Desyatkin, S.F.Khokhlov ALAS PHENOMEN: SPECIFIC FEATURES, GENESIS AND DYNAMICS / R.V.Desyatkin, A.R.Desyatkin AGRICULTURE AND OTHER ANTHROPOGENIC ACTIVITY IN CENTRAL YAKUTIA / R.V.Desyatkin, M.V.Okoneshnikova PART II SOILS OF CENTRAL SAKHA (YAKUTIA) / S.V.Goryachkin, R.V.Desyatkin, E.M.Lapteva, M.N.Lebedeva, N.S.Mergelov, P.V.Krasilnikov, V.A.Shishkov, I.V.Turova E.P.Zazovskaya METHODS OF STUDY DAY 1 Vilyui road. Cambic Turbic Cryosol. Profile 11 Vilyui road. Turbic Cryosol Reductaquic. Profile 12 Sand hills near Tabaga. Haplic Stagnosol Arenic Turbic. Profile 15 DAY 2 Abalakh alas vicinities. Haplic Cryosol Albic Luvic Sodic. Profile 14 Abalakh alas. Salic Fluvisol. Profile 13-1 Abalakh alas. Stagnic Solonetz Turbic. Profile 13-2 DAY 3 Desyatkin Alas. Cryic Limnic Histosol. Profile 9-1 Desyatkin Alas. Thapto-Histic Limnic Fluvisol. Profile 9-2 Desyatkin Alas. Endogleyic Stagnosols Albic Arenic Turbic. Profile 9-3 Observation point. Khonorosh alas. Bulgunyakh (pingo) 4 DAY 4 Tabaga post-agrogenic soil. Stagnic Cambisol Calcaric. Profile 2-1 Tabaga post-agrogenic soil. Luvic Phaeozem Albic Turbic. Profile 2-2 Tabaga post-agrogenic soil. Calcic Mollic Solonetz Albic. Profile 2-3 Observation point. Badland on icy permafrost Lena terrace. Stagnic Chernozem Molliglossic Turbic. Profile 5 Lena terrace. Mollic Endogleyic Solonetz Turbic. Profile 6 Lena terrace. Hyposalic Solonetz. Profile 7 SOME GENERAL CHARACTERISTICS OF SOILS Cryogenic microfeatures Soluble salts in investigated soils DAY 5. Lena pillars CONCLUSION / (S.V.Goryachkin) ACKNOWLEDGEMENTS REFERENCES
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Call number: AWI A10-18-91567
    In: AIP conference proceedings, Vol. 1531
    Type of Medium: Monograph available for loan
    Pages: XXV, 970 S. , Ill., graph. Darst., Kt.
    ISBN: 9780735411555 , 9781629936963 (Print on Demand)
    Series Statement: AIP conference proceedings 1531
    Language: English
    Note: Table of Contents: Preface: Radiation Processes in the Atmosphere and Ocean / Robert F. Cahalan. - Acknowledgments. - PLENARY SESSION. - UNION-HISTORICAL PERSPECTIVES AND CURRENT TOPICS IN RADIATION PROCESSES IN THE ATMOSPHERE AND OCEAN / Conveners: R. F. Cahalan, W. Schmutz, B. J. Sohn, and J. Fischer. - 125 years of radiative transfer: Enduring triumphs and persisting misconceptions / Michael I. Mishchenko. - Active remote sensing of cloud microphysics / Hajime Okamoto. - MIPAS: 10 years of spectroscopic measurements for investigating atmospheric composition / Herbert Fischer. - Status of high spectral resolution IR for advancing atmospheric state characterization and climate trend benchmarking: A period of both opportunity realized and squandered / Henry Revercomb, Fred Best, Robert Knuteson, David Tobin, Joe Taylor, and Jon Gero. - Growing up MODIS: Towards a mature aerosol climate data record / Robert C. Levy. - Radiative transfer and regional climate change / Kuo-Nan Liou. - Ocean optics: The next frontier / George W. Kattawar. - PARALLEL SESSIONS. - RADIATIVE TRANSFER THEORY AND MODELING / Conveners: B. Mayer, A. Marshak, and J.-L. Widlowski. - Oral Presentations. - New approach for radiative transfer in sea ice and its application for sea ice satellite remote sensing / E. P. Zege, A. V. Malinka, I. L. Katsev, A. S. Prikhach, and G. Heygster. - The line-by-line and polarized Monte Carlo atmospheric radiative transfer model / B. A. Fomin and V. A. Falaleeva. - Hyperspectral retrieval of surface reflectances: A new scheme / Jean-Claude Thelen and Stephan Havemann. - Accelerations of the discrete ordinate method for nadir viewing geometries / Dmitry Efremenko, Adrian Doicu, Diego Loyola, and Thomas Trautmann. - The simulation of radar and coherent backscattering with the Monte Carlo model MYSTIC / Christian Pause, Robert Buras, Claudia Emde, and Bernhard Mayer. - The visibility of airborne volcanic ash from the flight deck of an aircraft - The effect of clouds in the field of view / Daniel Sauer, Josef Gasteiger, Claudia Emde, Robert Buras, Bernhard Mayer, and Bernadett Weinzierl. - Results of processing airborne NASA and Russian cloud data / Irina Melnikova, Jefwa M. Genya, and Charles K. Gatebe. - 3D radiative processes in satellite measurements of aerosol properties / Tamás Várnai, Alexander Marshak, Weidong Yang, and Guoyong Wen. - Assessment of cloud heterogeneities effects on brightness temperatures simulated with a 3D Monte Carlo code in the thermal infrared / Thomas Fauchez, Céline Cornet, Frédéric Szczap, and Philippe Dubuisson. - Parametric 3D atmospheric reconstruction in highly variable terrain with recycled Monte Carlo paths and an adapted Bayesian inference engine / Ian Langmore, Anthony B. Davis, Guillaume Bal, and Youssef M. Marzouk. - Remote sensing of particle size profiles from cloud sides: Observables and retrievals in a 3D environment / Florian Ewald, Tobias Zinner, and Bernhard Mayer. - Poster Presentations. - Characterization of cloud microphysical parameters using airborne measurements by the research scanning polarimeter / Mikhail D. Alexandrov, Brian Cairns, Michael I. Mishchenko, Andrew S. Ackerman, and Claudia Emde. - Solution of the radiative transfer equation by eliminating the anisotropic part within the method of synthetic iteration / Vladimir P. Budak and Oleg V. Shagalov. - The phase matrix truncation impact on polarized radiance / M. Compiègne, L. C-Labonnote, and P. Dubuisson. - Evaluation of cloud heterogeneity effects on total and polarized visible radiances as measured by POLDER/PARASOL and consequences for retrieved cloud properties / C. Cornet, F. Szczap, L. C.-Labonnote, T. Fauchez, F. Parol, F. Thieuleux, J. Riedi, P. Dubuisson, and N. Ferlay. - Retrieval of volcanic ash and ice cloud physical properties together with gas concentration from IASI measurements using the AVL model / S. Kochenova, M. De Mazière, N. Kumps, S. Vandenbussche, and T. Kerzenmacher. - Use of shadowband correction models for predicting direct solar irradiance / M. C. Kotti, A. A. Argiriou, and A. Kazantzidis. - Simulation of airborne radar observations of precipitating systems at various frequency bands / Valentin Louf, Olivier Pujol, and Jérôme Riedi. - Fast radiative transfer model to simulate spectroscopic measurements of outgoing IR radiances in cloudy conditions / Alexey Rublev and Anatoly Trotsenko. - Intercomparison of three microwave/infrared high resolution line-by-line radiative transfer codes / F. Schreier, S. Gimeno Garcia, M. Milz, A. Kottayil, M. Höpfner, T. von Clarmann, and G. Stiller. - Py4CAtS – Python tools for line-by-line modelling of infrared atmospheric radiative transfer / Franz Schreier and Sebastián Gimeno García. - Theory of weak spectral line formation within a plane-parallel atmosphere bounded from below by a reflecting underlying surface / Oleg I. Smokty. - Analytical spatial-angular structure of polarized radiation fields in a uniform atmospheric slab / Oleg I. Smokty. - The mirror symmetry principle for radiation fields in a vertically non-uniform atmospheric slab / Oleg I. Smokty. - A 3D polarized Monte Carlo LIDAR system simulator for studying effects of cirrus inhomogeneities on CALIOP/CALIPSO measurements / F. Szczap, C. Cornet, A. Alqassem, Y. Gour, L. C.-Labonnote, and O. Jourdan. - The significance analysis of FY-2E split window data for "clear region" AMVs derivation / Zhenhui Wang, Yizhe Zhan, Zhiguo Zhang, and Lu Yang. - PARTICLE RADIATIVE PROPERTIES / Conveners: T. Aoki, P. Di Girolamo, and H. Ishimoto. - Oral Presentations. - Retrieval of aerosol microstructure and radiative properties for moderate turbidity under conditions of Western Siberia / Tatiana B. Zhuravleva, Tatiana V. Bedareva, and Mikhail A. Sviridenkov. - Vertical resolved aerosol characterization during the GAMARF campaign: Aerosol size distribution and radiative properties / José Luis Gómez-Amo, Daniela Meloni, Alcide di Sarra, Tatiana DiIorio, Wolfgang Junkermann, Víctor Estellés, Giandomenico Pace, and Jeroni Lorente. - A novel, broadband spectroscopic method to measure the extinction coefficient of aerosols in the near-ultraviolet / Eoin M. Wilson, Jun Chen, Ravi M. Varma, John C. Wenger, and Dean S. Venables. - Aerosol characteristics at the Alpine site of Innsbruck, Austria / Sigrid Wuttke, Axel Kreuter, and Mario Blumthaler. - Comparison of modeled optical properties of Saharan mineral dust aerosols with SAMUM lidar and photometer observations / Josef Gasteiger and Matthias Wiegner. - A self-consistent high- and low-frequency scattering model for cirrus / Anthony J. Baran, Richard Cotton, Stephan Havemann, Laurent C.-Labonnote, and Franco Marenco. - Does scattered radiation undergo bluing within clouds? / I. Melnikova, T. Simakina, A. Vasilyev, C. Gatebe, and C. Varotsos. - Poster Presentations. - Numerical simulation of spectral albedos of glacier surfaces covered with glacial microbes in Northwestern Greenland / Teruo Aoki, Katsuyuki Kuchiki, Masashi Niwano, Sumito Matoba, Jun Uetake, Kazuhiko Masuda, and Hiroshi Ishimoto. - Development of a quality control algorithm for analysis of SKYNET data and an estimation of the single scattering albedo / Makiko Hashimoto and Teruyuki Nakajima. - Optical modeling of irregularly shaped ice particles in convective cirrus / Hiroshi Ishimoto, Kazuhiko Masuda, Yuzo Mano, Narihiro Orikasa, and Akihiro Uchiyama. - Optimizing the ice crystal scattering database for the GCOM-C/SGLI satellite mission / Husi Letu, Takashi Y. Nakajima, Takashi N. Matsui, and Yoshiaki Matsumae. - Synergetic retrieval of atmospheric aerosol from a combination of lidar and radiometer ground-based observations / Anton Lopatin, Oleg Dubovik, Anatoli Chaikovsky, Philippe Goloub, Didier Tanre, Pavel Litvinov, and Tatiana Lapyonok. - Satellite study over Europe to estimate the single scattering albedo and the aerosol opt
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Monograph available for loan
    Monograph available for loan
    [Erscheinungsort nicht ermittelbar] : [Verlag nicht ermittelbar]
    Call number: AWI P2-19-92186
    Type of Medium: Monograph available for loan
    Pages: 23 Seiten
    Language: English
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Monograph available for loan
    Monograph available for loan
    Bonn : Federal Republic of Germany, Press and Public Relations Department
    Call number: AWI P6-18-91970
    Type of Medium: Monograph available for loan
    Pages: iv, 169 Seiten
    Language: English
    Note: CONTENTS: Introduction. - International co-operation. - Intergovernmental co-operation. - Non-governmental co-operation. - I. Scientific Programme. - 1. Astronomy. - 2. Biological Sciences. - 2.1 The marine ecosystem and its living resources. - 2.1.1 Food resources, phytoplankton production and zooplankton. - 2.1.2 The role of the benthos. - 2.1.3 The role of micro-organisms. - 2.1.4 Distribution and incidence of seals in the pack-ice of the Weddell Sea. - 2.1.5 Distribution and life history of fishes. - 2.1.6 Large-scaie distribution and drift of krill. - 2.1.7 Composition and behaviour of krill shoals. - 2.1.8 Preservation and processing of krill. - 2.2 The adaptation of antarctic marine organisms to their environment. - 2.2.1 Experiments and marine studies on .the ecophysiology of krill. - 2.2.2 Temperature regulation and food requirements of warm-blooded antarctic animals. - 2.2.3 Growth, digestive system and food economy of antarctic fishes. - 2.2.4 Freezing resistance of sea animals. - 2.2.5 Taxonomy of antarctic marine organisms. - 2.3 Terrestrial biology in Antarctica. - 2.3.1 Temperature adjustments in the reproductive biology of antarctic birds. - 2.3.2 Biochemical bases of growth processes in poikilothermic organisms at very low temperatures. - 2.3.3 Nutritional biology of poikilothermic herbivora. - 2.3.4 Study of lichens, fungi and bacteria in Antarctica and on offshore islands. - 2.3.5 Photosynthesis and heterotrophic life cycle of plants at very low temperatures. - 2.4 Environmental protection in Antarctica. - 2.5 Human biology and medicine in polar regions. - 3. Geodesy, Cartography and Remote Sensing. - 3.1 Satellite geodesy. - 3.2 Doppler satellite positioning. - 3.3 Geodetic mapping of ice-free areas. - 3.4 Remote-sensing by satellite. - 4. Geology and Geophysics. - 4.1 Study of drift processes as a contribution to the geological history of Antarctica. - 4.1.1 Study of magnetic structures by means of aeromagnetic photography. - 4.1.2 Paleomagnetic studies of drift evolution. - 4.1.3 Micro-earthquakes as indicators of tectonic activity. - 4.1.4 Earth tides and natural oscillations of the earth. - 4.2 Studies of the structure of crust and mantle. - 4.2.1 Structure of the basement complex of the transantarctic mountain chain in the area east of the Filchner Ice Shelf. - 4.2.2 Structure of the basement of the Weddell Sea, the Filchner/Ronne Ice Shelf, and the peripheral area. - 4.2.3 Oldest and highly metamorphous rocks of the East Antarctic. - 4.3 Stratigraphy, tectonics and magmatism in the mobile areas. - 4.3.1 Mobile fringe areas of the East Antarctic. - 4.3.2 Paleozoic and mesozoic mountains(Beacon upper group) in the transantarctic mountains. - 4.3.3 Early paleozoic to cainozoic orogenes in the area around the Filchner/Ronne Ice Shelf. - 4.4 Study of exogenous processes under extremely cold conditions. - 4.4.1 Glacial geology and geomorphology. - 4.4.2 Weathering and detrital formation. - 4.5 Geoscientific marine research. - 5. Glaciology. - 5.1 Volume and dynamics of the Filchner/Ronne Ice Shelf. - 5.2 Determining the extent and thickness of the ice and its temporal variation in the Filchner/Ronne Ice Shelf sector and peripheral areas. - 5.3 Determining the composition and inner structure of the Filchner/Ronne Ice Shelf on the basis of geophysical surface measurements. - 5.4 Studies of the dynamics of the pack-ice in the Weddell Gyre. - 5.5 Physical characteristics of ocean ice. - 5.6 Glaciological drillings. - 5.7 Chemical composition and accumulation genesis of antarctic background aerosol; global transport of trace gases and aerosols. - 5.8 Study of the elastic and rheological characteristics of ice, its heat conductability and texture affected by deformation. - 6. Upper Atmosphere and Extraterrestrial Physics. - 6.1 Investigation of whistlers and VLF radio emissions (chorus, hiss, etc) at conjugated points. - 6.2 Study of terresterial magnetic pulsations at conjugated points. - 6.3 Study of atmospherics to obtain more precise data on worldwide thunderstorms. - 6.4 Measurements of the aero-electric field. - 6.5 Balloon-based study of the ionosphere in the light of Mg t resonance lines. - 6.6 Measurement of the vertical distribution of ozone, steam and aerosol up to an altitude of 30 km. - 6.7 Measurements of emission in the infrared 9.6 µ ozone band from the ground. - 6.8 Other projects which may be carried out simultaneously with the above or later. - 6.9 Proposed basic terrestrial magnetic equipment for the Antarctic Station. - 6.10 Meteorite search expedition. - 6.11 Study of micrometeorites and cosmic dust. - 7. Meteorology and Oceanography. - 7.1 Meteorology. - 7.1.1 Atmospheric boundary stratum. - 7.1.2 Study of stratospheric circulation. - 7.1.3 Measurement of trace gases over long periods. - 7.1.4 Other research projects. - 7.1.5 Weather service observations and consultations. - 7.1.6 Basic meteorological equipment for the Antarctic Station. - 7.2 Physical oceanography. - 7.2.1 Formation and extent of bottom water in the Atlantic sector of the circumantarctic ocean. - 7.2.2 Numeric simulation of the vertical flows of material, energy and impulses. - 7 2.3 Time scales of transportation in deep water with the aid of radioactive trace elements. - 7.2.4 Detection of heavy metals in the Antarctic Ocean. - 7.2.5 Fishery oceanography in circumantarctic waters. - 7.2.6 Other research projects. - 8. Engineering Sciences. - 8.1 Shipbuilding technology. - 8.1.1 Measuring and testing programme regarding the performance of vessels in ice and technical developments in the construction of ice-going vessels. - 8.2 Iceberg location and navigation. - 8.2.1 Iceberg location. - 8.2.2 Development of precision positioning systems (also for dynamic positioning) to ensure noninterference with signals transmitted through ice and water masses of different thicknesses. - 8.3 Construction techniques. - 8.4 Exploration techniques. - 8.5 Other topics. - The Antarctic Research Station. - The Polar Research and Supply Ship. - The Polar Research Institute. - Institutions contributing to the Programme.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Monograph available for loan
    Monograph available for loan
    Viévy : Éditions de l'Escargot Savant
    Call number: AWI A4-22-94545
    Description / Table of Contents: Sea ice covers 20 million km² of our planet’s surface. It plays an important role in the Earth’s climate and is home to a variety of fascinating fauna, from the polar bear to the emperor penguin. Sailors and meteorologists use a wide range of terms such as frazil, pancake ice, floe or hummock to describe the different features of sea ice. This book includes an illustrated guide to sea ice so that polar travellers can discover this environment and understand ice charts. The story of sea ice is also a story of human endeavour. For the Inuit, fast ice is an ideal terrain for hunting, fishing and travelling. But for European explorers the drifting ice was an insurmountable barrier for centuries, crushing ships and forcing crews to spend long and difficult winters on the ice. It has also been the scene of incredible adventures involving planes, submarines, icebreakers and sometimes even rafts of drifting ice. But our planet is warming and the oldest polar sea ice is disappearing. The declining sea ice encourages the economic and industrial development of the Arctic, but also disrupts the climate, societies and fauna of the Far North. The author is a meteorologist who has wintered in Antarctica, lived in Greenland and guides several polar expedition cruises each year.
    Type of Medium: Monograph available for loan
    Pages: 112 Seiten , Illustrationen , 15 x 21 cm
    ISBN: 978-2-918299-26-4
    Series Statement: Maxi-Guides Collection : Polar Regions
    Language: English
    Note: Contents ILLUSTRATED GUIDE TO SEA ICE Presentation Ice development Fast ice Occurrence and concentration of floating ice Forms of floating ice Distribution of ice Openings in the ice Ice surface features Melt stages Break-up Charting sea ice Egg code SEA ICE Extent and area Thickness and salinity Currents Climatic role Life in the ice FAUNA The Arctic Antarctica MAN AND THE SEA ICE The Inuit Explorers from the 15th to the 19th century Shipwrecked on a raft of ice The Fram and the drifting ice stations Polar aircraft Polar submarines Icebreakers Tourism Sports , Übersetzung aus dem Französischen
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Call number: AWI G6-23-95368
    Type of Medium: Monograph available for loan
    Pages: XIX, 1004 Seiten , Illustrationen
    ISBN: 9780891189602 , 978-0-891-18960-2 , 0891189602
    ISSN: 2163-5804 , 1047-4986
    Series Statement: Soil Science Society of America book series 10
    Language: English
    Note: Contents Foreword Preface Contributors Chapter 1 Issues of Sampling Design in Wetlands / Monica Rivas Casado, Ron Corstanje, Pat Bellamy, and Ben Marchant DESIGN-BASED SAMPLING APPROACHES MODEL-BASED SAMPLING APPROACHES Chapter 2 Soil and Sediment Sampling of Inundated Environments / Todd Z. Osborne and R.D. DeLaune SAMPLING IN INUNDATED ENVIRONMENTS: SAMPLING PLAN AND GENERAL CONSIDERATIONS SAMPLING METHODS FOR INUNDATION DEPTHS LESS THAN 1.5 METERS SAMPLING METHODS FOR INUNDATION DEPTHS GREATER THAN 1.5 METERS SPECIAL CONDITIONS OR CONSIDERATIONS Chapter 3 Physicochemical Characterization of Wetland Soils / K.R. Reddy, M.W. Clark, R.D. DeLaune, and M. Kongchum SOIL SAMPLING PHYSICOCHEMICAL PROPERTIES CONCLUSIONS Chapter 4 Soil Pore Water Sampling Methods / M.M. Fisher and K.R. Reddy TECHNIQUES FOR SAMPLING SOIL PORE WATER SAMPLE HANDLING CONSIDERATIONS SAMPLING PORE WATER GASES SUMMARY Chapter 5 Reduction–Oxidation Potential and Oxygen / J. Patrick Megonigal and Martin Rabenhorst REDOX POTENTIAL THEORY OXYGEN MEASUREMENT WITH DIFFUSION CHAMBERS REDOX MEASUREMENT Chapter 6 Determination of Dissolved Oxygen, Hydrogen Sulfide, Iron(II), and Manganese(II) in Wetland Pore Waters / George W. Luther III and Andrew S. Madison EXPERIMENTAL PRINCIPLES OF ELECTRODE FABRICATION EXPERIMENTAL PRINCIPLES OF WORKING ELECTRODE CALIBRATIONS PROCEDURES FOR MICROPROFILING SUMMARY Chapter 7 Soil Redox Potential and pH Controllers / Kewei Yu and Jörg Rinklebe REDOX POTENTIAL AND pH CONTROL MODIFICATIONS AN AUTOMATED BIOGEOCHEMICAL MICROCOSM SYSTEM APPLICATIONS Chapter 8 Morphological Methods to Characterize Hydric Soils / M.J. Vepraskas EQUIPMENT METHODS AND TECHNIQUES FOR DESCRIBING HYDRIC SOILS FIELD TEST TO ASSESS SOIL MATERIAL TYPE IDENTIFYING HYDRIC SOIL FIELD INDICATORS Chapter 9 Emergent Macrophyte Biomass Production / Christopher Craft SAMPLING CONSIDERATIONS INDIRECT METHODS DIRECT METHODS EMERGING METHODS Chapter 10 Photosynthetic Measurements in Wetlands / S.R. Pezeshki OXYGEN EXCHANGE MEASUREMENT TECHNIQUE CARBON ISOTOPE TECHNIQUE MICROMETEOROLOGICAL TECHNIQUE CHLOROPHYLL FLUORESCENCE METHOD PHOTOSYNTHETIC MEASUREMENTS USING CHAMBERS SUMMARY Chapter 11 Gas Transport and Exchange through Wetland Plant Aerenchyma / Brian K. Sorrell and Hans Brix GENERAL PRINCIPLES EXPERIMENTAL PRINCIPLES LABORATORY AND GLASSHOUSE CHAMBERS MODELING APPROACHES Chapter 12 A Primer on Sampling Plant Communities in Wetlands / Curtis J. Richardson and Ryan S. King OVERVIEW OF SAMPLING PLANT POPULATIONS AND COMMUNITIES SAMPLE SIZE PLANT SAMPLING APPROACHES RAPID ASSESSMENT APPROACHES TO ESTIMATE PLANT ABUNDANCE AND COVER PERCENTAGE PLANT SAMPLING METHODS AND CALCULATION PROCEDURES ANALYSIS OF DATA COMPARISON OF PLANT COMMUNITIES SUGGESTIONS FOR DEVELOPING A PLANT SAMPLING PROGRAM APPENDIX Chapter 13 Plant Productivity—Bottomland Hardwood Forests / William H. Conner and Julia A. Cherry ABOVEGROUND PRODUCTIVITY BELOWGROUND PRODUCTIVITY Chapter 14 Current Methods to Evaluate Net Primary Production and Carbon Budgets in Mangrove Forests / Victor H. Rivera-Monroy, Edward Castañeda-Moya, Jordan G. Barr, Vic Engel, Jose D. Fuentes, Tiffany G. Troxler, Robert R. Twilley, Steven Bouillon, Thomas J. Smith III, and Thomas L. O’Halloran CURRENT METHODS TO ESTIMATE NET PRIMARY PRODUCTIVITY COMPARING MANGROVE NET PRIMARY PRODUCTION ESTIMATES TO WHOLE-FOREST CARBON FLUX MEASUREMENTS SUMMARY AND FUTURE RESEARCH DIRECTIONS APPENDIX Chapter 15 Characterization of Wetland Soil Organic Matter / Robert L. Cook and Thomas S. Bianchi SAMPLE TREATMENT AND PROCESSING SPECTROSCOPIC CHARACTERIZATION BULK ELEMENTAL AND CHEMICAL BIOMARKER ANALYSES SUMMARY Chapter 16 Dissolved Organic Matter / Robert G. Qualls EQUIPMENT AND INSTRUMENTATION MATERIALS AND REAGENTS SAMPLE PREPARATION PROCEDURES CONCLUSIONS Chapter 17 Soil Microbial Biomass and Phospholipid Fatty Acids / Jörg Rinklebe and Uwe Langer THE SUBSTRATE-INDUCED RESPIRATION METHOD PHOSPHOLIPID FATTY ACIDS ESTIMATES OF MICROBIAL BIOMASS SUMMARY Chapter 18 Molecular Genetic Analysis of Wetland Soils / Hee-Sung Bae and Andrew V. Ogram DNA EXTRACTION QUANTITATIVE POLYMERASE CHAIN REACTION POLYMERASE CHAIN REACTION BASED MOLECULAR CLONING Chapter 19 Enzyme Activities / Hojeong Kang, Seon-Young Kim, and Chris Freeman EQUIPMENT AND INSTRUMENTATION MATERIALS AND REAGENTS SAMPLE PREPARATION PROCEDURE CALCULATION SUMMARY Chapter 20 Organic Matter Mineralization and Decomposition / Scott D. Bridgham and Rongzhong Ye LITTER DECOMPOSITION DECOMPOSITION OF STANDARD SUBSTRATES SOIL HETEROTROPHIC RESPIRATION PHOTODEGRADATION Chapter 21 Methanogenesis and Methane Oxidation in Wetland Soils / Kanika S. Inglett, Jeffery P. Chanton, and Patrick W. Inglett EXPERIMENTAL METHANE MEASUREMENTS ISOTOPIC MEASUREMENTS OF METHANE Chapter 22 Greenhouse Gas Emission by Static Chamber and Eddy Flux Methods / Kewei Yu, April Hiscox, and R.D. DeLaune STATIC CHAMBER MEASUREMENT EDDY COVARIANCE MEASUREMENT SUMMARY Chapter 23 Characterization of Organic Nitrogen in Wetlands / C.M. VanZomeren, H. Knicker, W.T. Cooper, and K.R. Reddy CHEMICAL FRACTIONATION OF SOIL ORGANIC NITROGEN CHLOROFORM FUMIGATION METHOD NUCLEAR RESONANCE SPECTROSCOPY MASS SPECTROMETRY OF ORGANIC NITROGEN CONCLUSIONS Chapter 24 Measurements of Nitrogen Mineralization Potential in Wetland Soils / Eric D. Roy and John R. White POTENTIALLY MINERALIZABLE NITROGEN SUBSTRATE-INDUCED NITROGEN MINERALIZATION LIMITATIONS SUMMARY Chapter 25 Wind Tunnel Method for Measurement of Ammonia Volatilization / M.E. Poach, K.S. Ro, and P.G. Hunt EQUIPMENT AND INSTRUMENTATION MATERIALS AND REAGENTS SAMPLE PREPARATION PROCEDURE SAMPLE ANALYSIS CALCULATION STATISTICAL ANALYSIS QUALITY ASSURANCE SUMMARY Chapter 26 Ammonium Oxidation in Wetland Soils / K.S. Inglett, A.V. Ogram, and K.R. Reddy AEROBIC AMMONIUM OXIDATION (NITRIFICATION) ANAEROBIC AMMONIUM OXIDATION (ANAMMOX) METHODS FOR ASSESSING AEROBIC AMMONIUM OXIDATION (NITRIFICATION) METHODS FOR ASSESSING ANAEROBIC AMMONIUM OXIDATION (ANAMMOX) POTENTIAL MOLECULAR METHODS FOR ASSESSING AMMONIUM OXDIATION IN WETLAND SOILS SUMMARY Chapter 27 Denitrification Measurement Using Membrane Inlet Mass Spectrometry / Patrick W. Inglett, Todd M. Kana, and Soonmo An GENERAL PRINCIPLES EXPERIMENTAL PRINCIPLES ISOTOPE PAIRING BY THE MIMS METHOD SUMMARY Chapter 28 Nitrate Reduction, Denitrification, and Dissimilatory Nitrate Reduction to Ammonium in Wetland Sediments / Amy J. Burgin, Stephen K. Hamilton, Wayne S. Gardner, and Mark J. McCarthy EQUIPMENT AND INSTRUMENTATION MATERIALS AND REAGENTS PROCEDURES SAMPLE PREPARATION CALCULATIONS Chapter 29 System-Level Denitrification Measurement Based on Dissolved Gas Equilibration Theory and Membrane Inlet Mass Spectrometry / Andrew Laursen and Patrick W. Inglett GENERAL THEORY EXPERIMENTAL PRINCIPLES CALCULATIONS DISCUSSION AND LIMITATIONS SUMMARY Chapter 30 Biogeochemical Nitrogen Cycling in Wetland Ecosystems: Nitrogen-15 Isotope Techniques / Dries Huygens, Mark Trimmer, Tobias Rütting, Christoph Müller, Catherine M. Heppell, Katrina Lansdown, and Pascal Boeckx EXPERIMENTAL STUDY SETUPS ISOTOPE PAIRING AND REVISED ISOTOPE PAIRING TECHNIQUES ISOTOPE DILUTION AND TRACING TECHNIQUES Chapter 31 Biological Dinitrogen Fixation / Patrick W. Inglett ACETYLENE REDUCTION DINITROGEN-15 INCORPORATION SUMMARY Chapter 32 Methods for Soil Phosphorus Characterization and Analysis of Wetland Soils / Curtis J. Richardson and K.R. Reddy TERMINOLOGY, OPERATIONAL DEFINITIONS, AND COMPARISON OF PHOSPHORUS FORMS SAMPLE PREPARATION AND STORAGE SOIL PHOSPHORUS ANALYSIS PHOSPHORUS AVAILABILITY INDICES ANION EXCHANGE RESIN AND IRON OXIDE PAPER SOIL INORGANIC PHOSPHORUS FORMS GENERAL COMMENTS Chapter 33 Phosphorus Characterization in Wetland Soils by Solution Phosphorus-31 Nuclear Magnetic Resonance Spectroscopy / Alexander W. Cheesman, James Rocca, and Benjamin L. Turner BRIEF OVERVIEW OF THE PRINCIPLES APPLICATION TO WETLAND SOILS Chapter 34 Phosphorus Sorption and Desorption
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...